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Abstract

Dynamic textures are sequences of images of moving
scenes that exhibit certain stationarity properties in time;
these include sea-waves, smoke, foliage, whirlwind but also
talking faces, traffic scenes etc. We present a novel charac-
terization of dynamic textures that poses the problems of
modelling, learning, recognizing and synthesizing dynamic
textures on a firm analytical footing. We borrow tools from
system identification to capture the “essence” of dynamic
textures; we do so by learning (i.e. identifying) models that
are optimal in the sense of maximum likelihood or minimum
prediction error variance. For the special case of second-
order stationary processes we identify the model in closed
form. Once learned, a model has predictive power and
can be used for extrapolating synthetic sequences to infi-
nite length with negligible computational cost. We present
experimental evidence that, within our framework, even low
dimensional models can capture very complex visual phe-
nomena.

1. Introduction

Consider a sequence of images of a moving scene. Each
image is an array of positive numbers that depend upon the
shape, pose and motion of the scene as well as upon its ma-
terial properties (reflectance distribution) and on the light
distribution of the environment. It is well known that the
joint reconstruction of photometry and geometry is an in-
trinsically ill-posed problem: from any (finite) number of
images it is not possible to uniquely recover all unknowns
(shape, motion, reflectance and light distribution). Tra-
ditional approaches to scene reconstruction rely on fixing
some of the unknowns either by virtue of assumption or
by restricting the experimental conditions, while estimating
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grant DAAD19-99-1-0139. We wish to thank Prabhakar Pundir, and
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the others1.
However, such assumptions can never be validated from

visual data, since it is always possible to construct scenes
with different photometry and geometry that give rise to the
same images2. The ill-posedness of the most general visual
reconstruction problem and the remarkable consistency in
the solution as performed by the human visual system re-
veals the importance of priors for images [29]. They are
necessary to fix the arbitrary degrees of freedom and ren-
der the problem well-posed. In general, one can use the
extra degrees of freedom to the benefit of the application at
hand: one can fix photometry and estimate geometry (e.g.
in robotic vision), or fix geometry and estimate photometry
(e.g. in image-based rendering), or recover a combination
of the two that satisfies some additional optimality crite-
rion, for instance the minimum description length of the
sequence of video data [23].

Given this arbitrariness in the reconstruction and inter-
pretation of visual scenes, it is clear that there is no notion
of a true interpretation, and the criterion for correctness is
somewhat arbitrary. In the case of humans, the interpreta-
tion that leads to a correct Euclidean reconstruction (that
can be verified by other sensory modalities, such as touch)
has obvious appeal, but there is no way in which the cor-
rect Euclidean interpretation can be retrieved from visual
signals alone.

In this paper we will analyze sequences of images of

1For instance, in stereo and structure from motion one assumes that
(most of) the scene has Lambertian reflection properties, and exploits such
an assumption to establish correspondence and estimate shape. Similarly,
in shape from shading one assumes constant albedo and exploits changes
in irradiance to recover shape.

2For example, a sequence of images of the sea at sunset could have
been originated by a very complex and dynamic shape (the surface of the
sea) with constant reflection properties (homogeneous material, water),
and also by a very simple shape (e.g. the plane of the television monitor)
with a non-homogeneous radiance (the televised spatio-temporal signal).
Similarly, the appearance of a moving Lambertian cube can be mimicked
by a spherical mirror projecting a light distribution to match the albedo of
the cube.
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moving scenes solely as visual signals. “Interpreting” and
“understanding” a signal amounts to inferring a stochastic
model that generates it. The “goodness” of the model can
be measured in terms of the total likelihood of the measure-
ments or in terms of its predicting power: a model should
be able to give accurate predictions of future signals. Such a
model will involve a combination of photometry, geometry
and dynamics and will be designed for maximum likelihood
or minimal prediction error variance. Notice that we will
not require that the reconstructed photometry or geometry
be correct (in the Euclidean sense), for that is intrinsically
impossible without involving (visually) non-verifiable prior
assumptions. But the model must be capable of predicting
future measurements. In a sense, we look for an “expla-
nation” of the image data that allows us to recreate and ex-
trapolate it. It can therefore be thought of as the compressed
version or the “essence” of the sequence of images.

1.1. Prior related work

There has been extensive work in the area of 2D texture
analysis, recognition and synthesis. Most of the approaches
use statistical models [13, 29, 21, 22, 5, 19, 4, 12] while
few others rely on deterministic structural models [8, 28].
Another distinction is that some of them work directly on
the pixel values while others project image intensity onto a
set of basis functions3

There have been many physically based algorithms
which target the visual appearance of specific phenomenons
[7, 9, 20, 26]. These methods are computationally intensive,
customized for particular textures and allow no parameters
to control the simulation once a model is inferred.

On the other hand there has been comparatively little
work in the specific area of dynamic textures. Schödl et
al. [24] address the problem by finding transition points in
the original video sequence where the video can be looped
back on itself in a minimally obtrusive way. The process in-
volves morphing techniques to smooth out visual disconti-
nuities. Levoy and Wei [28] have also suggested extending
their approach to dynamic textures by creating a repeatable
sequence. The approach is clearly very restrictive and ob-
tains a relatively quick solution for a small subset of prob-
lems without explicitly inferring a model.

Bar-Joseph [2] uses multi resolution analysis (MRA)
tree merging for the synthesis and merging of 2D textures
and extends the idea to dynamic textures. For 2D textures
new MRA trees are constructed by merging MRA trees ob-
tained from the input; the algorithm is different from De
Bonet’s [5] algorithm that operates on a single texture sam-
ple. The idea is extended to dynamic textures by construct-
ing MRA trees using a 3D wavelet transform. Impressive
results were obtained for the 2D case, but only a finite

3Most common methods use Gabor filters [14, 3] and steerable filters
[10, 13].

length sequence is synthesized after computing the com-
bined MRA tree. Our approach captures the essence of a
dynamic texture in the form of a dynamic model, and an
infinite length sequence can be generated in real-time us-
ing the parameters computed off-line and, for the case of
second-order process, in closed form.

Szummer and Picard’s work [27] on temporal tex-
ture modelling uses a similar approach towards captur-
ing dynamic textures. They use the spatio-temporal auto-
regressive model (STAR), which imposes a neighborhood
causality constraint even for the spatial domain. This
severely restricts the textures that can be captured. The
STAR model fails to capture rotation, acceleration and other
simple non translational motions. It works directly on the
pixel intensities rather than a smaller dimensional represen-
tation of the image. We incorporate spatial correlation with-
out imposing causal restrictions, as would be clear in the
coming sections, and can capture more complex motions,
including ones where the STAR model is ineffective (see
[27], from which we borrow some of the data processed in
Section 5).

1.2. Contributions of this work
This work presents several novel aspects in the field

of dynamic textures. On the issue of representation, we
present a novel definition of dynamic texture that is general
(even the simplest instance can capture second-order pro-
cesses with an arbitrary covariance sequence) and precise
(it allows making analytical statements and drawing from
the rich literature on system identification). On learning,
we propose two criteria: total likelihood or prediction error.
For the case of second-order model we give a closed-form
solution of the learning problem. On recognition, we show
how textures alike tend to cluster in model space. On syn-
thesis, we show that even the simplest model (first-order
ARMA with white IID Gaussian input) captures a wide
range of textures. Our algorithm is simple to implement,
efficient to learn and fast to simulate; it allows one to gen-
erate infinitely long sequences from short input sequences
and to control parameters in the simulation.

2. Representation of dynamic textures
For a single image, one can say it is a texture if it is a re-

alization from a stationary stochastic process with spatially
invariant statistics [29]. This definition captures the intu-
itive notion of texture discussed earlier. For a sequence of
images (dynamic texture), individual images are clearly not
independent realizations from a stationary distribution, and
there is a temporal coherence intrinsic in the process that
needs to be captured. The underlying assumption, there-
fore, is that individual images are realizations of the output
of a dynamical system driven by an independent and identi-
cally distributed (IID) process. We now make this concept
precise as an operative definition of dynamic texture.
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2.1. Definition of dynamic texture
Let fI(t)gt=1:::� be a sequence of images. Suppose that

at each instant of time t we can measure a noisy version
of the image, y(t) = I(t) + w(t) where w(t) is an inde-
pendent and identically distributed sequence drawn from a
known distribution pw(�) resulting in a positive measured
sequence y(t) 2 R

m ; t = 1 : : : � 4. We say that the se-
quence fI(t)g is a (linear) dynamic texture if there exists
a set of n spatial filters ��; � = 1 : : : n and a station-
ary distribution q(�) such that, calling x(t)

:
= �(I(t)) we

have x(t) =
Pk

i=1 Aix(t � i) + Bv(t), with v(t) an IID
realization from the density q(�), for some choice of matri-
ces A1; : : : ; Ak; B and initial condition x(0) = x0. With-
out loss of generality, we can assume k = 1 since we
can augment the state of the above model to be �x(t)

:
=

[x(t)T x(t � 1)T : : : x(t � k)T ]T . Therefore, a dynamic
texture is associated to an auto-regressive, moving average
process (ARMA) with unknown input distribution(

x(t + 1) = Ax(t) +Bv(t)

y(t) = �(x(t)) + w(t)
(1)

with x(0) = x0, v(t)
IID
� q(�) unknown, w(t)

IID
� pw(�)

given, and I(t) = �(x(t)). One can obviously extend the
definition to an arbitrary non-linear model of the form x(t+
1) = f(x(t); v(t)), leading to the concept of non-linear
dynamic textures.

2.2. Filters and dimensionality reduction
The definition of dynamic texture above entails a choice

of filters ��; � = 1 : : : n. These filters are also inferred as
part of the learning process for a given dynamic texture.

There are several criteria for choosing a suitable class
of filters, ranging from biological motivations to computa-
tional efficiency. In the trivial case, we can take � to be the
identity, and therefore look at the dynamics of individual
pixels x(t) = I(t) in (1). We view the choice of filters as
a dimensionality reduction step, and seek for a decomposi-
tion of the image in the simple (linear) form

I(t) =

nX
i=1

xi(t)�i
:
= Cx(t) (2)

where C = [�1; : : : ; �n] and f�g can be an orthonormal
basis of L2, a set of principal components, or a wavelet
filter bank.

An alternative non-linear choice of filters can be ob-
tained by processing the image with a filter bank, and rep-
resenting it with the collection of positions of the maximal
response in the passband [18]. In this paper we will restrict

4This distribution can be inferred from the physics of the imaging de-
vice. For CCD sensors, for instance, a good approximation is a Poisson
distribution with intensity related to the average photon count.

our attention to linear filters. In [25] we discuss how to ex-
tend some of these results to special classes of nonlinear
filters.

3. Learning dynamic textures
The maximum-likelihood formulation of the dynamic

texture learning problem can be posed as follows:

given y(1); : : : ; y(�); �nd

Â; B̂; Ĉ; x̂0; q̂(�) = arg max
A;B;q

log p(y(1); : : : ; y(�))

subject to (1) and v(t)
IID
� q:

The inference method depends crucially upon what type of
representation we choose for q. Note that the above infer-
ence problem involves the hidden variables x(t) multiply-
ing the unknown parameter A and realizations v(t) multi-
plying the unknown parameter B, and is therefore intrin-
sically non-linear even if the original state model is linear.
In general one could use iterative techniques that alternate
between estimating (sufficient statistic of) the conditional
density of the state and maximizing the likelihood with re-
spect to the unknown parameters, in a fashion similar to the
expectation-maximization (EM) algorithm [6]. In order for
such iterative techniques to converge to a unique minimum,
canonical model realizations need to be considered, cor-
responding to particular forms for the matrices A and B.
We discuss such realizations in Section 4, where we also
present a closed-form solution for a wide class of linear dy-
namic textures.

3.1. Representation of the driving distribution
So far we have managed to defer addressing the fact that

the unknown driving distribution belongs, in principle, to an
infinite-dimensional space, and therefore something needs
to be said about how this issue is dealt with algorithmically.

We consider three ways to approach this problem. One
is to transform this into a finite-dimensional inference prob-
lem by choosing a parametric class of densities. This
is done in the next section, where we postulate that the
unknown driving density belongs to a finite-dimensional
parameterization of a class of exponential densities, and
therefore the inference problem is reduced to a finite-
dimensional optimization. The exponential class is quite
rich and it includes, in particular, multi-modal as well as
skewed densities, although with experiments we show that
even a single Gaussian model allows achieving good re-
sults. When the dynamic texture is represented by a second-
order stationary process we will show in Section 4.2 that,
contrary to popular belief, a closed-form solution can be
obtained.

The second alternative is to represent the density q via
a finite number of fair samples drawn from it; the model
(1) can be used to represent the evolution of the conditional
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density of the state given the measurements, and the density
is evolved by updating the samples so that they remain a
fair realization of the conditional density as time evolves.
Algorithms of this sort are called “particle filters” [16], and
in particular the CONDENSATION filter is the best known
instance in the Computer Vision community.

The third alternative is to treat (1) as a semi-parametric
statistical problem, where one of the parameters (q) lives
in the infinite-dimensional manifold of probability densi-
ties that satisfy certain regularity conditions, endowed with
a Riemannian metric (corresponding to Fisher’s Informa-
tion matrix), and to design gradient descent algorithms with
respect to the natural connection, as it has been done in the
context of independent component analysis (ICA). This av-
enue is considerably more laborious and we are therefore
not considering it in this study.

3.2. Compression and denoising

Due to the equivalence between stationary second-order
covariance sequences and first-order Gauss-Markov mod-
els, we can represent a dynamic texture with its model pa-
rameters and the input sequence. This, in general, will re-
sult in a lossy compression of the original sequence, where
the error is given by the innovation process (see [25] for
more details). In the experimental section we show a simple
example of how a compressed sequence can be obtained.

The model we describe in this paper can also be used to
perform suboptimal denoising of the original sequence. It
is immediate to see that the denoised sequence is given by

Î(t)
:
= Ĉx̂(t) (3)

where Ĉ is the maximum likelihood estimates ofC and x̂(t)
is obtained from x̂(t+ 1) = Âx̂(t) + B̂v̂(t).

4. A closed-form solution for learning second-
order stationary processes

It is well known that a stationary second-order process
with arbitrary covariance can be modelled as the output of a
linear dynamical system driven by white, zero-mean Gaus-
sian noise [17]. In our case, we will therefore assume that
there exists a positive integer n, a process fx(t)gwith initial
condition x0 2 R

n and symmetric positive-definite matri-
ces Q and R such that(
x(t+ 1) = Ax(t) + v(t) x(0) = x0 ; v(t) � N (0; Q)

y(t) = Cx(t) + w(t) w(t) � N (0; R)

(4)
for some matrices A 2 R

n�n and C 2 R
m�n . The

problem of model identification consists in estimating
the model parameters A;C;Q;R from measurements of
y(1); : : : ; y(�). Note that B in the model (1) is such that
BBT = Q.

4.1. Uniqueness and canonical model realizations
The first observation concerning the model (4) is that the

choice of matrices A;C;Q is not unique, in the sense that
there are infinitely many such matrices that give rise to ex-
actly the same sample paths y(t) starting from suitable ini-
tial conditions. This is immediately seen by substituting A
with TAT�1,C withCT�1 andQwith TQT T , and choos-
ing the initial condition Tx0, where T 2 GL(n) is any in-
vertible n�n matrix. In other words, the basis of the state-
space is arbitrary, and any given process has not a unique
model, but an equivalence class of models R

:
= f[A] =

TAT�1; [C] = CT�1; [Q] = TQT T ; j T 2 GL(n)g. In
order to be able to identify a unique model of the type (4)
from a sample path y(t), it is therefore necessary to choose
a representative of each equivalence class: such a represen-
tative is called a canonical model realization, in the sense
that it does not depend on the choice of basis of the state
space (because it has been fixed).

While there are many possible choices of canonical
models (see for instance [15]), we are interested in one that
is “tailored” to the data, in the sense of having a diagonal
state covariance. Such a model is called balanced [1]. Since
we are interested in data dimensionality reduction, we will
make the following assumptions about the model (4):

m >> n; rank(C) = n (5)

and choose the canonical model that makes the columns of
C orthonormal:

CTC = In (6)

where In is the identity matrix of dimension n � n. As
we will see shortly, this assumption results in a unique
model that is tailored to the data in the sense of defining
a basis of the state space such that its covariance P

:
=

limt!1E[x(t)xT (t)] is asymptotically diagonal.
The problem we set out to solve can then be formulated

as follows: given measurements of a sample path of the
process: y(1); : : : ; y(�); � >> n, estimate Â; Ĉ; Q̂; R̂, a
canonical model of the process fy(t)g. Ideally, we would
want the maximum likelihood solution from the finite sam-
ple:

Â(�); Ĉ(�); Q̂(�); R̂(�) = arg min
A;C;Q;R

p(y(1) : : : y(�))

(7)
however, in this section we only derive a closed-form sub-
optimal solution in the sense of Frobenius; the asymptoti-
cally optimal solution can also be obtained in closed form,
but is beyond the scope of this paper and is described in
[25].

4.2. Closed-form solution
Let Y �

1

:
= [y(1); : : : ; y(�)] 2 R

m�� with � > n, and
similarly for X�

1
and W �

1
, and notice that

Y �
1

= CX�
1
+W �

1
; C 2 Rm�n ; CTC = I (8)
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by our assumptions (5) and (6). Now let Y �
1

=
U�V T ; U 2 Rm�n ; UTU = I ; V 2 R��n ; V TV = I
be the singular value decomposition (SVD) [11] with � =
diagf�1; : : : ; �ng, and consider the problem of finding the
best estimate ofC in the sense of Frobenius: Ĉ(�); X̂(�) =
argminC;X�

1
kW �

1
kF subject to (8). It follows immediately

from the fixed rank approximation property of the SVD [11]
that the unique solution is given by

Ĉ(�) = U X̂(�) = �V T (9)

and Â can be determined uniquely, again in the sense
of Frobenius, by solving the following linear problem:
Â(�) = argminA kX�

1
�AX��1

0
kF which is trivially done

in closed form using an estimate of X from (9):

Â(�) = �V TD1V (V TD2V )�1��1 (10)

where D1 =

�
0 0

I��1 0

�
and D2 =

�
I��1 0
0 0

�
. No-

tice that Ĉ(�) is uniquely determined up to a change of sign
of the components of C and x. Also note that

E[x̂(t)x̂T (t)] � lim
�!1

1

�

�X
k=1

x̂(t+k)x̂T (t+k) = �V TV � = �2

(11)
which is diagonal. Thus the resulting model is balanced.
Finally, the sample input noise covariance Q can be esti-
mated from

Q̂(�) =
1

�

�X
i=1

v̂(i)v̂T (i) (12)

where v̂(t)
:
= x̂(t + 1) � Â(�)x̂(t). Should Q̂ not

be full rank, its dimensionality can be further reduced
by computing the SVD Q̂ = UQ�QU

T
Q where �Q =

diagf�Q(1); : : : ; �Q(k)gwith k � n, and letting B̂ be such
that B̂B̂T = Q̂.

In the algorithm above we have assumed that the order
of the model n was given. In practice, this needs to be in-
ferred from the data. Following [1], we propose to deter-
mine the model order empirically from the singular values
�1; �2; : : : , by choosing n as the cutoff where the value of
� drops below a threshold. A threshold can also be imposed
on the difference between adjacent singular values.

4.3. Asymptotic properties
The solution given above is, strictly speaking, incorrect

because the first SVD does not take into account the fact
that X has a very particular structure (i.e. it is the state of
a linear dynamical model). It is possible, however, to adapt
the algorithm to take this into account while still achieving
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Figure 1. Model veri�cation : to verify the qual-
ity of the model learned, we have used a fixed num-
ber of principal components in the representation (20)
and considered sub-sequences of the original data set
of length varying from 10 to 120. We have used such
sub-sequences to learn the parameters of the model
in the Maximum-Likelihood sense, and then used the
model to predict the next image. Using one crite-
rion for learning (ML) and another one for valida-
tion (prediction error) is informative, for it challenges
the model. The average prediction error per pixel is
shown as a function of the length of the training se-
quence (for the smoke sequence), expressed in gray
scale within a range of 256 levels. The average pre-
diction error per pixel is shown as a function of the
length of the training sequence (for the smoke se-
quence), expressed in gray scale within a range of
256 levels. The average error per pixel decreases and
becomes stable after some critical length. Mean and
standard deviation for 100 trials is shown as an error-
bar plot.

a closed-form solution that can be proven to be asymptot-
ically efficient, i.e. to approach the maximum likelihood
solution. Such an optimal algorithm is beyond the scope of
this paper and has been described in [25].

5. Experiments
We have developed a MATLABr implementation of the

algorithm described in Section 4: learning a sequence of
100 frames takes about 5 minutes on a 1GHz pentiumr III
PC. Synthesis can be performed at frame rate. In our imple-
mentation we have used � between 50 and 150, n between
20 and 50 and k between 10 and 30.

5.1. Synthesis

Figures 3 to 4 show the behavior of the algorithm on a
representative set of experiments. In each case of Figure
4, on the first row we show a few images from the origi-
nal dataset, on the second row we show a few extrapolated
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Figure 2. The figure demonstrates that textures be-
longing to the same class tend to cluster together
in the sense of Kullback-Leibler. In particular for
this figure distances are computed amongst three re-
alizations of the river sequence and three of the
smoke sequence w.r.t. the former. The cluster of
graphs on top refer to “smoke w.r.t. river” type of
distances and the ones below refer to the “river w.r.t.
river” type. The K-L divergences are computed using
Monte-Carlo methods.

samples. Figure 3 shows the overall compression error as
a function of the dimension of the state space (top row) as
well as the prediction error as a function of the length of
the learning set (bottom row). For very regular sequences,
the prediction error decreases monotonically; however, for
highly complex scenes (e.g. a talking face, smoke), it is not
monotonic.

As explained in Section 4, we choose the model order n
and learn the parameters of the model. We do so for dif-
ferent lengths � of the same training sequence; in order to
cross-verify our models, we test the prediction error. For
each length, � , we predict the frame � + 1 (not part of the
training set) and compute the prediction error per pixel in
gray levels. The results are shown in Figure 1. The average
error per pixel decreases and becomes stable after the 80th

frame. Thus, the predicting power of the model grows with
the length of the training sequence and so does its ability to
capture the spatio-temporal dynamics. Furthermore, after
some “critical” length of the sequence, there is no improve-
ment in the predicting power: the spatio-temporal dynamics
has been captured and the use of a longer sequence does not
provide additional information.

5.2. Recognition
We use the Kullback-Leibler divergence I(�k�) to com-

pute the discrepancy between different dynamic textures
(represented by the probability density functions p1 and p2).

In Figure 2 we display the quantity I� (p1kp2), plotted
against the length � . We have taken different realizations
of the textures river and smoke and have computed the

distance of the former realizations against themselves and
the latter. It is evident that alike textures tend to cluster
together.

5.3. Compression
In this section we present a preliminary comparison be-

tween storage requirements for the estimated parameters
w.r.t. the original space requirement of the texture se-
quences, to get an estimate of the sequence comparison ca-
pabilities of our model.

Just as anecdotal evidence of the potential of this method
for video compression, we point out that the storage re-
quirement of the original dataset is O(m�), while for the
model stored is O(mn + n2 + nk + k�) where n << m
and � > n and k is the effective rank of Q̂. For the sake
of example, let m = 100 � 100 (the size of the original
image sequence) and � = 100 (its length). In order to store
the original sequence one would need 106 numbers. The
components of the model that are necessary to re-create an
approximation of the sequence are A;C;Q and the input
sequence v(t). Typical numbers that result in “acceptable”
lossy compression we have observed in our sequences are
n = 20 and k = 10. Therefore, one would need n2 num-
bers (for Â), m� n� n(n� 1)=2 (for Ĉ , counting the or-
thogonality constraints), n� k numbers for Q̂ and, finally,
k � � numbers for the input sequence v̂(t). For the partic-
ular choices above, in order to store a model of the original
sequence one would need about 2� 104 numbers.

Of course, a more systematic evaluation of the potential
of this model for compression is due. For very long se-
quences (large � ) , the algorithm presented above can be
modified in order to avoid computing the SVD of a very
large matrix. In particular, the model can be identified from
a shorter subsequence, and then the identified model can be
used to compute the input (in innovation form) using a sim-
ple linear Kalman filter. For details on how to do this see
[25].

6. Discussion
We have introduced a novel representation of dynamic

texture and associated algorithms to perform learning and
synthesis of sequences from training data. We have demon-
strated experimentally that even the simplest choice in the
model (a linear stochastic system driven by Gaussian white
noise) can capture complex visual phenomena. The algo-
rithm is simple to implement, efficient to learn and fast to
simulate. Some of these results may be useful for image
compression and for image-based rendering and synthesis
of image sequences.
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