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Abstract

Research on texture has been pursued along two
different lines. The first line of research, pioneered by
Julesz (1962), seeks the essential ingredients in terms
of features and statistics in human texture perception.
This leads us to a mathematical definition of texture
as a Julesz ensemble. A Julesz ensemble is the maxi-
mum set of images that share the same value of some
basic feature statistics as the image lattice A — 22, or
equivalently it is a uniform distribution on this set.
The second line of research studies statistical mod-
els, in particular, Markov random field (MRF) and
FRAME models (Zhu, Wu, and Mumford 1997), to

characterize texture patterns locally. In this article, -

we bridge the two lines by the fundamental princi-
ple of equivalence of ensembles in statistical mechan-
ics (Gibbs, 1902). We prove that 1). The conditional
probability of a arbitrary image patch given its en-
vironment, under the Julesz ensemble or the uniform
model, is inevitably a FRAME (MRF) model, and 2).
The limit of the FRAME (MRF) model, which we
called the Gibbs ensemble, is equivalent to a Julesz
ensemble as A — Z2. Thus the advantages of the two
methodologies can be fully utilized.

1 Introduction

Texture modeling and synthesis has been inten-
sively studied in computer vision and psychophysics
in the past three decades. From a global view, the
research has been pursued along two different lines. -

Research along the first line, pioneered by Julesz
(1962), studies the basic feature statistics that lead
to human texture impression, so that images shar-
ing the same values of feature statistics cannot be
told apart in pre-attentive vision. Examples of fea-
ture statistics include co-occurrence matrices, clique
statistics, and more recently, histograms of linear filter
responses. For a set of feature statistics, as the image
lattice A — Z2, we call the set of images sharing the
same value of feature statistics, or more precisely, the
uniform distribution- over this set, the Julesz ensem-
bles (Zhu, et al., 1999). Markov chain Monte Carlo
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(MCMCQ) can be used to synthesize texture images by
sampling from the Julesz ensemble (Zhu, et al., 1999),
and thus we can verify the sufficiency of the feature
statistics. The Julesz ensemble is globally defined on
Z2, in the literature, it was unclear what local statis-
tical properties the Julesz ensembles have when they
are applied to tasks like texture segmentation and dis-
crimination.

Research along the second line builds statistical
models to characterize texture patterns. Among them,
Markov random fields (MRF), or equivalently the
Gibbs distributions are the most successful models
(e.g., Besag, 1974; Cross and Jain, 1983; Geman and
Geman, 1984). Recently, Zhu, Wu, and Mumford
(1997) have shown that these models can be unified
under a minimax entropy learning principle, and that
MRF models incorporating statistics of filter responses
(called FRAME) can model a wide variety of natural
textures. We call the limit of the FRAME model as
A — 72 the Gibbs ensemble. The Markov property
makes the Gibbs distributions suitable for image re-
construction and image segmentation, but it is nec-
essary to know its global statistical property of the
Gibbs ensembles for model verification and model se-
lection purposes.

For a comparison between the Julesz ensemble and
the Gibbs ensemble, the former is more fundamental
scientifically and is defined by global hard constraints,
whereas the latter is more elegant mathematically and
is defined by local interactions or a “soft” constraint
through maximum entropy (see Zhu, Wu and Mum-
ford 1997). In this article, we unify the two research
lines by showing the equivalence between the Julesz
ensemble and the Gibbs ensemble, borrowing the fun-
damental principle of equivalence of ensembles in sta-~
tistical mechanics. The equivalence of ensembles re-
veals two significant facts in texture modeling. 1). Lo-
cally, under the Julesz ensemble, the conditional dis-
tribution of an image patch of arbitrary shape given
its environment is exactly the FRAME model. 2).
Globally, on Z2? (or large enough lattice) the Gibbs
ensemble concentrates its probability mass uniformly
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over a set of images sharing the same value of feature
statistics ~ the Julesz ensemble. Therefore, a Gibbs
ensemble is also a Julesz ensemble.

The key to the equivalence of ensembles is the prob-
ability rate function in the large deviation theory (e.g.,
Lewis, Pfister, and Sullivan, 1995). The probability
rate function describes the asymptotic behavior of the
probabilities of different image sets, and sheds light on
concepts like “typical” and “modeling”. An important
conclusion is that when we sample from the Julesz en-
semble or the Gibbs ensemble, we will always get im-
ages with the same statistical property (and therefore,
the same appearance).

2 Julesz ensemble and Gibbs ensemble

2.1 A simple example ,

In this subsection, we will use a simple example
to demonstrate the important fact that a statistical
model defined on a large image lattice concentrates its
probability mass uniformly on a set of images. The key
is the probability rate function in the large deviation
theory, which is built on the simple fact that the term
with the largest exponential order dominates the sum,
and the order of the sum is the largest order in the
individual terms. One can see this easily from the
followmg simple example Consider two terms, one is

? and the other i 1s e3". Asn — oo, the sum " +¢%"
is dominated by e*" A a.nd the order of this sum is still
5, i.e., log(e®™ + es")/n - 5.

Let I be an image defined on a finite lattice A C
72, and the intensity at pixel v € A is denoted by
I(v) € £ ={1,2,...,L}. Thus Q5 = LAl is the space
of images on A, with |A| being the number of pixels in
A. .

let’s consider a simple statistical model where the
image intensities are independent and identically dis-
tributed (i.id.) with P(I) = [],cp P(I(v)), and
PIv) =) =pforl=1,..,L,and } ;p =1 We
write p = (p1,...,PL)-

For each image I € €4, let the histogram of I be
h(I) = (h1(T), ..., b (X)), where h;(T) is the proportion
of pixels with level [ in the image I. Then A(I) is
the sufficient statistics for model P, i.e., if we denote
by Q4 (h) the set of images with h(I) = h, then P(I)
assigns equal probabilities to images in 24 (h). Thus
the image space is partitioned into equivalence classes

Qp = UpQa ().

As shown in figure 1, each equivalence class Qa(h) is
mapped into one point & on a simplex — a plane defined
by h1+---+hr = 1 and by > 0,Vlin an L-dimensional
space. We call images in Q4 (h) as images of type h.

The partition of image space

Figure 1: a). The partition of image space into equiv-
alence classes, and each class corresponds to an h on
the probability simplex in b). b). A function on the

- simplex with exponential fall-off, and it approaches a
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Dirac delta function as A — Z2. c). Zoom-in view at
a disk area in b). The function at one point on the
border of the circle dominates the entire integration.

For an image I of type h, the log-likelihood is

log P(I) = long'A'h‘
=1

ALY hilogp. (1)
i .

The number of images of type h, or the volume of the
set Qp(h) is

[Af!
(IAJAr)t -

IONOIES (2)

(1AlRL)!

for which it is easy to prove that

log|Qa (k)] = Z hylog hy = entropy(h).

=1

@)
Combining equations (3) and (1), the probability mass
for the entire set Q5 (h) of images of type h has an
exponential rate,

hm —_

IAI

. 1 .
All)Hle rA—I IOgP(I € QA (h)) = —D(h”p), (4)
where
D(hl|lp) = Z hy log = >,
=1

is the Kullback-Leibler divergence from h to p.
Equation (4) tells us that the probability mass for
each equivalence class Q4 (h) is distributed in the or-
der of exp{—|A|D(h||p)}, i.e., the distribution of A(I)
under model P is in the order of exp{—|A|D(h||p)}.



So we call sp(h) = —D(h||p) the probability rate func-
tion of h(I) under model P. Clearly, sp(h) achieves its
unique maximum 0 at A = p, and for h # p, the prob-
ability mass the model P assigns to 4 (h) becomes
exponentially small as the image lattice A gets large.
Therefore, when the image lattice is large, model P
concentrates its probability mass on 4 (p). Because
model P assigns equal probabilities to all images in
QA (p), model P on a large image lattice is essentially
a uniform distribution over Qx(p). So h = p is the
typical value of histogram A(I) under model P, i.e.,
if we randomly draw an image from model P defined
on a large lattice, then essentially we will always get
an image of type h = p. Thus, although locally the
pixel intensities are randomly distributed, globally, we
always observe the same value for the statistics h(I).
Figure 1.b) illustrates the intuitive interpretation of
the exponential fall-off in the probability simplex. As
A — 72, the probability P(I € Q4 (h)) converges to a
Dirac delta function centered at h = p.

Furthermore, as shown in Figure 1.c), for any set
‘H on the simplex, let QA (H) = {I: h(I) € #}. Then
the probability

P(I € QA(H)) = /h _ pae -QA(hk))dh.

In the above integral (which is a continuous version
of sum), P(I € QA(h)) is of the order exp{|A|sy(h)}.
Therefore, the integral is dominated by the h, with
the largest sp(h) in H, and the order of the whole
integral is still s,(h4). To be more specific, let

hy = arg max s,(h) = argmin D(h||p),

then
' 1

A7 oB(T € 24(70)

lim
A—>Z2

Il

o1
Algrzl2 m logp(I € Qa(hy))
sp(h*) = —D(h||p).

2.2 Features and statistics

Recent approaches to texture modeling begin
with introducing a set of features/filters {F(®) a =
1,2,...,A}, and computing the sub-band images I(®),
with I(®)(v) = F(® % I(v) for linear filters. A general
feature statistics can be computed as follows. First,
choose a G-polygon whose G vertices lie on various
sub-bands in the pyramid as displayed in Figure 2. So
we can index the G-polygon by {(a,,u,),9 =1, ...,G},
with a4 indexes the pyramid level, and u, the displace-
ment of the vertex. Because texture is a statistical
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property of local spatial structures, the u,’s should be
close to each other. Then we can move this G-polygon
over the image lattice, and collect a set of G-tuples of
filter responses, {(I®)(v +u;),...,I*¢) (v + ug)),v €
A}. Finally, the feature statistics for this polygon can
be computed as the G-dimensional histogram of these
G tuples,

’ G
H() = Z H 1I(ﬂg)(v+u,)=hg7

(h1,...,hg) 9=1

where (hy, ..., hg) runs through all possible values of
the G-tuple, which are assumed to be suitably quan-

Figure 2: The general feature statistics are multi-
dimensional histograms for polygons in the image
pyramid.

If the pyramid has only one layer, i.e., the raw
image I, then the feature statistics reduce to co-
occurrence matrices (Julesz, 1962; Gagalowicz and
Ma, 1986). For a polygon with only one vertex, the
feature statistics become the marginal histogram used
in Heeger (1996) and Zhu et al. (1997). If the polygon
is a straight line (see figure 2), the feature statistics
become the joint histogram used by De Bonet and Vi-
ola (1999). The histograms can be further reduced to
moments, rectified moments, or other more parsimo-
nious statistics. :

2.3 The Julesz ensemble

Our definition of the Julesz ensemble is motivated
by Julesz’s quest for a general “texton theory”. In his
seminal paper (Julesz, 1962), Julesz asked the follow-
ing fundamental question:

what features and statistics are characteristic
of a texture pattern, so that texture pairs
that share the same features and statistics
cannot be told apart by pre-attentive human
visual perception?

Suppose on the image pyramid, K polygons are
used for texture modeling, which give K unnormal-
ized histograms Hy(I),..., Hx(I). We let H(I) =



(Hy(D), .., Hx (D)), and h(T) =
malized histograms. Let -

Qa(h) (5)

be the set of images sharing the same value h of fea-
ture statistics. The value h is often extracted from
some observed images. For finite lattice A, the exact
constraint h(I) = h may not be satisfied. So we relax
this constraint a little bit, and replace Q4 (h) by

H(I)/|A| be the nor-

='_{1 th(I) = h} '

QM) ={I:h(I) € 'H}‘_

© with H bei\ng an open neighborhood around h. Then
. the associate uniform distribution is

» q(I;:’H,) = { 3’/|QA('H)_|',-_

where |Q4 (#)] is the volume éf‘QA(H). ’ ) »‘
" Definition Given a set of feature-statistics h(I) =
(Pa (1), ..., hxc (1)), @ Julesz ensemble with paramneter h

if 1€ QA(H),

otherwise,

(6)

texture modeling in computer vision, however, the ne-
cessity or the parsimony of feature statistics is very
important.

The g(I; 1) can be sampled by simulated annealmg
We first define an energy function

_ if h(I) € H,
£ = { otherwise,

07
D(h(l)y hobs (I))7

where D is a suitably chosen distance (e.g., Llr dis-
tance). Then the distribution

1

m——ubw)

(7

. goes. to ¢(I; 'H), i.e.. the uniform dlstrlbutlon over the

is a limit of g(I;H) as A — Z? and ’H —+h wzth some -

‘boundary condition.
' A Julesz ensemble is a mathematlcal 1deahzatlon

of g(I; M) for a large-A with some boundary condition

minima of £(I) as the temperature T goes to 0. We
can sample g(I) by the.Gibbs sampler (Geman and
Geman, 1984) or a generalized version. of the Gibbs
sampler (see Zhu, et al. 1999 and references therein).

In our experiments, we select all the 56 filters (Ga-
bor filters at various scales and orientations and small
Laplacian of Gaussian filters) used by Zhu, et al.
(1997). We match the marginal histograms of the 56
filters all together. Some of the results are displayed

“in Figures 4 and 5. See Zhu, et al. (1999) for more
. details and discussions of the results. For simplicity,

~ and with # close to h. We assume A — Z? in the sense
> of van Hove, i.e., the ratio between the boundary and*

the size of A goes to 0.

Then, we are ready to glve a mathematzcal defini- :

tion for texture.

" Definition A tezﬁ:.re is the Julesz ensemblc for the setr »

of feature statistics h(I) employed by human vision in
formmg tezture impression. - :

" Then, texture modeling can be posed as an inverse
-problem, i.e., given a set.of observed images sampled
by natural _stochastic precesses (physical or chemical),
find the largest Julesz ensemble, or more specifically,
- the minimal set of feature:statistics, such that images

sampled from this Julesz ensemble have the same tex-

ture appearance as the observed-ones..

The verification: of the sufficiency of feature statls- :
tics h(I) can be accomplished by first computing hops .-

- from observed texture images, and then sampling from

the "Julesz ensemble with parameter heps, or more = -

practically from q(I; ) on a'large lattice with # close

to hyps, to see if the sampled images resemble the vi- -

sual appearance of the observed ones. The necessity of -

feature statistics is 2 much more delicate issue as there

are infinitely many ways to reduce h(I), and some re- -

duction of h(I) may still be judged by human vision
as being sufficient. For texture synthesxs in computer
graphxcs, the necessn:y is not an 1mportant issue. For
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for the rest of the paper, we assume that the feature
statistics are marginal statistics of filter responses, al-
though our results apply to more general situations.
2.4 MRF models and the Gibbs ensemble
Statistical modeling of texture is motivated by vi-
sion problems such as texture clustering, discrimina-
tion and segmentation. Among all statistical models,
the MRF models (e.g., Besag, 1974; Cross and Jain,
1983) are the most successful and the most elegant.
Recently, Zhu, et al. (1997) discovered the fol-
lowing general MRF model. Given statistics H(I) =
(H1(D), ..., H (1)), the MRF model for Iis

Ap(I’; B)

I

= (ﬂ) exp{v Z<ﬂk,Hk(I) >}

where Z, A(B) is the normallzmg constant. This model
is specified by the parameter 8 = (B, ..., Bk), whose
value is determined by the constraint

Epp) (@] =&

where h,ps is computed from observed images.. We call

obs)

the above constraint a soft constraint because it only

requires that the statistics are matched on ensemble



average. Among all the distributions p(I) satisfying
Ep[h(I)] = hebs, p(I; B) has the maximum entropy, so
it integrates the observed statistics hobs in the most
unbiased way.

The p(I; 8) umﬁes all the MRF texture models,
which are different only in their definitions of feature
statistics H(I). Although the MRF models are less
straightforward than the Julesz ensembles, they are
much more analytically tractable due to the Markov
property. More specifically, for any patch A C A, the
conditional distribution of I, given the rest of the
image Ix/a, only depends on'the pixels that can share
the same filters with pixels in Ag. We call the set of

such pixels the neighborhood of Ag, and denote it by

AAp. The condition distribution is

P(IAo | Ia/a058) = (I, | Tono; B)

= (ﬁ) exp{ < ﬂ:H(IAo lIaAo) >}7

where H(I,, |Isn,) is the statistics computed by filter-
ing within Ag U OAy. Similar to the definition of the
Julesz ensemble, we have . .
Definition Given a set of feature statistics h(I) =
(h1(1), ..., hx (1)), a Gibbs ensemble with parameter B
is a limit of p(I; ) as A — Z? with some boundary
condition. :

The Gibbs ensemble is a mathematical idealization
of p(I; B) on a large A with some boundary condition.

3 Equivalence of ensembles
3.1 Local Markov property of the Julesz
ensemble
In this subsection, we derive the local Markov prop-
erty of the Julesz ensemble, which is globally de-
fined by h. This derivation is adapted from the
traditional argument in statistical mechanics (Gibbs,

1902), where the Julesz ensemble can be identified .

with the micro-canonical ensemble (an isolated sys-
tem with fixed energy), and the Gibbs ensemble with
the canonical ensemble (a system in equilibrium with
a heat reservoir). To do this, we need to first derive
the probability rate function of h(T) under the umform
distribution.

Let pa be the uniform distribution over the entire
image space Q4, and let pp (H) be the probability that
A assigns to the image set Q4 (#). Then the volume
of Qp(H) is LM pp (H). For pa, we have

Proposition 1 The limit

hm IA' IOgﬂA(H) - S( )

exists. Let s(h) = limy_,n s(H), then s(h) is strictly
concave, and s(H) = suppey s(h).

The probability rate function s(h) tells us that the
distribution pp(h) behaves like exp{|A|s(h)}. The
equation s(#H) = suppcy s(h) can be understood in
the same way as in the simple i.i.d. example we dis-
cussed, i.e., the term with the largest order dominates.
See Lanford (1973) for a detailed analysis of the above
result.

With s(h), we are ready to derive the Markov
property of the Julesz ensemble. Consider the model
g(I;H). For simplicity, we shall just take H to be h,
and assume that A is large, so ¢(I;h) is uniform over
Qa(h). First, we fix A; C A, and then fix Ag C A;.
We are interested in the conditional distribution of the
local patch I, given its local environment I, /5, un-
der the model ¢(I; h) with a large A. We denote this
distribution by q(Ia, | Is,/a,,h). We assume that Ao
is sufficiently smaller than A; so that the neighbor-
hood of Ag, Ay, is contained in A;.

Let Ho = H(Iz,|Isa,) be the statistics computed
for I, where filtering takes place within AgUdAq. Let
Hoy; be the statistics computed by filtering inside the
fixed environment A; /Aq. Let A_y = A/A; be the big
patch outside of A;. Then the statistics computed for
A_;ish|A|-Hp—Hy;. Let h' = (h|A|—Hop)/IA_1],
then the normalized statistics for A_; is h'—Hg/|A_4].

For a certain image patch I5,, the number of images
in Q4 (h) with such a patch I, and its local environ-
ment Iy, /a, is [Qa_, (B’ —Hp/|A_1])|. So if we sample
an image from Q4 (h) randomly, then the probability
we observe Iy, on Ap with an environment I, /5, is

H,
T

q(IAo I IAl/onh) x I/IQA—1(h' -

Note that as a distribution of Iy, q(Ia, | Is, /A0, h)
is decided by Hp, which is the sufficient statistics.
Therefore, we only need to trace Hy while leaving
other terms as constants. For large A,

H,

log g(Ia, | Ia,/A0>h) = const + |A_;|s(h’ - m)

1
= const— < s'(h'),Hp > +o(I~A—I),

where the first equation follows from Proposition 1,
and the second equation follows from a Taylor ex-
pansion at h'. Lettmg B = s'(h), then, as A — Z2,
h' — h, and

log q(In, | In,/a0,h) —  comst— < s'(h),Ho >
= const— < B,Hp >,
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SO

q(Tao 1 Tas /00, ) = 2;;1(—6—)8);9{— < B,H(Ip, | Lan,) >},

which is exactly the Markov property that governs the
Gibbs ensemble. This derivation shows that local com-
putation using the MRF model is justified under the
Julesz ensemble. It also reveals an important rela-
tionship, i.e., the parameter B can be identified as the
derivative of the probability rate s(h).

3.2 Global statistical property of the

Gibbs ensemble )

In this subsection, we shall start with the Gibbs
ensemble defined by B, and show that it is essentially
a Julesz ensemble.

Clearly, the MRF model p(I B) assigns equal prob-
abilities to images in Q4 (h) for any h, because h(I)
is the sufficient statistics. If we can show that p(I; 8)
eventually focuses on a certain value of h(I), say, hy,
then for large lattice, p(I; B) is essentially a uniform
distribution over Q4 (h,), which leads to the equiv-
alence of ensembles. For this purpose, we need to
compute the probablhty rate function of h(I) under
p(L;B).

Because the number of images with h(I) = h is
|Qa(h)| = LIAlua(h), the probability distribution of
h(I) under the MRF model p(I; B) is

p(h; B) = exp{—|A| < ﬂ,h >}LIM.UA(h)

(B)
and the probability rate

sp(h)

Il

1
lim —— h;
A logp( ;8)

. 1
-<B,h> +Al_14'r%2 mlogu,\(h)

PR
- (Ali)ﬂzlzmlogzzx(ﬁ)

We already know that

—logL).

Jim, T log i (h) = (B)

is the probability rate function of h(I) under the uni-
form model. For the last term in sg(h), we have

Proposition 2 The limit -

2 1og Zr(8) - log L

o(B) = Alin%ﬁ 1A

erists and is independent of the boundary condition. p
is strictly converz.

See Griffiths and Ruelle (1971) for a proof. Therefore,
we have

Proposition 3 The probability rate function sg(h) of
the MRF model p(I; B) is sg(h) = s(h) — < B,h >
—p(8)- ' :

So we have the following theorem.

Theorem 1 If there is a unique h, where sg(h)
achieves its mazimum 0, then p(I; B) eventually con-
centrates on h,, and therefore the Gibbs ensemble de-
fined by B is equivalent to the Julesz ensemble defined
by hy, and s'(h,) =

The uniqueness of h, holds under the condition that
there is no phase transition at 3. See the next subsec-
tion for a discussion.

‘When there is no phase transition, the Julesz en-
semble or the corresponding Gibbs ensemble concen-
trates its probability mass on a set of typical images
sharing the same statistical property. To see this fact,
consider an arbitrary new statistics ho(I) not used for
modeling. It can be shown that the Julesz (or Gibbs)
ensemble concentrates on the unique hg, that maxi-
mizes s(h,, ho), where s(h, hg) is the probability rate
function for the enlarged statistics (h(I), ho(I)) under
the uniform model. That means that almost all images
in the Julesz (or Gibbs) ensemble produce hg, for the
statistics ho(I), i.e:, if we sample from the Julesz (or
Gibbs) ensemble, we will always observe hg,, which is
the typical value of the statistics ho(I). Because ho(I)
is arbitrary, if we sample from the Julesz (or Gibbs)
ensemble, we will always get images with the same
statistical property. Such images can be called typical
images, which absorb all the probability mass of the
Julesz (or Gibbs) ensemble.

The equivalence of ensembles also sheds new light

- on the minimax entropy principle Zhu, et al. (1997) in-

troduced for texture modeling. The minimum entropy
principle means that we should choose the feature
statistics hops so that s(hops) is the smallest, or the
volume of Q4 (hobs) is the smallest, under constraint
on model complexity. s(hobs) is a measure of entropy
rate, or the randomness of the observed texture im-
age. The maximum entropy principle means that we
should put a uniform distribution over Q4 (hops), SO
that sampling from this uniform distribution-gives us
typical images in Q4 (hobs), because almost all images
in 04 (heps) are typical images.

3.3 Uniqueness of ensembles

Given a parameter 3, p(I; 3) may go to different
limits as A — Z?2 under different boundary conditions.



Such a phenomenon is called phase transition in sta-
tistical physics, and it can manifest itself if we sample
from p(I; B): we may get images of different statisti-
cal properties if we use different large A and different
boundary conditions. It is also possible that a sam-
pled image consists of large image patches of different
statistical properties. Mathematically, phase transi-
tion reflects the fact that there is a cusp, and thus not

" differentiable in the function p(8), or a flat top in the
function sg(h). When there is no phase transition,
there is only one Gibbs ensemble which is an ergodic
random field.

For a given h, it is also possible that the uniform
distribution g(I;#) goes to different limits as A — Z2
and ‘H — h. This can manifest itself in a similar way
as described above. See Martin-Lof (1979) for more
details. Again, we consider such a Julesz ensemble
unsuitable for texture modeling.

4 Discussion

There are two important goals in texture modeling.
1). Search for the sufficient and necessary statistics
that define the underlying texture pattern. 2). Search
for conditional probability of an arbitrary image patch
given its environment.

The first goal leads us to the Julesz ensemble, and
the second goal leads us to the Gibbs ensemble. In
this paper, we establish the equivalence between the
two ensembles, therefore justify the FRAME model
of Zhu, et al. (1997) as an inevitable description of
texture. Figure 3 summarizes the global picture for
texture modeling. The dashed line (path 2) represents
the research line which pursues the Julesz ensembles.
The solid line represents the research which build min-
imax entropy models. The two lines are connected
by the equivalence of ensembies. The advantages of
both lines can now be better utilized, with the Julesz
ensemble is much more efficient for texture synthe-
sis, model verification, and statistics pursuit, and the
Gibbs models provide precise local probability mea-
sures for image segmentation and classification.
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Figure 4: Left column: the observed texture images,
right column: the synthesized texture images-that
share the exact histograms with the observed for 56

filters. . ) )
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