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Abstract—Natural images contain an overwhelming number of visual patterns generated by diverse stochastic processes. Defining and

modeling these patterns is of fundamental importance for generic vision tasks, such as perceptual organization, segmentation, and

recognition.Theobjectiveof this epistemological paper is to summarize various threadsof research in the literature and to pursueaunified

framework for conceptualization, modeling, learning, and computing visual patterns. This paper starts with reviewing four research

streams: 1) the study of image statistics, 2) the analysis of image components, 3) the grouping of image elements, and 4) themodeling of

visual patterns. The models from these research streams are then divided into four categories according to their semantic structures:

1) descriptivemodels, i.e., Markov random fields (MRF) or Gibbs, 2) variants of descriptivemodels (causal MRF and “pseudodescriptive”

models), 3) generativemodels, and 4) discriminativemodels. The objectives, principles, theories, and typicalmodels are reviewed in each

category and the relationships between the four types of models are studied. Two central themes emerge from the relationship studies.

1) In representation, the integration of descriptive and generative models is the future direction for statistical modeling and should lead to

richer andmore advanced classes of visionmodels. 2) Tomake visual models computationally tractable, discriminative models are used

as computational heuristics for inferring generativemodels. Thus, the roles of four types ofmodels are clarified. The paper also addresses

the issue of conceptualizing visual patterns and their components (vocabularies) from the perspective of statistical mechanics. Under this

unified framework, a visual pattern is equalized to a statistical ensemble, and, furthermore, statistical models for various visual patterns

form a “continuous” spectrum in the sense that they belong to a series of nested probability families in the space of attributed graphs.

Index Terms—Perceptual organization, descriptive models, generative models, causal Markov models, discriminative methods,

minimax entropy learning, mixed Markov models.

�

1 INTRODUCTION

1.1 Quest for a Common Framework of Visual
Knowledge Representation

NATURAL images consist of an overwhelming number of
visual patterns generated by very diverse stochastic

processes innature. Theobjective of image analysis is toparse
generic images into their constituent patterns. For example,
Fig. 1a shows an image of a football scene which is parsed
into: Fig. 1b a point process for the music band, Fig. 1c a line
andcurveprocess for the fieldmarks, Fig. 1dauniformregion
for the ground, Fig. 1e two texture regions for the spectators,
and Fig. 1f two objects—words and human face. Depending
on the types of patterns that a task is interested in, the image
parsing problem is respectively called 1) perceptual grouping
for point, line, and curve processes, 2) image segmentation for
region process, and 3) object recognition for high level objects.
In other words, grouping, segmentation, and recognition are
subtasks of the image parsing problem and, thus, they ought
to be solved in a unified way. This requests a common and
mathematically sound framework for representing visual
knowledge, and the visual knowledge includes two parts.

1. Mathematical definitions and models of various
visual patterns.

2. Computational heuristics for effective inference of
the visual patterns and models.

The objective of this epistemological paper is to pursue
such a unified framework. More specifically, it should
address the following four problems.

Conceptualization of visual patterns. What is a quanti-
tative definition for a visual pattern? For example, what is a
“texture” and what is a “human face?” The concept of a
pattern is an abstraction of some properties decided by
certain “vision purposes.” These properties are feature
statistics computing from either raw signals or some hidden
descriptions inferred from raw signals. In bothways, a visual
pattern is equalized to a set of observable signals governed by
a statistical model—which we call an ensemble. In other
words, each instance in the set is assigned a probability. For
homogeneous patterns, such as texture, on large lattice this
probability is a uniform distribution and the visual pattern is
an equivalence class of images that satisfy certain descrip-
tions. The paper should review some theoretical background
in statistical mechanics and typical physics ensembles, from
which a consistent framework is derived for defining various
visual patterns.

Statistical modeling of visual patterns. First of all, why
are the statistical models much needed in vision? In other
words, what is the origin of these models? Some argued that
probabilities are involved because of noise and distortion in
images. This is truly a misunderstanding! With high quality
digital cameras, there is rarely noise or distortion in images
anymore. Probabilities are associated with the definitions of
patterns and are even derived fromdeterministic definitions.
In fact, the statistical models are intrinsic representation of
visual knowledge and image regularities. Second, what are
themathematical space for patterns andmodels? Patterns are
represented by attributed graphs and, thus, models are
defined in the space of attributed graphs. The paper should
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review two classes of models. One is descriptive model that
are Markov random fields (or Gibbs) and its variants
(including causal Markov models). The other is generative
modelswhich engagehiddenvariables for generating images
in a top-down manner. It is shown that the two classes of
models should be integrated. In the literature, a generative
model often has a trivial descriptive component and a
descriptivemodelusuallyhasa trivial generative component.
As a result of this integration, the models for various visual
patterns, ranging from textures to geometric shapes, should
form a “continuous spectrum” in the sense that they are from
a series of nested probability families in this space.

Learning a visual vocabulary. What is the hierarchy of
visual descriptions for general visual patterns? Can this
vocabulary of visual description be defined quantitatively
and learned from the ensemble of natural images?Compared
with the large vocabulary in speech and language (such as
phonemes, words, phrases, and sentences), and the rich
structures in physics (such as electrons, atoms, molecules,
andpolymers), the currentvisualvocabulary is far frombeing
enough for visual pattern representation. This paper reviews
some progress in learning image bases and textons as visual
dictionaries. These dictionaries are associated with genera-
tive models as parameters and are learned from natural
images through model fitting.

Computational tractability. Besides the representational
knowledge (definitions, models, and vocabularies), there is
also computational knowledge. The latter are computational
heuristics for effective inference of visual patterns, i.e.,
inferring hidden variables from raw images. These heuristics
are the discriminative models that are approximations to
posterior probability or ratios of posterior probabilities. The
approximative posteriors are computed through local image
features, in contrast to the real posterior computed by the
Bayes rule following generative models. Then, it is natural to
ask what are the intrinsic relationships between representa-
tional and computational models? Generally speaking, the
generative models are expressed as top-down probabilities
and the hidden variables have to be inferred from posterior

probabilities following the Bayes rule, by Markov chain
Monte Carlo techniques, in general, such as the Metropolis-
Hastings method. In contrast, the discriminative models
approximate the posterior in a bottom-up and speedy
fashion. These discriminative probabilities are used as
proposal probabilities that drive the Markov chain search
for fast convergence and mixing.

Thequestions raisedabovehavemotivated long threadsof
research frommany disciplines, for example, appliedmathe-
matics, statistics, computervision, imagecoding,psychology,
and computational neurosciences. Recently, a uniform
mathematical framework emerges from the interactions
between the research streams and, experimentally, a large
number of visual patterns can be modeled realistically. This
inspires the author to write an epistemology paper to
summarize the progress in the field. The objective of the
paper is to facilitate communications between different fields
and provide a road map for the pursuit of a common
mathematical theory for visual pattern representation and
computation.

1.2 Plan of the Paper

The paper consists of the following five parts.
Part 1 Literature survey. The paper starts with a survey of

the literature in Section 2 to set the background. We divide
the literature in four research streams:

1. the study of natural image statistics,
2. the analysis of natural image components
3. the grouping of natural image elements, and
4. the modeling of visual patterns.

These streams develop four types of models:

1. descriptive model (Markov random fields or Gibbs),
2. variants of descriptive models (causal MRF and

“pseudodescriptive” models),
3. generative models, and
4. discriminative model.

The relationships of the models will be studied.
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Fig. 1. Parsing an image into its constituent patterns. (a) An input image. (b) A point process. (c) A line/curve process. (d) A uniform region. (e) Two

texture regions. (f) Objects: face and words. Courtesy of Tu and Zhu [83].



Part 2: A common framework for learning models. Section 3
presents a common maximum-likelihood formulation for
modeling visual patterns. Then, it leads to the choice of two
families of the probability models: descriptive models (and
its variants) and generative models. Then, the paper
presents the descriptive and generative models in parallel.

Part 3: Descriptive models and its variants. This includes two
sections. First, the paper presents, in Section 4, the basic
assumptions and theminimaxentropyprinciples for learning
descriptive models and seven typical examples from low-
level image pattern to high-level human face patterns in the
literature. Second, in Section 8, the paper discusses a few
variants to the descriptive models, including causal Markov
models and the pseudodescriptive models.

Part 4: Generative models. In parallel, Section 6 presents
the basic assumptions, methods, and five typical examples
for learning generative models.

Part 5: Conceptualization of visual patterns. This includes
two sections. First, in Section 5.2, it addresses the issue of
conceptualization from the perspective of descriptive
models. It presents the statistical physics foundation of
descriptive models and three types of ensembles: the
microcanonical, canonical, and grand-canonical ensembles.
Then, it conceptualizes a visual pattern to an ensemble of
physical states. In Section 7, the paper revisits the
conceptualization of patterns from the perspectives of
generative models and states that the visual vocabulary
can be learned as parameters in the generative models.

Part 6: Discriminative models. Then, the paper turns to
computational issues in Section 9. It reviews how dis-
criminative models can be used for inferring hidden
structures in generative models and presents maximum
mutual information principle for selecting informative
features for discriminations.

Finally, Section 10 concludes the paper by raising some
challenging issues in model selection and the balance
between descriptive and generative models.

2 LITERATURE SURVEY—A GLOBAL PICTURE

In this section, we briefly review four research streams and
summarize four types of probabilistic models to represent a
global picture of the field.

2.1 Four Research Streams

2.1.1 Stream 1: The Study of Natural Image Statistics

Any generic vision systems, biologic or machine, must
account for image regularities. Thus, it is of fundamental
importance to study the statistical properties of natural
images. Most of the early work studied natural image
statistics from the perspective of image coding and redun-
dancy reduction and often used them to predict/explain the
neuron responses.

Historically,Attneave [3],Barlow[5], andGibson [35]were
among the earliest who argued for the ecologic influence on
vision perception. Kersten [49], did perhaps, the first
experiment measuring the conditional entropy of the inten-
sityatapixelgiventhe intensitiesof itsneighboringpixels, ina
spirit similar to Shannon’s [76] experiment of measuring the
entropy of English words. Clearly, the strong correlation of
intensities between adjacent pixels results in low entropy.
Further study of the intensity correlation in natural images
leads toan interesting rediscoveryof a1=f power lawbyField

[28].1 By doing a Fourier transform on natural images, the
amplitudeof the Fourier coefficients at frequency f (averaged
over orientations) fall off in a 1=f-curve (see Fig. 4a). The
power may not be exactly 1=f and vary in different image
ensembles [72]. This inspired a large body ofwork in biologic
vision and computational neurosciences which study the
correlations of not only pixel intensities but responses of
various filters at adjacent locations. These works also expand
from gray-level static images to color andmotion images (see
[2], [78] for more references).

Meanwhile, the study on natural image statistics extends
from correlations to histograms of filter responses, for
example, using Gabor filters.2 This leads to two interesting
observations. First, the histograms of Gabor type filter
responses on natural images have high kurtosis [29]. This
reveals that natural images have high order (non-Gaussian)
structures. Second, it was reported independently by [72],
[94] that the histograms of gradient filtered images are
consistent over a range of scales (see Fig. 5). The scale
invariance experiment is repeated by several teams [13], [38].
Further studies along this direction include investigations on
joint histograms and low-dimensional manifolds in high-
dimensional spaces. For example, the density on a 7D unit
sphere for all 3� 3 pixel patches of natural images [52], [53].
Going beyond pixel statistics, some most recent work
measured the statistics of object shapes [96], contours [32],
and the size of regions and objects in natural images [4].

2.1.2 Stream 2: The Analysis of Natural Image

Components

The high kurtosis in image statistics observed in stream 1 is
only a marginal evidence for hidden structures in natural
scenes. A direct way for discovering structures and
reducing image redundancy is to transform an image into
a superposition of image components. For example, Fourier
transform, wavelet transforms [16], [57], and various image
pyramids [77] for generic images, and principal component
analysis for some specific ensembles of images.

The transforms from image pixels to bases achieve two
desirable properties. The first is variable decoupling. The
coefficients of these bases are less correlated or become
independent in ideal cases. The second is dimension reduc-
tion. The number of bases for approximately reconstructing
an image is often much smaller than the number of pixels.

If one treats an image as a continuous function, then a
mathematical tool for decomposing images is harmonic
analysis (see [25], [59], [60]). Harmonic analysis is concerned
with decomposing various classes of functions (i.e., mathe-
matic spaces) by different bases. Further development
along this vein includes the wedgelets, ridgelet, edgelets,
curvelets [10], [101].

Obviously, the ensemble of natural images is quite
different from those functional classes. Therefore, the
image components must be adapted to natural images.
This leads to inspiring ideas in recent literature—sparse
coding with overcomplete basis or dictionary [67]. With
overcomplete basis, an image may be reconstructed by a
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1. The spectra power-law was first reported in [23] in studying television
signals and rediscovered by Cohen et al. [15] in photographic analysis, and
then by Burton and Moorhead [100] in optics study. It was Fields’ work that
brought it to attention of the broad vision communities.

2. Correlations only measures second order moments while histograms
include all the high order information, such as skewness (third order) and
kurtosis (fourth order).



small (sparse) number of bases in the dictionary. This often
leads to 10-100 folds of dimension reduction. For example,
an image of 200� 200 pixels can be reconstructed approxi-
mately by about 100� 500 base images. Olshausen and
Field then learned the overcomplete dictionary from
natural images. Fig. 13 shows some of the bases. Added
to this development is the independent component analysis
(ICA) [17], [84]. It is shown in harmonic analysis that the
Fourier, wavelet, and ridgelet bases are independent
components for various ensembles of mathematical func-
tions (see [25] and references therein). But, for the ensemble
of natural images, it is not possible to have an independent
basis and one can only compute a basis that maximize
some measure of independence. Going beyond the image
bases, recently, Zhu et al. [99] proposed the texton
representation with each texton consisting of a number of
image bases at various geometric, photometric, and
dynamic configurations. If we compare the image bases
to phonemes in speech, then the textons are larger
structures corresponding to words.

2.1.3 Stream 3: The Grouping of Natural Image

Elements

The third research streamoriginated fromGestalt psychology
[51]. Human visual perception has strong tendency (bias)
toward forming global percept (“whole” or pattern) by
grouping local elements (“parts”). For example, human
vision completes illusory figures [47], and perceives halluci-
natory structures from totally random dot patterns [79]. In
contrast to research streams 1 and 2, early work in stream 3
focusedon computational procedures and algorithms that seemto
demonstrate performance similar to human perception. This
includes work on illusory figure completion and grouping
from local edge elements (e.g., Guy andMedioni [41]).

While the Gestalt laws are quite successful in many
artificial illusory figures, their applicability in real-world
images was haunted by ambiguities. A pair of edge elements
may be grouped in one image but separated in the other
image, depending on information that may have to be
propagated from distant edge elements. So, the Gestalt laws
are not really deterministic laws but rather heuristics or
importance hypotheseswhichare better usedwithprobabilities.

Lowe [56] was the first who computed the likelihoods
(probabilities) for grouping a pair of line segments based on
proximity, colinearity, or parallelism, respectively. Consid-
ering a number of line segments that are independently and
uniformly distributed in terms of lengths, locations, and
orientations in a unit square, Lowe estimated the expected
number for a pair of line segments at a certain configuration
that are formed accidentally according to this uniform
distribution. Lowe conjectured that the likelihood of group-
ing a pair of line segments in real images should be
proportional to the inverse of this expected number—which
he called nonaccidental property. In a similar method, Jacobs
[43] calculated the likelihood for grouping a convex figure
from a set of line segments. In a similarway,Moisan et al. [61]
compute the likelihoods for “meaningful alignments.” More
advanced work includes Sarkar and Boyer [74] and Dick-
inson et al. [24] for generic object grouping and recognition
(see Fig. 20). Bienenstock et al. [7] proposed a compositional
vision approach for grouping of handwritten characters.

Generally speaking, the probabilities for grouping are, or
can be reformulated to, posterior probability ratios of

“grouping” versus “ungrouping” or “on” versus “off” an
object. The probabilities are computed based on local
features. Recently, people started learning these probabilities
and ratios from natural images with supervised input. For
example,Geisler et al. [32] computed the likelihood ratio for the
probability that a pair of edge elements appear in the same
curve (grouped manually) against the probability that they
appear in different curves (not grouped). Konishi et al. [50]
computes probability ratio for a pixel on versus off the edge
(object boundary) from some manually segmented images.

2.1.4 Stream 4: The Modeling of Natural Image Patterns

The fourth stream of research follows the Bayesian frame-
work and develops explicit models for visual patterns. In the
literature, Grenander [36], Cooper [18], and Fu [31] were the
pioneers using statistical models for various visual patterns.
In the late 1980s and early 1990s, image models become
popular and indispensable when people realized that vision
problems, typically the shape-from-X problems, are funda-
mentally ill-posed. Extra information is needed to account for
regularities in real-world scenes and the models represent
our visual knowledge. Early models all assumed simple
smoothness (sometimes piecewisely) of surfaces or image
regions, and they were developed from different perspec-
tives. For example, physically-based models [8], [81], reg-
ularization theory [69], and energy functionals [63]. Later,
these concepts all converged to statistical models that
prevailed due to two pieces of influential work. The first
work is the Markov random field (MRF) modeling [6], [19]
introduced from statistical physics. The second work is the
Geman and Geman [33] paper which showed that vision
inference can be done rigorously byGibbs sampler under the
Bayesian framework. There was extensive literature on
Markov random fields and Gibbs sampling in the late 1980s.
This trend went down in the early 1990s for two practical
reasons: 1) Most of those Markov random field models are
based on pair cliques and, thus, do not realistically
characterize natural image patterns. 2) The Gibbs sampler is
computationally very demanding on such problems.

Other probability models of visual patterns include
deformable templates for objects, such as human face [90]
and hands [37]. In contrast to the homogeneousMRFmodels
for texture and smoothness, deformable templates are
inhomogeneous MRF on small graphs whose nodes are
labeled. We should return to more recent MRF models in
later section.

2.2 Four Categories of Statistical Models

The interactions of the research streams produce four
categories of probability models. In the following sections,
we briefly review the four types of models to set back-
ground for a mathematical framework that unifies them.

2.2.1 Category 1: Descriptive Models

First, the integration of stream 1 and stream 4 yields a class
of models that we call “descriptive models.” Given an
image ensemble and its statistics properties, such as the
1=f-power law, scale invariant gradient histograms, studied
in stream 1, one can always construct a probability model
which produces the same statistical properties as observed
in the image ensemble. The probability is of the Gibbs
(MRF) form following a maximum entropy principle [44].
By maximum entropy, the model minimizes the bias while
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it satisfies the statistical descriptions. We call such models
the descriptive models because they are constructed based
on statistical descriptions of the image ensembles.

The descriptive model is attractive because a single
probability model can integrate all statistical measures of
different image features. For example, a Gibbs model of
texture [93] canaccount for the statistics extractedbyabankof
filters, and a Gibbs model of shapes (2D simple curves) can
integrate the statistics of various Gestalt properties: proxi-
mity, colinearity, parallelism [96]. Such integration is not a
simple product of the likelihoods or marginals on different
features (like the projection pursuit method) but uses
sophisticated energy functions to account for thedependency
of these features. This provides a way to exactly measure the
“nonaccidental statistics” sought after by Lowe [56].We shall
deliberate on this point in latter section.

The descriptive models are all built on certain graph
structures including lattices. There are two types descriptive
models in the literature: 1) Homogeneous models where the
statistics are assumed tobe the same for all elements (vertices)
in the graph. The random variables are the attributes of
vertices, such as texture models. 2) Inhomogeneous model
where the elements (vertices) of the graph are labeled and
different features and statistics are used at different sites, for
example, deformable models of human faces.

2.2.2 Category 2: Variants of Descriptive Models and

Energy Approximations

The descriptive models are often computationally expen-
sive, due to the difficulty of computing the partition
(normalizing) functions. This problem becomes prominent
when the descriptive models have large image structures
and account for high order image statistics. In the literature,
there are a few variants to the descriptive models and
approximative methods.

The first is causal Markov models. A causal MRF model
approximates a descriptive model by imposing a partial (or
even linear) order among the vertices of the graph such that
the joint probability can be factorized as a product of
conditional probabilities. The latter have lower dimensions
and, thus, are much easier to learn and to compute. The
CausalMRFmodels are still maximum entropy distributions
subject to, sometimes, the same set of statistical constraints as
the descriptive models. But, the entropy is maximized in a
limitedprobability space. Examples include texture synthesis
in [26], [70] and the recent cut-and-paste work [27], [54].

The second is called pseudodescriptive model. Typical
examples include texture synthesis methods by Heeger and
Bergen [42] and DeBonet and Viola [21]. They draw
independent samples in the feature space, for example, filter
responses at multiple scales and orientations at each pixel
from the marginal or joint histograms. Though the sampled
filter responses satisfy the statistical description in an
observed image, there is no image that can produce all these
filter responses, as the latter are conflicting with each other.
Then, an image is synthesized by a pseudoinverse method.
Sampling in the feature spaceand thepseudoinverse areoften
computationally convenient but the whole method does not
follow a rigorous model.

The other approximative approach for computing the
descriptive model introduces a belief at each vertex. These
beliefs are onlynormalized at a single site or apair of sites and
they do not necessarily form a legitimate (well normalized)

joint probability for the whole graph. Thus, it avoids
computing thepartition functions. This technique, originated
in statistical physics, includes the mean field approximation,
the Bethe and Kikuchi approximations (see Yedidia et al. [89]
and Yuille [92]).

2.2.3 Category 3: Generative Models

The principled way for tackling the computational com-
plexity of descriptive models (no “hacks” or approxima-
tions) is to introduce hidden variables that can “explain
away” the strong dependency in observed images. For
example, the sparse coding scheme [67] is a typical
generative model which assumes an image being generated
by a small number of bases. Other models include [20], [30].
The computation becomes less intensive because of the
reduced dimensions and the partially decoupling of hidden
variables. The generative model must engage some voca-
bulary of visual descriptions. For example, an overcomplete
dictionary for image coding. The elements in the vocabulary
specify how images are generated from hidden variables.

The generative models are not separable from descriptive
models because the hidden variables must be characterized
byadescriptivemodel, though in the literature, the lattermay
often be a trivial iid Gaussian model or a causal Markov
model. For example, the sparse coding scheme is a two layer
generative model and assumes that the image bases are iid
hidden variables. Hidden Markov models in speech and
motion are also two layer models whose hidden layer is a
Markov chain (causal MRF model with linear order).

So, descriptive and generative models must be integrated
for developing richer and computationally tractable models.
We should deliberate on this in latter sections. Thus, we have
a unified family of models for the descriptive (its variants)
and generative models. These models are representational.

2.2.4 Category 4: Discriminative Models

In contrast to the representational models (descriptive plus
generative), some probabilities are better considered compu-
tational heuristics viewed from the general task of image
parsing—the discriminative models used in stream 3 belong
to this category.

In comparison, descriptive models and generative mod-
els are used as prior probabilities and likelihoods in the
Bayesian framework, while discriminative models approx-
imate the posterior probabilities of hidden variables (often
individually) based on local features. As we shall show in
later sections, they are importance proposal probabilities which
drive the stochastic Markov chain search for fast conver-
gence. It was shown, through simple case, that the better the
proposal probability approximates the posterior, the faster
the algorithm converges [58].

The interaction between discriminative and generative
models has not gone very far in the literature. Recent work
include the data driven Markov chain Monte Carlo
(DDMCMC) algorithms for image segmentation, parsing,
and object recognition [82], [83], [98].

2.2.5 Summary and Justification of Terminology

To clarify the terminology used above, Fig. 2 shows a trivial
example of the four models for a desk object. A desk consists
of four legs and a top, denoted, respectively, by variables
d; l1; l2; l3; l4; t for their attributes (vector valued). Fig. 2a
shows the undirected graph for a descriptive model
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pðl1; l2; l3; l4; tÞ. It is in theGibbs formwith a number of energy
terms to account for the spatial arrangement of the fivepieces.
The potential functions of the Gibbs assign low energies and,
thus, high probabilities, to more general configurations. This
descriptive model accounts for the phenomological prob-
ability that the five pieces occur together without “under-
standing” a hidden concept of “desk”—denoted by hidden
variabled. ThecausalMRFmodelassumesadirectedgraph in
Fig. 2b. Thus, it simplifies the descriptive model as
pðl2Þpðtjl1; l2Þpðl3jt; l1Þ pðl4jt; l2; l3Þ. Fig. 2c is a two level
generative model which involves a hidden variable d for the
“whole” desk. The desk generates the five pieces by a model
pðl1; l2; l3; l4; tjdÞ.d containsglobal attributesof thedeskwhich
controls the positions of the five parts. If we assume that the
five pieces are conditionally independent, then it becomes a
context free grammar (without the dashed lines). In general,
we still need a descriptive model to characterize the spatial
deformation by a descriptive model (see the dashed links).
But, this new descriptive model pðl1; l2; l3; l4; tjdÞ is much less
complicated than pðl1; l2; l3; l4; tÞ in Fig. 2a. For example, if
there are five types of desks, the descriptive model
pðl1; l2; l3; l4; tÞ must have complicated energy function so
that it has five distinct modes (maxima). But, if d contains a
variable for the desk type, then pðl1; l2; l3; l4; tjdÞ has a single
mode for each type of desk and its potential is quite easy to
compute. Finally, Fig. 2d is a discriminative model, the links
are pointed from parts to whole (reversing the generative
arrows). It tries to compute a number of posterior probabil-
ities pðdjtÞ, pðdjliÞ; i ¼ 1; 2; 3; 4. These probabilities are often
treated as “votes” that are then summed up in a generalized
Hough transform.

Syntactically, the generative, causal Markov, and discri-
minative models can all be called Bayesian (causal, belief)
networks as long as there are no loops in the graphs. But, this
terminology is very confusing in the literature. Our terminol-
ogy for the four types of models is from a semantic
perspective. We call it a generative model if the links are
directed downwards in the conceptual hierarchy. We call it a
discriminative model if the links are upward. For example,
the Bayes networks used by [24], [74], [75] (see Fig. 20) are
discriminativemodels.Wecall it a causalMarkovmodel if the
links are pointed to variables at the same conceptual level
(also see Fig. 17). For example, we consider hidden Markov

models in motion or speech as two layer generative models
where the hidden variables is governed by a causal Markov
(descriptive)model because theybelong to the same semantic
level.When a generativemodel is integratedwith descriptive
model, the integrated model can still be called generative
model—a slight abuse of terminology.

It is worth noting that not all hidden variables are used
in generative models. The mixed Markov model, as a
variant of descriptive model, uses hidden variables to
specify the neighborhood for variables at the same semantic
level. These hidden variables are called “address variables”
[65]. In contrast, the hidden variables in generative models
represent entities of large structures.

3 PROBLEM FORMULATION

Now, we start with a general formulation of visual
modeling, from which we derive the descriptive and
generative models for visual knowledge representation.

Let E denote the ensemble of natural images in our
environment. As the number of natural images is so large, it
makes sense to talk about a frequency fðIÞ for images I 2 E.
fðIÞ is intrinsic to our environment and our sensory system.
For example, fðIÞwould be different for fish living in a deep
ocean or rabbits living in a prairie, or if our vision is 100 times
more acute. The general goal of visualmodeling is to estimate
the frequency fðIÞ by a probabilisticmodel pðIÞ based on a set
of observations fIobs1 ; . . . ; IobsM g � fðIÞ. pðIÞ represents, exclu-
sively, our understandings of image regularities and, thus, all
of our representational knowledge for vision.3

Itmaysoundquite ridiculous to estimate adensity likefðIÞ
which is often in a 256� 256 space. But aswe shall show in the
rest of the paper, this is possible because of the strong
regularities in natural images, and easy access to a very large
number of images. For example, if a child sees 20 images per
second, and opens eyes 16 hours a day, then by the age of 10,
he/she has seen three billion images. The probability model
pðIÞ should approach fðIÞ by minimizing a Kullback-Leibler
divergenceKLðf jjpÞ from f to p,
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Fig. 2. Four types of models for a simple desk object. (a) Descriptive (MRF), (b) causal MRF, (c) generative + descriptive, and (d) discriminative.

3. A frequency fðIÞ is an objective probability for the ensemble E, while a
model pðIÞ is subjective and biased by the finite data observation and choice
of model families.



KLðf jj pÞ ¼
Z
fðIÞ log fðIÞ

pðIÞ dI ¼ Ef ½log fðIÞ� �Ef ½log pðIÞ�:

ð1Þ

Approximating the expectation Ef ½log pðIÞ� by a sample
average leads to the standard maximum-likelihood estima-
tor (MLE),

p� ¼ argmin
p2�p

KLðf jj pÞ � argmax
p2�p

XM
m¼1

log p Iobsm

� �
; ð2Þ

where �p is a family of distributions where p� is searched
for. One general procedure is to search for p in a sequence of
nested probability families,

�0 � �1 � � � � � �K ! �f 3 f;

where K indexes the dimensionality of the space, e.g., the
number of free parameters. As K increases, the probability
family should be general enough to approach f to an
arbitrary predefined precision.

There are two choices for the families �p in the literature.
The first choice is the descriptive model. They are called

exponential or log-linear models in statistics, and Gibbs
models in physics. We denote them by

�d
1 � �d

2 � � � ��d
K ! �f : ð3Þ

The dimension of the space �d
i is augmented by increasing

the number of feature statistics of I.
The second choice is the generative model, or mixture

models in statistics, denoted by

�g
1 � �g

2 � � � � � �g
K ! �f 3 f: ð4Þ

The dimension of �p is augmented by introducing hidden
variables for the underlying image structures in I.

Both families are general enough for approximating any
distribution f . In the following sections, we deliberate on
the descriptive and generative models and learning
methods and then discuss their unification and the
philosophy of model selection.

4 DESCRIPTIVE MODELING

In this section, we review the basic principle of descriptive
modeling and show a spectrum of seven examples for
modeling visual patterns from low to high levels.

4.1 The Basic Principle of Descriptive Modeling

The basic idea of descriptive modeling is shown in Fig. 3.
Let s ¼ ðs1; . . . ; snÞ be a representation of a visual pattern.
For example, s ¼ I could be an image with n pixels and, in
general, s could be a list of attributes for vertices in a
random graph representation. An observable data ensemble
is illustrated by a cloud of points in an n-space and each
point is an instance of the visual pattern. A descriptive
method extracts a set of K features as deterministic trans-
forms of s, denoted by �kðsÞ; k ¼ 1; . . . ; K. For example,
�kðIÞ ¼< F; I > is a projection of image I on a linear filter
(say Gabor) F . These features (such as F ) are illustrated by
axes in Fig. 3. In general, the axes don’t have to be straight
lines and could be more than one-dimensional. Along these
axes, we can compute the projected histograms of the
ensemble (the right side of Fig. 3). We denote these

histograms as hobs
k for features �kðsÞ; k ¼ 1; 2; . . . ; K. They

are estimates to the marginal statistics of fðsÞ.
A model p must match the marginal statistics hobs

k ; k ¼
1; . . . ; K if it is to estimate fðsÞ. Thus, we have descriptive

constraints:

Ep½hð�kðsÞÞ� ¼ hobs
k � Ef ½hð�kðsÞÞ�; k ¼ 1; . . . ; K: ð5Þ

The least biased model that satisfies the above constraints is

obtained by maximum entropy [44] and this leads to the

FRAME model [93],

pdesðs;��Þ ¼
1

Zð��Þ exp �
XK
k¼1

< ��k; hð�kðsÞÞ >
( )

: ð6Þ

The parameters �� ¼ ð��1; . . . ; ��KÞ are Lagrange multipliers

and they are computed by solving the constraint equations

(5).��k is avectorwhose length is equal to thenumberofbins in

the histogram hð�kðsÞÞ. As the features �kðsÞ; k ¼ 1; 2; . . . ; K

are often correlated, the parameters �� are learned to weight

these features. Thus, pdesðs;��Þ integrates all the observed

statistics.4

The selection of features in pdes is guided by a minimum

entropy principle. For any new feature �þ, we can define its

nonaccidental statistics following Zhu et al. [93].

Definition 1 (Nonaccidental Statistics). Lethþf be the observed

statistics for a novel feature�þ computed from the ensemble, i.e.,

hþf � Ef ½hð�þðsÞÞ� and hþp ¼ Epdes ½hð�þðsÞÞ� its expected

statistics according to a current model pdes. Then, the

nonaccidental statistics of �þ, with its correlations to the

previousK features removed, is a quadratic distance dðhþf ;hþp Þ.
dðhþf ;hþp Þmeasures the statistics discrepancy of �þ which

are not captured by the previous K features. Let pþdes be an

augmenteddescriptivemodelwith theK statistics in pdes plus

the feature �þ, then the following theorem is observed in

Zhu et al. [93].

Theorem 1 (Feature Pursuit). In the above notation, the

nonaccidental statistics of feature �þ is equal to the entropy

deduction,

dðhþf ;hþp Þ ¼ KLðf jj pdesÞ �KLðf jj pþdesÞ
¼ entropyðpdesÞ � entropyðpþdesÞ;

ð7Þ
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Fig. 3. Descriptive modeling: estimating a high-dimensional frequency f
by a maximum entropy model p that matches the low-dimensional
(marginal) projections of f. The projection axes could be nonlinear.

4. In natural language processing, such Gibbs model was also used in
modeling the distribution of English letters [22].



where dðhþf ;hþp Þ is a quadratic distance between the two
histograms.

As entropy is the logarithmic volume of the ensemble
governed by pdes, the higher the nonaccidental statistics, the
more informative feature �þ is for the visual pattern in
terms of reducing uncertainty. Thus, a feature �þ is selected
sequentially for maximum entropy reduction following (7).

The Cramer and Wold theorem states that the descriptive
model pdes can approximate any densities f using linear
axes only (also see [95]).

Theorem 1 (Cramer and Wold). Let f be a continuous density,
then f is a linear combination of h, the latter are the marginal
distributions on the linear filter response F ð�Þ � s, and f can be
reconstructed by pdes.

4.2 A Spectrum of Descriptive Models for Visual
Patterns

In the past few years, the descriptive models have success-
fully accounted for the observed natural image statistics
(stream 1) and modeled a broad spectrum of visual patterns
displayed in Fig. 1. In this section, we show seven examples.

4.2.1 Model D1: Descriptive Model for 1=f-power Law of

Natural Images

An important discovery in studying the statistics of natural

images is the1=f power-law(see review in stream1).Let Ibea

natural imageand ÎIð�; �Þ its Fourier transform.LetAðfÞbe the
Fourier amplitude jÎIð�; �Þj at frequency f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
aver-

aged over all orientations, thenAðfÞ falls off in a 1=f-curve.

AðfÞ / 1=f; or logAðfÞ ¼ const� log f:

Fig. 4a is a result in logarithmic scale by Field [28] for six
natural images. The curves are fit well by straight lines in log-
plot. This observation reveals that natural images contain
equal Fourier power at each frequency band—scale invar-
iance. That is,

Z Z
f2	�2þ�2	ð2fÞ2:

jÎI2ð�; �Þjd�d� ¼ 2�

Z 4f2

f2

1

f2
df2 ¼ const:; 8f:

The descriptive model that accounts for such statistical
regularity is surprisingly simple. It was showed by

Mumford [65] that a Gaussian Markov random field
(GMRF) model below has exactly 1=f-Fourier amplitude.

p1=fðI;�Þ ¼
1

Z
exp �

X
x;y

�jrIðx; yÞj2
( )

; ð8Þ

where jrIðx; yÞj2 ¼ ðrxIðx; yÞÞ2 þ ðryIðx; yÞÞ2. rx and ry

are the gradients. As the Gibbs energy is of a quadratic form
and its matrix is real symmetric circulant, by a spectral
analysis (see [68]) its eigenvectors are the Fourier bases and
its eigenvalues are the spectra.

This simply demonstrates that the much celebrated
1=f-power law is nothing more than a second order moment
constraint in the maximum entropy construction,

Ep jrIðx; yÞj2
h i

¼ 1

2�
� Ef jrIðx; yÞj2

h i
; 8 x; y: ð9Þ

This is equivalent to a 1=f constraint in the Fourier
amplitude.

Since p1=fðI;�Þ is a Gaussian model, one can easily draw
a random sample I � p1=fðI;�Þ. Fig. 4b shows a typical
sample image by Mumford [65]. It has very little structure
in it! We will revisit the case in the generative model.

4.2.2 Model D2: Descriptive Model for Natural Images

with Scale-Invariant Histograms

The second important discovery of natural image statistics is
the scale-invariance of gradient histograms [72], [94]. Take a
natural imageIandbuildapyramidwithanumberofnscales,
I ¼ Ið0Þ; Ið1Þ; . . . ; IðnÞ. Iðsþ1Þ is obtained by an average of
2� 2 pixels in IðsÞ. The histograms hðsÞ of gradients
rxI

ðsÞðx; yÞ (or ryI
ðsÞðx; yÞ) are plotted in Fig. 5a for three

scaless ¼ 0; 1; 2. Fig.5bshowsthe logarithmof thehistograms
averaged over a number of images.

These histograms demonstrate high kurtosis and are
amazingly consistent over a range of scales. Let hobs be the
normalized histogram averaged over three scales and
impose constraints that a model p should produce the same
histograms (marginal distributions),

Ep hðrxI
ðsÞÞ

h i
¼ Ep hðryI

ðsÞÞ
h i

¼ hobs; s ¼ 0; 1; 2; 3: ð10Þ
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Fig. 4. (a) The log-Fourier-amplitude of natural images are plotted against log f, courtesy of Field [28]. (b) A randomly sampled image with 1=f
Fourier amplitude, courtesy of Mumford [65].



Zhu and Mumford [94] derived a descriptive model,

pinvðI;��Þ ¼

1

Z
exp �

X3
s¼0

X
ðx;yÞ2�ðsÞ

�ðsÞx ðrxI
ðsÞðx; yÞÞ þ �ðsÞy ðryI

ðsÞðx; yÞÞ

8<
:

9=
;:
ð11Þ

�ðsÞ is the image lattice at scale s. �� ¼ ð�ð0Þx ðÞ; �ð0Þy ðÞ
; . . . ; �ð3Þx ðÞ; �ð3Þy ðÞÞ are the parameters and each �ðsÞx ðÞ is a
1D potential function quantized by a vector.

Fig. 5c shows a typical image sampled from this model
by a Gibbs sampler that was used in [33]. This image has the
scale-invariant histograms shown in Figs. 5a and 5b.
Clearly, the sampled image demonstrates some piecewise
smoothness and consists of microstructures of various sizes.

To make connection with other models, we remark on
two aspects of pinvðI;��Þ.

First, by choosing only one scale s ¼ 0, the constraints in
(10) is a superset of the constraints in (9), as the histogram
includes the variance. Therefore, pinv also observes the
1=f-power law but with much more structures.

Second, with only one scale, pinv reduces to the general
smoothness models widely used in shape-from-X and
denoising (see review of stream 4). The learned potential
functions �xðÞ and �yðÞ match pretty close to the manually
selected energy functions. This bridges the learning of Gibbs
model with PDEs in image processing (see details in [94]).

4.2.3 Model D3: Descriptive Model for Textures

The third descriptive model accounts for interesting psycho-
physical observations in texture study that histogramsof a set
of Gabor filters may be sufficient statistics in texture percep-
tion, i.e., two textures cannot be told apart in early vision if
they share the same histograms of Gabor filters [14].

LetF1; . . . ; FK be a set of linear filters (such as Laplacian of
Gaussian, Gabors), and hðFk � IÞ the histograms of filtered
image Fk � I for k ¼ 1; 2; . . . ; K. Each Fk corresponds to an
axis andhðFk � IÞa1Dmarginaldistribution inFig. 3. Froman
observed image, a set of histograms hobs

k ; k ¼ 1; 2; . . . ; K are
extracted. By imposing the descriptive constraints

Ep½hðFk � IÞ� ¼ hobs
k ; 8k ¼ 1; 2; . . . ; K: ð12Þ

A FRAME model [93], [95] is obtained through maximum

entropy.

ptexðI;��Þ ¼
1

Z
exp �

X
ðx;yÞ2�

XK
k¼1

�kðFk � Iðx; yÞÞ

8<
:

9=
;: ð13Þ

where �� ¼ ð�1ðÞ; �2ðÞ; . . . ; �KðÞÞ are potential functions with
each function �iðÞ being approximated by a vector. ptexðI;��Þ
extends traditional Markov random field models [6], [19] by
replacing pairwise cliques with Gabor filters and by
upgrading the quadratic energy to nonparametric potential
functions which account for high order statistics.

Fig. 6 illustrates the modeling of a texture pattern. As
texture is homogeneous, it uses spatial average in a
single input image in Fig. 6a to estimate the ensemble
average hobs

k ; k ¼ 1; 2; . . . ; K. With K ¼ 0 constraints,
ptexðI; �Þ is a uniform distribution and a typical random
sample is a noise image shown in Fig. 6b. With K ¼
1; 2; 7 histogram constraints, the randomly sampled
images from the learned Gibbs models ptexðI; �Þ, are
shown in Figs. 6c, 6d, and 6e, respectively. The samples
are drawn by Gibbs sampler [33] from ptexðI;��Þ and the
selection of filters are governed by a minimax entropy
principle [93]. A wide variety of textures are modeled in
this way. In a similar way, one can put other statistics,
such as filter correlations, in the model (See [71]).

4.2.4 Model D4: Descriptive Model for Texton (Attributed

Point) Process

The descriptive models p1=f , pinv, and ptex are all based on
lattice and pixel intensities. Now, we review a fourth model
for texton (attributed point process) that extends lattices to
graphs and extends pixel intensity to attributes. Texton
processes are very important in perceptual organization.
For example, Fig. 1 shows a point process for the music
band and Fig. 7a shows a wood pattern where a texton
represents a segment of the tree trunk.

Suppose a texton t has attributes x; y; �; �; c for its

location, scale, orientation, and photometric contrast,

respectively. A texton pattern with an unknown number

of n textons is represented by,
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Fig. 5. (a) Gradient histograms over three scales. (b) Logarithm of histograms. (c) A randomly sampled images from a descriptive model pinvðI;��Þ.
Courtesy of Zhu and Mumford [94].



T ¼ ðn; f tj ¼ ðxj; yj; sj; �j; cjÞ; j ¼ 1; . . . ; n gÞ:

Each texton t has a neighborhood @t defined by spatial
proximity, good continuity, parallelism or other Gestalt
properties. It can be decided deterministically or stochas-
tically. Once a neighborhood graph is decided, one can
extract a set of features �kðtj@tÞ; k ¼ 1; 2; . . . ; K at each t

measuring some Gestalt properties between t and its
neighbors in @t. If the point patterns are homogeneous,
then through constraints on the histograms, a descriptive
model is obtained to capture the spatial organization of
textons [40],

ptxnðT;�o; ��Þ ¼
1

Z
exp ���on�

Xn
j¼1

XK
k¼1

�kð�kðtjj@tjÞÞ
( )

; ð14Þ

ptxn is distinct from previous descriptive models in two
respects. 1) The number of elements varies, thus a death-
birth process must be used in simulating the model.
2) Unlike the static lattice, the spatial neighborhood of each
element can change dynamically during the simulation.

Fig. 7a shows an example of a wood pattern withT given,

fromwhich a textonmodel ptxn is learned. Figs. 7b, 7c, and 7d

show three stages of the MCMC sampling process of ptxn at

t ¼ 1; 30; 332 sweeps, respectively. This example demon-

strates that global pattern arises through simple local

interactions in ptxn. More point patterns are referred to [40].

4.2.5 Model D5: Descriptive Models for 2D Open

Curves: Snake and Elastica

Moving up the hierarchy from point and textons to curves,
we see that many existing curve models are descriptive.

Let CðsÞ s 2 ½a; b� be an open curve, there are two curve
models in the literature. One is the prior term used in the
popular SNAKE or active contour model [48].

psnkðC;	; �Þ ¼
1

Z
exp �

Z b

a

	jrCðsÞj2 þ �jr2CðsÞj2ds
� �

;

whererCðsÞ andr2CðsÞ are the first and secondderivatives.
The other is an Elastica model [62] simulating a Ulenbeck

process of a moving particle with friction, let 
ðsÞ be the
curvature, then

pelsðC;�Þ ¼
1

Z
exp �

Z b

a

	þ �
2ðsÞ
� �

ds

� �
:

	 controls the curve length as a decay probability for
terminating the curve, like �o in ptxn.

Figs. 8a and 8b show two sets of randomly sampled curves
each starting from an initial point and orientation, the curves
show general smoothness like the images in Fig. 5c. Williams
and Jacobs [85] adopted the Elastica model for curve
completion. They define the so-called “stochastic completion
field” between two oriented line segments (a source and a
sink). Suppose a particle is simulated by a random walk, it
starts from the source and ends at the sink. The completion
fields shown inFigs. 8c and8ddisplay theprobability that the
particle passing a point ðx; yÞ in the lattice (dark means high
probability). This was used as a model for illusory contours.

4.2.6 Model D6: Descriptive Models for 2D Closed

Curves

The next descriptive model generalizes the smoothness
curve model to 2D shape models with both contour and
region-based features. Let �ðsÞ; s 2 ½0; 1� be a simple closed
curve of normalized length. One can always represent a
curve by polygon with a large enough number of vertices.
Some edges can be added on the polygon for spatial
proximity, parallelism, and symmetry. Thus, a random
graph structure is established, and some Gestalt properties
�kðÞ; k ¼ 1; 2; . . . ; K can be extracted at each vertex and its
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Fig. 6. Learning a sequence of descriptive models for a fur texture: (a) The observed texture image, (b), (c), (d), and (e) are the synthesized
images as random samples from ptexðI; ��Þ using K ¼ 0; 1; 2; 7 filter histograms, respectively. The images are obtained by Gibbs sampler. Courtesy
of Zhu et al. [95].

Fig. 7. Different stages of simulating a wood pattern with local spatial interactions of textons. Each texton is represented by a small rectangle.
(a) observed, (b) t ¼ 1, (c) t ¼ 30, and (d) t ¼ 332. After Guo et al. [40].



neighbors, such as colinearity, cocircularity, proximity,
parallelism, etc. Through constraints on the histograms of
such features, a descriptive model is obtained in [96],

pshpð�;��Þ ¼
1

Z
exp

XK
k¼1

Z 1

0

�kð�kðsÞÞds
( )

: ð15Þ

This model is invariant to translation, rotation, and scaling.

By choosing features �kðsÞ to be r;r2; 
ðsÞ, this model is a

nonparametric extension of the SNAKE and Elastica models

on open curves.
Fig. 9 shows a sequence of shapes randomly sampled from

pshpð�;��Þ. The training ensemble includes contours of
animals and tree leaves. The sampled shapes at K ¼ 0 (i.e.,
no features) are very irregular (sampled by Markov chain
random walk under the hard constraint that the curve is
closedandhasno self-intersection; theMCstartswitha circle)
and become smooth at K ¼ 2which integrates two features:
colinearity and cocircularity measured by the curvature and
derivative of curvature 
ðsÞ and r
ðsÞ, respectively. Elon-
gated and symmetric “limbs” appear at K ¼ 5 when we
integrate crossing region proximity, parallelism, etc.

4.2.7 Model D7: Descriptive Models for 2D Human Face

Moving up to high-level patterns, descriptive models were
used for modeling human faces [90] and hand [37], but
early deformable models were manually designed, though
in principle, they could be reformulated in the maximum
entropy form. Recently, a descriptive face model is learned
from data by [55] following the minimax entropy scheme.

A face is represented by a list of n (e.g., n ¼ 83) key
points which are manually decided. Connecting these
points forms the sketch shown in Fig. 10. Thus, each face
is a point in a 166-space. After normalization in location,

rotation and scaling, it has 162 dimensions. Fig. 10a shows
four of example faces from the data ensemble.

Unlike the previous homogeneous descriptive models
where all elements in a graph (or lattice) are subject to the
same statistical constraints, these key points on the face are
labeled and, thus, different statistical constraints are imposed
at each location.

Suppose we extract K features �kðV Þ; k ¼ 1; 2; . . . ; K on
the graph V , then a descriptive model is,

pfacðV ;��Þ ¼
1

Z
exp �

XK
k¼1

�kð�kðV ÞÞ
( )

: ð16Þ

Liu et al. did a PCA to reduce the dimension first and,
therefore, the features �kðV Þ are extracted on the
PCA coefficients. Fig. 10b shows four sampled faces from
a uniform model in the PCA-coefficient space bounded
by the covariances. The sampled faces in Figs. 10c and
10d become more pleasant as the number of features
increases. When K ¼ 17, the synthesized faces are no
longer distinguishable from faces in the observed
ensemble.

4.2.8 Summary: A Continuous Spectrum of Models on

the Space of Random Graphs

To summarize this section, visual patterns, ranging from
generic natural images, textures, textons, curves, 2D shapes,
and objects, can all be represented on attributed random
graphs. All the descriptive models reviewed in this section
are focused on different subspaces of a huge space of random
graphs. Thus, these models are examples in a “continuous”
spectrum in the graph space (see (3))! Though the general
ideas of defining probability on random graphs were
discussed in Grenander’s pattern theory [36], it will be a long
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Fig. 8. (a) and (b) Two sets of random sampled curves from the Elastica model. After Mumford [62]. (c) and (d) The stochastic completion fields. After
Williams and Jacobs [85].

Fig. 9. Learning a sequence of models pshpð�;��Þ for silhouettes of animals and plants, such as cats, dogs, fish, and leaves. (a), (b), (c), and (e) are
typical samples from pshp with K ¼ 0; 2; 5; 5; 5, respectively. The line segments show the medial axis features. Courtesy of Zhu [96].



way for developing such models as well as discovering a
sufficient set of features and statistics on various graphs.

5 CONCEPTUALIZATION OF VISUAL PATTERNS AND

STATISTICS PHYSICS

Now,we studyan important theoretical issue associatedwith
visual modeling: How do we define a visual pattern
mathematically? For example, what is the definition of a
human face, or a texture? In mathematics, a concept is
equalized to a set. However, a visual pattern is characterized
by a probabilistic model as the previous section showed. The
connection betweenadeterministic set anda statisticalmodel
was established in modern statistical physics.

5.1 Background: Statistical Physics and Ensembles

Modern statistical physics is a subject studying macroscopic
properties of a system involving massive amounts of
elements [12]. Fig. 11 illustrates three types of physical
systems that are interesting to us.

Microcanonical ensembles. Fig. 11a is an insulated system of
N elements. The elements could be atoms, molecules, and
electrons in systems such as gas, ferro-magnetic material,
fluid, etc. N is really big, say N ¼ 1023 and is considered
infinity. The system is decided by a configuration or state
s ¼ ðxN;mNÞ, where xN describes the coordinates of the N
elementsandmN theirmomenta [12]. It is impractical to study
the 6N vector s and, in fact, these microscopic states are less
relevant, and people are more interested in the macroscopic
properties of the system as a whole, say the number of
elementsN , the total energyEðsÞ, and total volume V . Other
derivative properties are temperature and pressure, etc.

If we denote by hðsÞ ¼ ðN;E; V Þ the macroscopic proper-
ties, at thermodynamic equilibriumallmicroscopic states that
satisfy this property is called a microcanonical ensemble,

�mceðhoÞ ¼ fs ¼ ðxN;mNÞ : hðsÞ ¼ ho ¼ ðN; V ;EÞg:

s is an instance and hðsÞ is a summary of the system state
for practical purposes. Obviously, �mce is a deterministic set
or an equivalence class for all states that satisfy a
descriptive constraints hðsÞ ¼ ho.

An essential assumption in statistical physics is, as a first
principle,

“all microscopic states are equally likely at thermodynamic
equilibrium.”

This is simply a maximum entropy assumption. Let � 3 s
be the space of all possible states, then �mce � � is
associated with a uniform probability,

punifðs;hoÞ ¼
1=j�mceðhoÞj for s 2 �mceðhoÞ;
0 for s 2 �=�mceðhoÞ:

�

Canonical ensembles. The canonical ensemble refers to a
small system (with fixed volume V1 and elements N1)
embedded in a microcanonical ensemble, see Fig. 11b. The
canonical ensemble can exchange energywith the rest system
(called heat bath or reservoir). The system is relatively small,
e.g., N1 ¼ 1010, so that the bath can be considered a
microcanonical ensemble itself.

At thermodynamic equilibrium, the microscopic state s1
for the small system follows a Gibbs distribution,

pGibðs1;��Þ ¼
1

Z
exp ���Eðs1Þf g:
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Fig. 11. Three typical ensembles in statistical mechanics. (a) Microcanonical ensemble, (b) canonical ensemble, and (c) grand-canonical ensemble.

Fig. 10. Learning a sequence of face models pfacðV ;��Þ. (a) Four of the observed faces from a training data set. (b), (c), and (d) Four of the

stochastically sampled faces with K ¼ 0; 4; 17 statistics, respectively. Courtesy of Liu et al. [55].



The conclusionwas stated as a general theorembyGibbs [34]:
“If a system of a great number of degrees of freedom is micro-
canonically distributed in phase, any very small part of it may be
regarded as canonically distributed.”
Basically, this theorem states that the Gibbs model pGib is a
conditional probability of the uniform model punif . This
conclusion is extremely important because it bridges a
deterministic set �mce with a descriptive model pGib. We
consider this as a true origin of probability for modeling
visual patterns. Some detailed deduction of this conclusion
in vision models can be found in [87]).

Grand-Canonical ensembles. When the small system with a
fixed volume of V1 can also exchange elements with the bath
as in liquid and gas materials, then it is called a grand-
canonical ensemble, see Fig. 11c. The grand-canonical
ensemble follows a distribution,

pgceðs1;�o; �Þ ¼
1

Z
exp ��oN1 � �Eðs1Þf g;

where an extra parameter �o controls the number of
elements N1 in the ensemble.

5.2 Conceptualization of Visual Patterns

In statistical mechanics, one is concerned with macroscopic
properties for practical purposes and ignores the differences
between the enormous number of microscopic states.
Similarly, our concept of a visual pattern must be defined
for apurpose. Thepurpose is reflected in the selectionof some
“sufficient” statisticshðsÞ. That is, dependingonavisual task,
we are only interested in some global (macro)propertieshðsÞ,
and ignore the differences between image instances within
the set. This was clearly the case in Julesz psychophysics
experiments in the1960s-1970son texturediscrimination [46].
Thus, we define a visual concept in the same way as the
microcanonical ensemble.

Definition 2 (Homogeneous Visual Patterns). For any
homogeneous visual pattern v defined on a lattice or graph
�, let s be the visual representation (e.g.. s ¼ I) and hðsÞ a list
of sufficient feature statistics, then a pattern v is equal to a
maximum set (or equivalence class), as � goes to infinity in the
von Hove sense,

A pattern v ¼ �ðhoÞ ¼ fs� : hðsÞ ¼ ho; �!1g: ð17Þ

As � goes to infinity and the pattern is homogeneous, the
statistical fluctuations and the boundary condition effects
bothdiminish. Itmakes sense toput the constraintshðsÞ ¼ ho.

In the literature, a texture pattern was first defined as a
Julesz ensemble by [97]. This can be easily extended to any
patterns, including, generic images, texture, smooth sur-
faces, texton process, etc.

The connections between the three physical ensembles
also reveals an important duality between a descriptive
constraints hðsÞ ¼ ho in the deterministic set �mcnðhoÞ and
the parameters �� in Gibbsmodel pGib. In vision, the duality is
between the image statistics ho ¼ ðhobs

1 ; . . . ;hobs
K Þ in (6) and

the parameters of the descriptive models �� ¼ ð�1; . . . ; �KÞ.
The connection between set �ðhoÞ and the descriptive

model pðs;��Þ is restated by the theorem below [87].

Theorem 3 (Ensemble Equivalence). For visual signals s� 2
�ðhoÞ on large (or infinity) lattice (or graph) �, then on any
small lattice �o � �, the signal s�o given its neighborhood
s@�o follows a descriptive model pðs�o js@�o ;��Þ.

The duality between �� and ho is reflected by the
maximum entropy constraints Epðs;��Þ½hðsÞ� ¼ ho. More pre-
cisely, it is stated in the following theorem [87].

Theorem 4 (Model and Concept Duality). Let pðs�;��Þ be a
descriptive model of a pattern v, and��ðhÞ the set for pattern v,
and let  ðhÞ and �ð��Þ be the entropy function and pressure
defined as

 ðhÞ ¼ lim
�!1

1

j�j log j��ðhÞj; and �ð��Þ ¼ lim
�!1

1

j�j logZð��Þ:

If ho and ��o correspond to each other, then

�0ðhoÞ ¼ ��o; and �0ð��oÞ ¼ ho;

in the absence of phase transition.

For visual patterns on finite graphs, such as a human face
or a 2D shape of animal, the definition of pattern is given
below.

Definition 3 (Finite Patterns). For visual pattern v on a finite

lattice or graph �, let s be the representation and hðsÞ its
sufficient statistics, and the visual concept is an ensemble

governed by a maximum entropy probability pðs;��Þ,

pattern v ¼ �ðhoÞ ¼ fðs; pðs : ��ÞÞ : Ep½hðsÞ� ¼ hog: ð18Þ

Each pattern instance s is associated with a probability pðs;��Þ.

The ensemble is a set with each instance assigned a
probability. Obviously, (17) is a special case of (18). That is,
when �!1, one homogeneous signal is enough to
compute the expectation, i.e., Ep½hðsÞ� ¼ hðsÞ. The limit of
pðs;��Þ is the uniform probability punifðs;hoÞ as �!1.

The probabilistic notion in defining finite visual signal is
theroot forerrors inrecognition, segmentation,andgrouping.
On any finite graph, the ensembles for two different patterns
will overlap and the ability of distinguishing two patterns is
limited by the Chernoff information that measures the
distances of the twodistributions. Some in-depth discussions
on the relationshipbetweenperformancebounds andmodels
are referred to the order parameter theory [91].

To conclude this section, we have the following
equivalence for conceptualization of visual pattern.

A visual pattern v !h !�� 2 �d
K:

6 GENERATIVE MODELING

In this section, we revisit the general MLE learning
formulated in (2), (3), and (4) and review some progress
in generative models of visual patterns and the integration
with descriptive models.

6.1 The Basic Principle of Generative Modeling

Descriptive models are built on features and statistics
extracted from the signal and use complex potential
functions to characterize visual patterns. In contrast,
generative models introduce hidden (latent) variables to
account for the generating process of large image structures.

For simplicity of notation, we assume L-levels of hidden
variables which generate image I in a linear order. At each
level, Wi generates Wi�1 with a dictionary (vocabulary)
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Di; i ¼ 1; . . . ; L. The dictionary is a set of description, such as

image bases, textons, parts, templates, lighting functions, etc.

WL�!
DL
WL�1�!

DL�1 � � � �!D2
W1�!

D1
I: ð19Þ

Let pðWi�1jWi;Di; ��i�1Þ denote the conditional distribu-

tion for pattern Wi�1 given Wi, with ��i�1 being the

parameter of the model. Then, by summing over the hidden

variables, we have an image model,

pðI; �Þ ¼
X
WL

� � �
X
W1

pðIjW1;D1; ��0ÞpðW1jW2;D1; ��1Þ

� � � pðWL�1jWL;DL; ��L�1Þ:
ð20Þ

� ¼ ðD1; . . . ;DL;��0; . . . ; ��L�1Þ are the parameters, and each

conditional probability is often a descriptive model specified

by ��i.
By analogy to speech, the observable image I is like the

speech wave form. Then, the first-level dictionary D1 is like
the set of phonemes and ��1 parameterizes the transition
probability between phonemes. In image model, D1 is a set
of image bases like Gabor wavelets. The second-level
dictionary D2 is like the set of words, each being a short
sequences of phonemes in D1, and ��2 parameterizes the
transition probability between words. In image models, D2

is the set of textons. Going up the hierarchy, we need
dictionaries like the grammatic reproduction rules for phrases
and sentences in language and probabilities for how
frequently each reproduction rule is used, etc.

A hidden variableWi is fundamentally different from an
image feature �i in descriptive models, though they may be
closely related.Wi is a random variable that should be inferred
from images, while �i is a deterministic transform of images.

Following the ML-estimate in (2), one can learn the

parameters � in pðI; �Þ by EM-type algorithm, like

stochastic gradients [39]. Take derivative of the log-like-

lihood with respect to �, and set d@ log pðI;�Þd� ¼ 0, one gets

0 ¼
X
WL

� � �
X
W1

@ log pðIjW1;D1; ��0Þ
@ðD1; ��0Þ

þ � � � þ @ log pðWL�1jWL;DL; ��L�1Þ
@ðDL; ��L�1Þ

� 	
� pðW1jI;D1; ��0Þ � � � pðWLjWL�1;DL; ��L�1Þ:

ð21Þ

In theory, these equations can be solved with global
optimum by iterating two steps [39]:

1. The E-type step. Making inferences about the hidden
variables by sampling from a sequence of posteriors,

W1 � pðW1jI;D1; ��0Þ; � � � ;
WL � pðWLjWL�1;DL; ��L�1Þ:

ð22Þ

Then, we can approximate the summation (integra-
tion) by importance sampling.

2. The M-type step. Given the samples, one optimizes
the parameters �. The learning results in � includes
the visual dictionaries D1; . . . ;DL and the descriptive
models ��0; . . . ; ��L�1 that govern their spatial layouts
of the hidden structures. It is beyond this review to
discuss the algorithm.

6.2 Some Examples of Generative Models

Now, we review a spectrum of generative image models,
starting again with a model for the 1=f-power law.

6.2.1 Model G1: A Generative Model for the 1=f-power

Law of Natural Images

The 1=f-law of the Fourier amplitude in natural images was
analytically modeled by a Gaussian MRF p1=f (see (8)). We
transform (8) into the Fourier domain, thus

p1=fðI;�Þ ¼
1

Z
exp �

X
�;�

�ð�2 þ �2ÞjÎIð�; �Þj2
( )

: ð23Þ

The Fourier bases are the independent components for the
Gaussian ensemble governed by p1=f . From the above
Gaussian model, one obtains a two-layer generative
model [65],

Iðx; yÞ ¼
X
�

X
�

1

2�ð�2 þ �2Þ að�; �Þe
2�ix�þy�N ; að�; �Þ � Nð0; 1Þ:

ð24Þ

The dictionary D1 is the Fourier basis, and the hidden
variables are the Fourier coefficients að�; �Þ 8�; � which are
iid normal distributed. Only two parameters are used in
�� ¼ ð0; 1Þ for specifying the normal density. Therefore,

W1 ¼ fað�; �Þ : 8�; �g and D1 ¼ f bðI; �; �Þ ¼ e2�i
x�þy�
N : 8�; � g:

One can sample a random image I � p1=fðI; �Þ, according
to (24) it’s:

1. drawing the iid Fourier coefficients and
2. generating the synthesis image I by linear super-

position of the Fourier bases.

A result is displayed in Fig. 4b.
To the author’s knowledge, this is the only image model

whose descriptive and generative versions are analytically
transferable. Such happy endings perhaps only occur in the
Gaussian family!

In the literature, Ruderman [73] explains the 1=f-law by an
occlusion model. It assumes that image I is generated by a
number of independent “objects” (rectangles) of size subject
to a cubic law 1=r3. A synthesis image is shown in Fig. 12a.

6.2.2 Model G2: A Generative Model for Scale-Invariant

Gradient Histograms

The scale-invariance of gradient histograms in natural
images inspired a number of research for generative models
in parallel with the descriptive model pinv. The objective is
to search for some “laws” that governs the distribution of
objects in natural scenes.

The first is the random collage model [53], which is also
called the “dead leaves” model (see Stoyan et al. [80]). It
assumes that an image is generated by a number of n opaque
disks. Each disk is represented by hidden variables x; y; r; 	
for center, radius, and intensity, respectively.

W1 ¼ ðn; fxi; yi; ri; 	iÞ : i ¼ 1; 2; . . . ; ngÞ;
D1 ¼ fdiskðI;x; y; rÞ : 8ðx; yÞ 2 �; r 2 ½rmin; rmax�:g

The dictionary D1 includes disk templates at all possible
sizes and locations. Therefore, let a
 b denote that a
occludes b, the image is generated by generated by
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I ¼ diskðxn; yn; rn; 	nÞ 
 diskðxn�1; yn�1; rn�1; 	n�1Þ

 � � � 
 diskðx1; y1; r1; 	1Þ:

ð25Þ

Lee et al. [53] showed that, if pðnÞ is Poisson distributed,
and the disk location ðx; yÞ and intensity 	 are iid uniform
distributed, and the radius ri subject to a 1=r3-law,

pðrÞ ¼ c=r3; for r 2 ½rmin; rmax�: ð26Þ
Then, the generative model pðI; �Þ has scale invariance
gradient histograms. Fig. 12b shows a typical image
sampled from this model.

The second model is studied by Chi [13]. This offers a
beautiful 3Dgenerative explanation. It assumes that the disks
(objects)aresittingverticallyona2Dplane(theground)facing
theviewer. The sizes of thedisks are iiduniformlydistributed
and they have proven that the 2D projected (by perspective
projection) sizes of the objects then follow the 1=r3 law in (26).
The locationsand intensities are iiduniformlydistributed like
the randomcollagemodel.A typical image sampled from this
model is shown in Fig. 12c. More rigorous studies and laws
along this vein are in [66]. These results put a reasonable
explanation for the origin of scale invariance in natural
images.Nevertheless, thesemodelsareall biasedby theobject
elements they choose, as they are not maximum entropy
models, in comparison with pinvðIÞ.

6.2.3 Model G3: Generative Model for Sparse Coding:

Learning the Dictionary

In research stream 2 (image coding, wavelets, image
pyramids, ICA, etc.) discussed in Section 2.1, a linear
additive model is widely assumed and an image is a
superposition of some local image bases from a dictionary
plus a Gaussian noise image n.

I ¼
Xn
i

	i �  ‘i;xi;yi;�i;�i þ n;  i 2 D; 8i: ð27Þ

 ‘ is a base function, for example, Gabor, Laplacian of
Gaussian, etc. It is specified by hidden variables xi; yi; �i; �i
for position, orientation, and scale. Thus, a base is indexed
by hidden variables bi ¼ ð‘i; 	i; xi; yi; �i; �iÞ. The hidden
variables and dictionary are

W1 ¼ ðn; fbi : i ¼ 1; 2; . . . ; ng; nÞ;
D1 ¼ f ‘ðx; y; �; �Þ : 8x; y; �; �; ‘g:

xi; yi; �i; �i are assumed iid uniformly distributed, and
the coefficients 	i � pð	Þ; 8i follow an iid Laplacian or
mixture of Gaussian for sparse coding,

pð	Þ � expf�j	j=cg or pð	Þ ¼
X2
j¼1

!jNð	; �jÞ: ð28Þ

According to the theory of generative model (Section 6.1),
one can learn the dictionary from raw images in theM-step.
Olshausen and Field [67] used the sparse coding prior pð	Þ
learned a set of 144 ¼ 12� 12 pixels bases, some of which are
shown in Fig. 13. Such bases capture some image structures
and are believed to bear resemblance to the responses of
simple cells in V1 of primates.

6.2.4 Model G4: A Generative Model for Texton and

Texture

In the previous three generative models, the hidden
variables are assumed to be iid distributed. Such distribu-
tions can be viewed as degenerated descriptive models. But
obviously these variables and objects are not iid, and
sophisticated descriptive models are needed for the spatial
relationships between the image bases or objects.
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Fig. 12. Synthesized images from three generative models. (a) Ruderman [73], (b) Lee et al. [53], and (c) Chi [13]. See text for explanations.

Fig. 13. Some of the linear bases (dictionary) learned from natural images by Olshausen and Field [67].



The first work that integrates the descriptive and gen-

erative model was presented in [40] for texture modeling. It

assumes that a texture image is generated by two levels (a

foreground and a background) of hidden texton processes

plusaGaussiannoise.Fig. 14showanexampleof cheetahskin

pattern. Figs. 14a and 14b shows two texton patterns T1;T2,

which are sampled from descriptive textons models

ptxnðT;��o;1; ��1Þ and ptxnðT;��o;2; ��2Þ, respectively. Themodels

are learned from an observed cheetah skin (raw pixel) image.

Eachtextonissymbolically illustratedbyanorientedwindow.

Then, two base functions  1;  2 are learned from images and

shown inFig. 14c.The two image layers are shown inFigs. 14d

and 14e. The superposition (with occlusion) of the two layers

renders the synthesized image in Fig. 14f.More examples and

discussions are referred to in [40].

6.2.5 Model G5: A Generative Rope Model of Curve

Processes

A three-layer generative model for curve, called a “rope

model,” was studied by Tu and Zhu [83]. The model extends

the descriptivemodel for SNAKE and Elastica psnk and pels by

integrating it with base and intensity representation.
Fig. 15a shows a sketch of the rope model that is a

Markov chain of knots. Each knot 
 has 1-3 linear bases, for

example, difference of Gaussian (DoG), and difference of

offset Gaussians (DooG) at various orientations and scales

W2 ¼ ðn; 
1; 
2; . . . ; 
nÞ; with

i ¼ ð	ij; ‘ij; xij; yij; �ij; �ijÞkj¼1; k 	 3;

W1 ¼ ðN; fbij : i ¼ 1; 2; . . . ; n; j ¼ 1; . . . ; 3gÞ:

Fig. 15b shows a number of random curves (image not pure
geometry) sampled from the rope model. The image I is the
linear sum of the bases in W1.

This additive model is insufficient for occlusion, etc.
Figs. 15c and 15d show a occlusion type curve model. Each
curve is a SNAKE/Elastica type Markov chain model with
width and intensity at each point. Fig. 15c is the sampled
curve skeleton and Fig. 15d is the image. Smoothness are
assumed for both geometry, width, and intensity.

6.2.6 Summary

The generative models used in vision are still preliminary
and they often assume a degenerated descriptive model for
the hidden variables. To develop richer generative models,
one needs to integrate generative and descriptive models.

7 CONCEPTUALIZATION OF PATTERNS AND THEIR
PARTS: REVISITED

With generative models, we now revisit the conceptualiza-
tion of visual patterns in a more general setting.

In Section 5.2, a visual pattern v with representation s is
equalized to a statistical ensemble governed by a model
pðs;��Þ or, equivalently, a statistical description ho. In reality,
the representation s is given in a supervised way and is not

16 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 6, JUNE 2003

Fig. 14. An example of integrating descriptive texton model and a generative model for a cheetah skin pattern. (a) Sampled texton map T1.
(b) Sampled texton map T2. (c) Templates. (d) Layer I IðT1;  1Þ. (e) Layer II IðT2;  2Þ. (d) Synthesized image. After Guo et al. [40].

Fig. 15. (a) and (b) A rope model is a Markov chain of knots and each knot has 1-3 image bases shown by the ellipses. (c) and (d) The smooth curve
model on intensity. After Tu and Zhu [83].



observable unless s is an image. Thus, we need to define
visual concepts based on images so that they can be learned
and verified from observable data.

Following the notation is Section 6.1, we have the
following definition extending from Definition 3.

Definition 4 (Visual Pattern). A visual pattern v is a statistical
ensemble of image I governed by a generative model pðI; �vÞ
with L layers,

pattern v ¼ �ð�vÞ ¼ f ðI; pðI; �vÞÞ : �v 2 �g
K g;

where pðI; �vÞÞ is defined in (20).

In this definition, a pattern v is identified by a vector of
parameters in the generative family �g

K , which include the
L dictionaries and L descriptive models,

A visual pattern v !�v ¼ ðDv1; . . . ;DvL; ��v0; . . . ; ��vL�1Þ 2 �g
K:

By analogy to speech, �v defines the whole language
system, say v ¼ English or v ¼ Chinese, and it includes all
the hierarchic descriptions from waveforms to phonemes,
and to sentences—both the vocabulary and models.

Therefore, the definition of many intuitive but vague
concepts, such as textons, meaningful parts of shape, etc.,
must be defined in the context of a generative model �. It is
meaningless to talk about a texton or part without a
generative image model.

Definition 5 (Visual Vocabulary). A visual vocabulary, such
as textons, meaningful parts of shape, etc. are defined as an
element in the dictionaries Di; i ¼ 1; . . . ; L associated with the
generative model of natural images pðI; �Þ.
To show some recent progress, we show a three-level

generative model for textons in Fig. 16. It assumes that an
image I is generated by a linear superposition of bases W1

in (28). These bases are, in turn, generated by a smaller
number of textonsW2. Each texton is a deformable template
consisting of a few bases in a graph structure. The
dictionary D1 includes a number of base functions, such
as Laplacian of Gaussian, Gabor, etc. They like the
phonemes in speech. The dictionary D2 includes a larger
number of texton templates. Each texton in D2 represents a
small iconic object at distance, such as stars, birds, cheetah
blobs, snowflakes, beans, etc. It is expected that natural
images have levels of vocabularies with sizes jD1j ¼ Oð10Þ
and jD2j ¼ Oð103Þ. These must be learned from natural
images.

8 VARIANTS OF DESCRIPTIVE MODELS

In this section,we review the third categoryofmodels that are
two variants of descriptive models—causal MRF and pseu-
dodescriptivemodels. Thesevariants aremostpopulardue to

their computational convenience.However,people shouldbe
aware of their limitations and use themwith caution.

8.1 Causal Markov Models

Let s ¼ ðs1; . . . ; snÞ be the representation of a pattern. As
Fig. 2b illustrates, a causal Markov model imposes a partial
order in the vertices and, thus, factorizes the joint
probability into a product of conditional probabilities,

pcauðs;��Þ ¼
Yn
i¼1

pðsi j parentðsiÞ;�iÞ: ð29Þ

parentðsiÞ is the set of parent vertices which point to si.
Though the graph is directed in syntax, this is not a
generative model because the variables are at the same
semantic level. pcauðsÞ can be derived from the maximum
entropy learning scheme in Section 4.1.

p�cau ¼ argmax�
X
s

pcauðsÞ log pcauðsÞ:

Thus, pcauðs;��Þ is a special class of descriptive model.
When the dimension of pðsi j parentðsiÞÞ is not high, (e.g.,
jparentðsiÞj þ 1 	 4), the conditional probability is often
estimated by a nonparametric Parzen window.

There are many causal Markov models for texture in the
1980s and early 1990s (See Popat and Picard [70] and
references therein). In the following, we review two pieces
of interesting work that appeared recently.

One is the work on example-based texture synthesis by
Efros andLeung [26], Liang et al. [54], andEfros and Freeman
[27]. Hundreds of realistic textures can be synthesized by a
patching technique. Fig. 17 reformulates the idea in a causal
Markov model. An example texture image is first chopped
into a number of image patches of a predefined size. These
patches form a vocabulary D1 ¼ � of image “bases” specific
to this texture. Then, a causalMarkov field is set upwith each
element being chosen from � conditional on two other
previous patches (left and below). The patches are pasted one
by one in a linear order by sampling from a nonparametric
conditional distribution.A synthesized image is shown to the
lower-right side. Thevocabulary�greatly reduces the search
space and, thus, the causalmodel can be simulated extremely
fast. The model is biased by the dictionary and the causality
assumption.

Another causal Markov model was proposed by [88].
Wu et al. represent an image by a number of bases from a
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Fig. 17. A causal MRF model for example-based texture synthesis

[26], [27], [54].

Fig. 16. A three-level generative imagemodel with textons. Modified from
Zhu et al. [99].



generic base dictionary (Log. DoG. DooG) as in sparse
coding model. Each base is then symbolically represented
by a line segment, as Figs. 18a and 18b show. This forms a
base map similar to the texton (attributed point) pattern in
Fig. 7. Then, a causal model is learned based on Fig. 18b for
the base map. The graph structure is more flexible than the
grid in Fig. 17. A random sample is drawn from the model
and shown in Fig. 18c.

8.2 Pseudodescriptive Models

While causal Markov models approximate the Gibbs

distributions pdes and have sound probabilities pcau, the

second variant, called pseudodescriptive model in this
paper, approximates the Julesz ensemble.

For example, the texture synthesis work by Heeger and
Bergen [42] and De Bonet and Viola [21] belong to this

family. Given an observed image Iobs on a large lattice �,

suppose a number of K filters F1; F2; . . . ; FK are chosen, say

Gabors at various scales and orientations. Convolving the
filters with image Iobs, one obtains a set of filter responses

Sobs ¼
F obs
i ðx; yÞ ¼ Fi � Iobsðx; yÞ : i ¼ 1; 2; . . . ; K; ðx; yÞ 2 �


 �
:

Usually, K > 30 and, thus, Sobs is a very redundant
representation of Iobs. In practice, to reduce the dimension-

ality and computation, these filter responses are organized

in a pyramid representation with low-frequency filters

subsampled (see Fig. 19).

Let hobs ¼ hðIobsÞ ¼ ðhobs
1 ; . . . ;hobs

K Þ be the K marginal

histograms of the filter responses. A Julesz ensemble (or

texture) is defined by�ðhobsÞ ¼ fI : hðIÞ ¼ hobsg. Heeger and

Bergen [42] sampled the K � j�j filter responses indepen-

dently according to hobs, which is computationally very

convenient. Obviously, the sampled filter responses

Fiðx; yÞ; i ¼ 1; . . . ; K; ðx; yÞ 2 � produce histograms ho (or

veryclosely),but these filter responsesare inconsistentas they

are sampled independently. There is no image I that can

produce these filter responses. Usually, one finds an image I

that has least-square error by pseudoinverse. In fact, this

employs an image model,

ppsdesðIÞ / exp �
XK
i¼1

X
ðx;yÞ2�

F syn
i ðx; yÞ � Fi � Iðx; yÞ

� �2
=�2

8<
:

9=
;;

F syn
i ðx; yÞ �

iid
hobs
i ; 8i; 8ðx; yÞ:

ð30Þ

Of course, the image computed by pseudoinverse usually

does not satisfy hðIÞ ¼ hobs. So, we call it a “pseudodescrip-

tive”model. TheworkbyDeBonet andViola [21]wasdone in

the same principle, but it used a K-dimensional joint

histogram for hðIÞ. As K is very high in their work (say,

K ¼ 128), sampling the joint histogram is almost equal to

shuffling the observed image.
In a descriptive model or Julesz ensemble, the number of

constraints in hðIÞ ¼ hobs is much lower than the image
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Fig. 18. A causal Markov model for texture sketch. (a) Input, (b) image sketch, and (c) a synthesized sketch. After [88].

Fig 19. (a) Extracting feature vectors ðF1ðx; yÞ; . . . ; FKðx; yÞ for every pixels in a lattice and, thus, obtain Kj�j filter responses. (b) Extracting the
feature vectors in a pyramid. See Heeger and Bergen [42] and De Bonet and Viola [21].



pixels �. In contrast, a pseudodescriptive model puts
Kj�j constraints and produces an empty set.

9 DISCRIMINATIVE MODELS

Many perceptual grouping work (research stream 3) fall in
category 4—discriminative models. In this section, we
briefly mention some typical work and then focus on the
theoretical connections between discriminative models to
the descriptive and generative models. A good survey of
grouping literature is given in [9].

9.1 Some Typical Discriminative Models

The objective of perceptual grouping is to compose image
elements into larger and larger structures in a hierarchy.
Fig. 20 shows two influential works in the literature.
Dickinson et al. [24] adopted a hierarchic Bayesian network
for grouping short line and curve segments into generic
object facets, and the latter are further grouped into
2D views of 3D object parts. Sarkar and Boyer [75] used
the Bayesian network for grouping edge elements into
hierarchic structures in aerial images. More recent work is
Amir and Lindenbaum [1].

If we represent the hierarchic representation by a linear
order for ease of discussion, the grouping proceeds in the
inverse order of the generative model (see (19), Fig. 2).

I�!W1�!W2�!� � ��!WL: ð31Þ

As the grouping must be done probabilistically, both
Dickinson et al. [24] and Sarkar and Boyer [75] adopted a
list of conditional probabilities in their Bayesian networks.
Reformulated in the above notation, they are,

qðW1jIÞ; qðW2jW1Þ; . . . ; qðWLjWL�1Þ:

Again, we use linear order here for clarity. There may be
expressways for computing objects from edge elements
directly, such as generalized Hough transform. In the
literature, most of these conditional probabilities are
manually estimated or calculated in a similar way to [56].

9.2 The Computational Role of Discriminative
Models

The discriminative models are effective and useful in vision
and pattern recognition. However, there are a number of
conceptual problems suggesting that they should perhaps

not be considered representational models, instead they are
computational heuristics. In the desk example of Fig. 2, the
presence of a leg may, as a piece of evident, “suggests” the
presence of a desk but it does not “cause” a desk. A leg can
also suggest chairs and a dozen other types of furniture that
have legs. It is the desk concept that causes four legs and a top
at various configurations in the generative model.

What is wrong with the inverted arrows in discriminative
models? A key point associated with Bayes (causal, belief)
networks is the idea of “explaining-away” or “lateral
inhibition” in a neuroscience term. If there are multiple
competing causes for a symptom, then the recognition of one
causewill suppress the other causes. In a generativemodel, if
a leg is recognized as belonging to a desk during computa-
tion, then the probability of a chair at the same location is
reduceddrastically. But, in adiscriminativemodel, it appears
that the four legs are competing causes for the desk, then one
leg should drive away the other three legs in explanation!
This is not true. Without the guidance of generative model,
the discriminative methods could create combinatorial
explosions.

In fact, the discriminative models are approximations to
the posteriors,

qðW1jIÞ � pðW1jI;D1; ��0Þ; � � � ;
qðWLjWL�1Þ � pðWLjWL�1;DL; ��L�1Þ:

ð32Þ

Like most pattern recognition methods, the approximative
posteriors qðÞs use only local deterministic features at each
level for computational convenience. For example, suppose
W1 is an edge map, then it is usually assumed that qðW1jIÞ ¼
qðW1j�1ðIÞÞwith �1ðIÞ being some local edge measures [50].
For the other levels, qðWIþ1jWiÞ ¼ qðWiþ1j�iðWiÞÞ with
�iðWiÞ being some compatibility functions and metrics [75], [7].

For ease of notation, we only consider one level of
approximation: qðW jIÞ ¼ qðW j�ðIÞÞ � pðW jI;D; ��Þ. Byusing
local and deterministic features, information is lost in each
approximation. The amount of information loss is measured
by the Kullback-Leibler divergence. Therefore, the best set of
features is chosen to minimize the loss.

�� ¼ arg min
�2Bank

KLðp jj qÞ

¼ arg min
�2Bank

X
W

pðW jI;D; ��Þ log pðW jI;D; ��Þ
qðW j�ðIÞÞ :
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Fig. 20. Hierarchic perceptual grouping. (a) After Dickinson et al. [24]. (b) After Sarkar and Boyer [75].



Now, we have the following theorem for what are most
discriminative features.5

Theorem 5. For linear features �, the divergence KLðp jj qÞ is
equal to the mutual information between variables W and
image I minus the mutual information between W and �ðIÞ.

KLðpðW jI;D; ��Þ jj qðW j�ðIÞÞÞ ¼MIðW; IÞ �MIðW; �ðIÞÞ:
MIðW; IÞ ¼MIðW;�ðIÞÞ if and only if �ðIÞ is the sufficient
statistics for W .

This theorem leads to a maximum mutual information
principle for discriminative feature selection and it is different
from the most informative feature for descriptive models.

�� ¼ arg max
�2Bank

MIðW;�ðIÞÞ

¼ arg min
�2Bank

KLðpðW jI;D; ��Þ jj qðW j�ðIÞÞÞ:

The main problem with the discriminative models is that
they do not pool global and top-down information in
inference. In our opinion, the discriminative models are
importance proposal probabilities for sampling the trueposterior
and inferring the hidden variables. Thus, they are crucial in
computation for both Bayesian inference and for learning
generative models (see the E-step in (22)). In both tasks, we
need to draw samples from the posteriors through Markov
chain Monte Carlo (MCMC) techniques. The latter need to
design some proposal probabilities qðÞs to suggest the
Markov chain moves.

The convergence of MCMC critically depend on how
well qðÞ approximate pðÞ. This is stated in the theorem
below by Mengersen and Tweedie [58].

Theorem 6. Sampling a target density pðxÞ by the independence
Metropolis-Hastings algorithm with proposal probability qðxÞ.
LetPnðxo; yÞ be the probability of a randomwalk to reach point y
at n steps from an initial point xo. If there exists � > 0 such that,

qðxÞ
pðxÞ � �; 8x;

then the convergence measured by a L1 norm distance

jjPnðxo; �Þ � pjj 	 ð1� �Þn:

This theorem, though on a simple case, states the
computational role of discriminative model. The idea of
using discriminative models, such as edge detection, cluster-
ing, Hough transforms, are used in a data-driven Markov
chain Monte Carlo (DDMCMC) framework for generic
image segmentation, grouping, and recognition [98], Tu
and Zhu [83].

10 DISCUSSION

The modeling of visual patterns is to pursue a probability
model pðÞ to estimate an ensemble frequency fðÞ in a
sequence of nested probability families which integrate both
descriptive and generative models. These models are
adapted and augmented in four aspects:

1. learning the parameters of the descriptive models,

2. pursuing informative features and statistics in
descriptive models.

3. selecting address variables and neighborhood config-
urations for the descriptive model, and

4. introducing hidden variables in the generative
models.

The main challenge in modeling visual patterns is the
choice of models that cannot be answered unless we
understand the different purposes of vision.

What is the ultimate goal of learning? Where does it
end? Our ultimate goal is to find the “best” generative
model. Starting from the raw images, each time when we
add a new layer of hidden variables, we make progress in
discovering the hidden structures. At the end of this pursuit,
suppose we dig out all the hidden variables, then we will
have a physically-based model which is the ultimate
generative model denoted by p�gen. This model cannot be
further compressed and we reach the Komogorov complex-
ity of the image ensemble.

For example, the chemical diffusion-reaction equations
with a few parameters may be the most parsimonious model
forrenderingsometextures.But,obviously, this isnotamodel
used in human vision.Whydidn’t humanvision pursue such
ultimate model? This leads to the second question below.

How do you choose a generative model from many
possible explanations?There are two extremes ofmodels.At
one extreme, Theorem 2 states that the pure descriptive
model p�des on raw pixels, i.e., no hidden variables at all, can
approximate the ensemble frequency fðIÞ as long aswe put a
huge number of features statistics. At the other extreme end,
wehave the ultimate generativemodel p�gen mentioned above.
In graphics, there is also a spectrum of models, ranging from
image-based rendering to physically-based ray tracing.
Certainly, our brains choose a model somewhere between
p�des and p

�
gen.

We believe that the choice of generativemodels is decided
by two aspects. The first is the different purposes of vision for
navigation, grasping not just for coding. Thus, it makes little
sense to justify models by a simple minimum description
length principle or other statistics principles, such as AIC/
BIC. The second is the computational effectiveness. It is
hopeless to have a quantitative formulation for vision
purposes at present. We only have some understanding on
the second issue.

A descriptive model uses features �ðÞ which is determi-
nistic and, thus, easy to compute (filtering) in a bottom-up
fashion. But, it is very difficult to do synthesis using features.
For example, sampling the descriptive model (such as
FRAME) is expensive. In contrast, the generative model uses
hidden variables W which has to be inferred stochastically
and, thus, expensive to compute (analysis). But, it is easier to
dotop-downsynthesisusingthehiddenvariables.For the two
extreme models, p�des is infeasible to sample (synthesis) and
p�gen is infeasible to infer (analysis). For example, it is infeasible
to infer parameters of a reaction-diffusion equation from
observed texture images. The choice of generative model in
the brain should make both analysis and synthesis conveni-
ent. As vision can be used for many diverse purposes, there
will be manymodels coexist.

Where do features and hidden variables (i.e., visual
vocabulary) come from? The mathematical principles (mini-
max entropy or maximum mutual information) can choose
“optimal” featuresandvariables frompredefinedsets,but the
creationof thesecandidate setsoftencomefromthreesources:
1) observations in human vision, such as psychology and
neuroscience, thus related to purposes of vision, 2) physics
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5. This proof was given in a unpublished note by Wu and Zhu. A similar
conclusion was also given by a variational approach by Wolf and George
[86], who sent an unpublished manuscript to Zhu.



models, or 3) artistmodels. For example, theGabor filters and
Gestalt laws are found to be very helpful in visual modeling.
At present, the visual vocabulary is still far from being
enough.

This may sound ad hoc to someone who likes analytic
solutions!Unfortunately,wemaynever be able to justify such
vocabulary mathematically, just as physicists cannot explain
why they have to use forces or basic particles and why there
are space and time. Any elegant theory starts from some
creative assumptions. In this sense, we have to accept that

The far end of modeling is art.
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