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Abstract

This article proposes a general theory and methodology, called the minimaz entropy
principle, for building statistical models for images (or signals) in a variety of applications.
This principle consists of two parts. The first is the maximum entropy principle for feature
binding (or fusion): for a certain set of feature statistics, a distribution can be built to
bind these feature statistics together by maximizing the entropy over all distributions that
reproduce these feature statistics. The second part is the minimum entropy principle for
feature selection: among all plausible sets of feature statistics, we choose the set whose
maximum entropy distribution has the minimum entropy. Computational and inferential
issues in both parts are addressed, in particular, a feature pursuit procedure is proposed
for approximately selecting the optimal set of features. The model complexity is restricted
because of the sample variation in the observed feature statistics. The minimax entropy
principle is applied to texture modeling, where a novel Markov random field (MRF) model,
called FRAME (Filter, Random field, And Minimax Entropy), is derived, and encouraging
results are obtained in experiments on a variety of texture images. Relationship between

our theory and the mechanisms of neural computation is also discussed.
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1 Introduction

This article proposes a general theory and methodology, called the minimax entropy
principle, for statistical modeling in a variety of applications. This section intro-
duces the basic concepts of the minimax entropy principle after a discussion of the
motivation of our theory and a brief review of some relevant theories and methods

previously studied in the literature.

1.1 Motivation and goal

In a variety of disciplines ranging from computational vision, pattern recognition,
image coding, to psychophysics, an important theme is to pursue a probability model
to characterize a set of images (or signals) I. This is often posed as a statistical
inference problem: we assumed that there exists a joint probability distribution (or
density) f(I) over the image space, f(I) should concentrate on a subspace which
corresponds to the ensemble of images in the application, and the objective is to
estimate f(I) given a set of observed (or training) images.

f(I) plays a significant roles in the following areas:

1) Visual coding, where the goal is to take advantage of the regularity or re-
dundancy in the input images to produce a compact coding scheme. This involves
measuring the efficiency of coding schemes in terms of entropy (Watson 1987, Barlow
et al 1989), where the computation of the entropy and thus the choice of the optimal
coding schemes depend on the estimation of the underlying probability distribution
f(I). For example, two kinds of coding schemes are compared in the recent work
of Field (1994): the compact coding and the sparse coding. The former assumes
Gaussian distributions for f(I), whereas the latter assumes non-Gaussian ones.

2). Pattern recognition, neural networks, and statistical decision theory, where
one often needs to find a probability model f(I) for each category of images of

similar patterns. Thus an accurate estimation of f(I) is a key factor for successful



classification and recognition.

3) Computational vision, where f(I) is often adopted as a prior model in terms
of Bayesian theory, and it provides a language for visual computation ranging from
images segmentation to scene understanding (Zhu 1996). For example, in image
restoration and surface reconstruction (Geman and Geman 1984, Blake and Zis-
serman 1987), a simple model of f(I) should embodies the common features and
statistics of natural looking images, for instance, in natural images adjacent pixels
have similar intensity values, so that it will bias a vision algorithm against undesir-
able features such as noises and blurrings.

4) Texture modeling, where the objective is to estimate f(I) by a probability
model p(I) for each set of texture images which have perceptually similar texture
appearances. p(I) is not only important for texture analysis such as texture seg-
mentation and texture classification, but also plays a role in texture synthesis since
texture images can be synthesized by drawing samples from p(I). Furthermore, find-
ing simple distributions to characterize textures helps us understand the mechanisms
of human texture perception (Julesz 1995).

However, making inference about f(I) is much more challenging than many of
the learning problems in neural networks (Dayan et al., 1995, Xu 1995) for the
following reasons.

Firstly, the dimension of the image space is overwhelmingly large compared with
the number of available training examples. In texture modeling, for instance, the
size of images is often about 200 x 200 pixels, and thus the probability distribution is
a function of 40, 000 variables, whereas we have access to only one or a few training
images. This make it inappropriate to use non-parametric inference methods, such
as kernel methods, radial basis functions (see Ripley 1996) and mixture of Gaussian
models (Jordan and Jacobs 1994).

Secondly, f(I) is often far from being Gaussian, therefore some popular dimen-

sion reduction techniques, such as the principal component analysis (Jolliffe 1986),
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Figure 1: a. The histogram of intensity difference at adjacent pixels and Gaussian

curve (dashed) of same mean and variance in domain [—15,15]. b. Histogram of the
filtered texton image (solid curve) and histogram of a filtered noise image (dotted

curve).

and spectral analysis (Priestley 1981), do not appear to be directly applicable. As an
illustration of the non-Gaussian property, figure (1.a) shows the empirical marginal
distribution (or histogram) of the intensity differences of horizontally adjacent pix-
els of some natural images (Zhu and Mumford 1995). As a comparison, the Gaus-
sian distribution with the same mean and variance is plotted as dashed curve in
figure (1.a). Similar non-Gaussian properties are also observed in Field (1994). An-
other example is shown in figure (1.b), where the solid curve is the histogram of F I
with I being a texton image shown in figure (8.a), and F' is a filter with the same
texton (see section (3.5) for details). It is clear that the solid curve is far from being
Gaussian, and as a comparison, the dotted curve in figure (1.b) is the histogram of
F %1 with I being a white noise image.

A key issue in building a statistical model is the balance between generality and
simplicity — the model should include rich structures to adequately describe real
world images and should be capable of modeling complexities due to high dimension-

ality and non-Gaussian property, and at the same time, it should be simple enough



to be computationally feasible, and to give simple explanation to what we observe.

To reduce complexity, it is often necessary to impose structures on the distribution.

1.2 Previous methods

In the past there have been mainly two methods adopted in applications.

The first method adopts some parametric Markov random field (MRF) models
in the forms of Gibbs distributions. For example, the general smoothness models
in image restoration (Geman and Geman 1984, Mumford and Shah 1989), and the
conditional auto-regression models in texture modeling (Besag 1973, Cross and Jain
1983). This method involves only a small number of parameters, and thus constructs
concise distributions for images. However, they do not achieve adequate generality
for the following reasons. First, these MRF models can only afford small cliques,
otherwise the number of parameters will explode, but these small cliques can hardly
capture image features at relatively large scales. Second, the potential functions are
of very limited and prespecified forms, whereas in practice it is often desirable that
the forms of the distributions should be determined or learned from the observed
images.

The second method is widely used in visual coding and image reconstruction,
where the high dimensionality problem is avoided by representing the images with
a relatively small set of feature statistics, and the latter are usually extracted by a
set of well-selected filters. Examples of filters include the frequency and orientation
selective Gabor filters (Daugman, 1985) designed as a model for cells in mammalian
visual cortex, and some wavelet pyramids based on various coding criteria (Mallat
1989, Simoncelli and Adelson 1990, Coifman and Wickerhauser 1992, Donoho and
Johnstone 1994). The feature statistics extracted by a certain filter is usually the
overall histogram of filtered images. These histograms are used for pattern classifi-
cation, recognition, and visual coding (Watson 1987, Donoho and Johnstone 1994).

Despite the excellent performances of this method, there are two major problems



yet to be solved. The first is the feature binding or feature fusion problem — given
a set of filters and their histograms, how to integrate them into a single probability
distribution. This problem becomes much more difficult if the filters used are not
all linear and are not independent of each other. The second problem is feature
selection — for a given model complexity how to choose a set of filters or features

to best characterize the images being modeled.

1.3 Ouwur theory and methodology

In this paper, a minimax entropy principle is proposed for building statistical models,
and it provides a new strategy to balance between model generality and model
simplicity by two seemingly contrary criteria — maximizing entropy and minimizing
entropy.

(I). The maximum entropy principle (Jaynes 1957). Without loss of generality,
any features of an image can be expressed as ¢(®(I), where a = 1,2, ..., K is the in-
dex of the features and ¢(®() can be vector valued functions of the image intensities.
The statistic of the feature ¢(®)(I) is E[¢(*)(I)], which is the expectation of ¢(*)(I)
with respect to f(I) and can estimated by the sample mean of the feature computed
from the training images. Then a model p(I) is constructed such that it can re-
produce the feature statistics as observed, i.e., E,[¢®(I)] = Ef[¢¥(I)], for a =
1,2, ..., K. Among all model p(I) satisfying such constraints, the maximum entropy
principle favors the simplest one in the sense that it has the maximum entropy.
Since entropy is a measure of randomness, a maximum entropy (ME) model p(I) is
considered as the simplest fusion or binding of the features and their statistics.

(IT). The minimum entropy principle. The ME distribution p(I) constructed in
(I) depends on the features that we selected, and the goodness of p(I) is measured
by the Kullback-Leibler divergence from f(I) to p(I) (Kullback and Leibler 1951).
As we will show in the next section, this divergence is, up to a constant, equal to

the entropy of p(I), thus to estimate f(I) closely, we need to minimize the entropy



of the ME distribution p(I), which means that we should use as many features as
possible to specify p(I). In this sense a minimum entropy principle favors model
generality. In cases when the model complexity or the number of features K is fixed
for computational reasons, the minimum entropy principle also provides a criterion
for selecting the features which best characterize f(I).

Computational procedures are proposed for parameter estimation and feature
selection, and model complexity is studied in the presence of sample variations of
feature statistics.

As an example of application, the minimax entropy principle is applied to texture
modeling, where the features are extracted by filters that are selected from a general
filter bank, and the feature statistics are the empirical marginal distributions (usu-
ally further reduced to the histograms) of the filtered images. The resulting model,
called FRAME (Filters, Random fields And Minimaz Entropy), is a new class of
MRF model. Compared with previous MRF models, the FRAME model employs
a much more enriched vocabulary and hence enjoys a much stronger descriptive
ability, and at the same time, the model complexity is still under check because
only a small set of filters is used when modeling a certain texture. Texture images
are synthesized by drawing samples from the estimated models, and the correctness
of estimated models are thus verified by checking whether the synthesized texture
images have similar visual appearances to the observed images.

The rest of the paper is arranged as follows. Section (2) is devoted to a formal
study of the minimax entropy principle, where a greedy algorithm for feature se-
lection is proposed. Section (3) applies the minimax entropy principle to texture
modeling. Section (3.5) consists of experiments of modeling a variety of textures.

Finally section (4) concludes with a brief discussion.



2 The minimax entropy principle

To fix notation, let I be an image defined on a domain D (e.g., D can be a N x N
lattice), where for each point ¢ € D, I(¢)) € L, which is an interval on the real line
or a set of integers. It is assumed that the observed images {I*,i = 1,..., M} are
a random sample from a probability distribution (or density) f(I) defined on the
image space £P!, where |D| is the size of the image domain. The objective is to

estimate f(I) based on the observed images.

2.1 The maximum entropy principle

At the initial stage of studying the regularity and variability of the observed images
1%, 4§ = 1,2,..., M, one often starts from exploring the essential features that
are characteristic of the observations. Without loss of generality, such features are
defined as ¢(®) (I), where a = 1,2, ..., K is the index of features, and ¢(® (I) can be a
vector-valued function of the intensities of image I. The statistics of these features

are estimated by the sample means,

,uobs —ZQS I"bs, fora=1,.. K.

If the large sample effect takes place (which is usually a necessary condition for
modeling), then the sample averages {/z((,?,‘g,oz = 1,..., K} make reasonable esti-
mates for the expectations {Ef[¢¥(I)],a = 1,..., K}, where E; denotes the ex-
pectation with respect to f(I). We call {,uobs, a =1,..., K} the observed statistics,
and {Ef[¢¥)(I)],a = 1,..., K} the expected statistics of f(I).

To approximate f(I), a probability model p(I) is restricted to reproduce the
observed statistics, i.e., B,[¢®(I)] = u{?) for a =1,.., K. Let

Q={p(D) : B(D)]=pf), a=1,..,K}

be the set of distributions that reproduce the observed features, then we need to

select a p(I) € Q provided that Q # 0.



As far as the observed feature statistics {,us:s), a =1, ..., K} are concerned, all the
distributions in {2 explain them equally well, and they are not distinguishable from
f(I). The maximum entropy (ME) principle (Jaynes 1957) suggests that we should
choose p(I) that achieves the maximum entropy to obtain the purest and simplest
fusion of the observed features and their statistics. The underlying philosophy is
that while p(I) satisfies the constraints along some dimensions, it should be made
as random (or smooth) as possible in other unconstrained dimensions, i.e., p(I)
should represent information no more than that is available and in this sense, the
ME principle is often called the minimum prejudice principle.

Thus the problem becomes the following constrained optimization problem,

p(1) = argmax{~ [ p(1)logp(T)dL}, o
subject to B¢ (1)) = / O (DpD)dl = 42, a=1,.. K,
and / p(D)dI = 1.

By an application of the Lagrange multipliers, it is well-known that the solution for

p(I) has the following Gibbs distribution form:

1 K
pLA) = = exp{— > <A@, ¢ (1) >}, (2)
70 P X
where A\ is a vector of the same dimension as ¢(®)(I), < -, - > denotes inner

product, A = (A, o = 1,..., K) is the parameter, and

Z(A) = / exp{— i <A@ pl@)(T) >1dT

is the partition function which normalizes p(I; A) into a probability distribution.
Equation (2) specifies a simple parametric model, and the parameter A is solved at

A which satisfies the constraints p(I; A) € €, i.e.,

B i@ @) = u), a=1,.. K. (3)



2.2 Estimation and computation

The A computed from equation (3) is actually the maximum likelihood estimate
(MLE) of A. Let L(A) = & M, log p(I?; A) be the log-likelihood function, then
it has the following properties.

e Property 1). %ﬁ—EaA)) = _%ai(za) - uffifs) p(LA) [¢(a |- :uobs7 Va.

92L(A a a !
e Property 2). 3258 — B0 0 [(6@)(T) — o) (@D(1) — ul))], Vo, B.
By gradient ascent, maximizing the log-likelihood gives the following equation

for solving A iteratively,

d\@
W = E [ ( )] - :uobs’ =1, ""Ka (4)

which converges to A. Equation (4) follows from property 1) of L(A). Property 2)
means that the Hessian matrix of L(A) is the covariance matrix (¢ (I), ..., U5)(I))
and thus is positive definite under the condition that a(¥ + %  4(®¢®) (1) = 0 =
al® =0 for a =0, ..., K, which is usually satisfied. So L(A) is strictly concave with
respect to A, and the solution for A uniquely exists.

At each step t of equation (4), the computation of Epra)[¢(®(I)] is in general
difficult, and we adopt the stochastic gradient method (Younes 1988) for approxi-
mation. For a fixed A, we synthesize some typical images {I;*", ¢ = 1,.., M'} by
drawing samples from p(I; A) using the Gibbs sampler (Geman and Geman 1984)
or other Markov chain Monte Carlo (MCMC) methods (see Winkler 1995), and

approximate Ep.a)[¢(®) (I)] by the sample means, i.e.,

L S5yl gm)
p(IA [¢( Z¢ I v :usyzz(A)’ a = ]-a “eey K. (5)
Therefore the iterative equation for computing A becomes
d\(@) N
= A@(A) = g (A) — ), a=1,. K. (6)

For the accuracy of the approximation in equation (5), the sample size M’ should
be large enough. The data flow for parameter estimation is shown in figure (2), and

the details of the algorithm can be found in (Zhu, Wu and Mumford 1996).
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2.3 The minimum entropy principle

For now, let’s suppose that the sample size M is large enough so that the expected
feature statistics {Ef[¢®)(I),a = 1, ..., K} can be estimated exactly by neglecting
the estimation errors in the observed statistics {uf)‘;s),a =1,..,K}. Then an ME
distribution p(I; A*) is computed so that it reproduces the expected feature statistics,
ie.,
Byuan) 6 (0] = B 6@ D)), a=1,..K.
Since our goal is to make an inference about the underlying distribution f(I), the
goodness of this model can be measured by the Kullback-Leibler (Kullback and
Leibler 1951) divergence from f(I) to p(I; A*),
@

p(I; A%)
For KL(f,p(I;A*)), we have the following conclusion.

KL(f,p(A%)) = [ f(D)log —==<dl = Eyllog f(1)] - Ey[log p(T; A")]

Theorem 1 In the above notation, K L(f, p(I; A*)) = entropy(p(I; A*))—entropy(f(I)).

See appendix for a proof.

In the above result, entropy(f(I)) is fixed, and the entropy of p(I; A*) de-
pends on the set of features {¢®(I), a = 1,2,....} included in the distribution
p(I; A*). Thus minimizing K L(f, p(I; A*)) is equivalent to minimizing the entropy
of p(I; A*). We call this the minimum entropy principle, and it has the following
intuitive interpretations. First, in information theory, p(I; A*) defines an optimal
coding scheme with each I assigned a coding length — log p(I; A*) (Shannon 1948),
and entropy(p(I; A*)) = E,[—logp(I; A*)] stands for the expected coding length.
Therefore, a minimum entropy principle chooses the coding system with the short-
est average coding length. Second, in statistics, entropy(p(I; A*)) is the negative
Kullback-Leibler divergence, up to a constant, from p(I; A*) to a uniform distribu-
tion, with the latter being a model for random noise images. To minimizing the
entropy, p(I; A*) should be made as “orderly” or “regular” as possible. The phi-

losophy of entropy minimization is that we should make use of all the information

10



or statistics observable to specify p(I; A). Unlike the maximum entropy principle
which favors simplicity, the minimum entropy principle emphasizes generality of the
model.

However, to keep the model complexity under check, one often needs to fix the
number of features K. To be precise, let B be the set of all possible features, and
S C B an arbitrary set of K features. Therefore entropy minimization provides a

criterion for choosing the optimal set of features, i.e.,
S* = arg |§I‘11111{ entropy(ps(I; A¥)), (7)
where pg(I; A*) denotes the fitted model using features in S. Let

Qs = {p(1) : E,[¢"(D)] = Ef[¢!)(T)], Vo' € S}

be the set of probability distributions which can reproduce the expected features

statistics in S, then according to the maximum entropy principle,
ps(I; A*) = argmax entropy(p). (8)
pEQs
Combining (7) and (8), we have

S* = i t ) 9
arg min {max entropy(p)} (9)
We call equation (9) the minimaz entropy principle, and we have demonstrated that

this principle is consistent with the goal of modeling, i.e., finding the best estimate

for the underlying distribution f(I).

2.4 Feature pursuit

Enumerating all possible sets of features S C B and comparing their entropies
is certainly impractical. Instead, we propose a greedy procedure to pursue the

features in the following way.! Start from an empty feature set () and p(I) a uniform

'We use the word pursuit to represent the stepwise method and distinguish it from selection.
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distribution, add to the model one feature at a time such that the added feature
leads to the maximum decrease in the entropy of ME model p(I; A*), and keep doing
this until the entropy decrease is smaller than a certain value. To be precise, let
S = {qb(o‘), a =1,..., K} be the currently selected set of features, and let

1
Z(h)

p=pllA) = S em(= 3 <A@, 6010 ) (10

be the ME distribution fitted to f(I) (we omit * from A for notational simplicity
in this subsection). For any new feature ¢(®) € B/S, let S, = SU {¢®)} be a new

feature set. The new ME distribution becomes

K
py =pL;AL) = exp{— Y < AP gD > - <2\P 9O)(1) >} (11)
a=1

Z(Ay)

In general, )\Sf‘) £\ fora=1,.., K.
According to the above discussion, we choose feature ¢(5+1) to maximize the

entropy decrease over the remaining features, i.e.,

(K+1) _ G
) arg max (@),

where

d(¢)) = KL(f,p) — KL(f,p+) = entropy(p) — entropy(p;) = KL(p,p)

is the entropy decrease, which can be expressed in a quadratic form by the second-

order Taylor expansion.

Proposition 1 In the above notation,

a6 = (B D] - B M) VA BBIM] - BBO@), (12

where V,; is the conditional variance of #B) (1) given ¢ (1),a = 1,2, ..., K under a

distribution p whose expected feature statistics are between those of p and p..

See appendix for proof and discussion.
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According to the above proposition, we can use (12) to drive the feature pur-
suit procedure, which has the following intuitive interpretation. Under the current
model p, for any new feature ¢, E,[#()(I)] is what we observe from the ensemble
governed by p. If E,[¢P)(I)] is close to E¢[¢)(I)], then adding this new feature
to p(I; A) leads to little improvement in estimating f(I). So we should look for the
most salient new feature ¢ such that E;[¢()(I)] is very different from E,[¢)(I)]
and including such ¢®) makes the new model p (I; A,) a better approximation to
f(I). The saliency of the new feature is measured by d((,/J(B)) which is the discrep-
ancy between E,[¢®)(I)] and E;[¢P)(I)] scaled by Vs, where V is the variance of
the new feature compensated for dependence of the new feature on the old ones.

Practically we can approximately compute V), by replacing p by the current
model p. Furthermore, when the feature statistics E¢[¢#)(I)] € B all have the same
scale, such as the histograms we will use for texture modeling in the next section,

we may further simplify the measure of saliency by [,-norm distance, i.e.,

(@) = || E,[¢%)(D)] — B¢ (T)]|lp-

In practice, this is estimated by

AP ~ ||15) — p)l,

(8)

ops and 1) are respectively the sample statistics averaged over the observed

where p son

images and the synthesized images as discussed in equation (6). This measure is
used with p =1 in the texture experiments in the next section.
As a summary, figure (2) illustrates the data flow for both the computation of

the model and the pursuit of features.

2.5 Estimation error and model complexity

This subsection concerns corrections of the minimum entropy principle and feature
pursuit procedure for the presence of the estimation error in the training images.

The reader who is not interested in the technical details may skip this subsection.

13
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In previous subsections, for a set of features {¢(®,a = 1, ..., K}, we have stud-
ied two ME distributions. One is p(I; A), which reproduces the observed feature

statistics, i.e.,
Byuz)8@ (D] = p), for a=1,..,K,
and the other is p(I; A*), which reproduces the expected feature statistics, i.e.,
Epaan [0 @) = Ef¢@@)], for a=1,.., K.

In the previous derivations, we assume that {E;[¢(®)(I)],a = 1,..., K} can be esti-
mated exactly by the observed statistics {,uggz, a = 1,..., K}, which is not true in
practice since only a finite sample is observed. Taking the estimation errors into
account, we need to correct the minimum entropy principle and the feature pursuit
procedure.

First, let’s consider the minimum entropy principle, which relates the Kullback-
Leibler divergence K L(f,p(I;A)) to the entropy of the model p(I; A) for A = A*.

Since in practice A is estimated at A, the goodness of the model should be measured

~

by KL(f,p(I; A)) instead of KL(f,p(I; A*)), and it can be shown that

Proposition 2 In the above notation,
KL(f,p(T; A)) = KL(f,p(T; A*)) + K L(p(T; A*), p(T; A)). (13)

See appendix for proof.

~

That is, because of the estimation error, p(I; A) does not come as close to f(I)
as p(I; A*) does, and the extra noise is measured by K L(p(I; A*),p(I;A)), which
increases with model complexity. In fact, A in model p(I; A) is a random variable
depending on the random sample {I* i =1, ..., M}, so is KL(f, p(I; A)). Let E,
stands for the expectation with respect to the training images, applying Es to both

sides of equation (13), we have,

Eo[KL(f,p(I; A))]

15



= KL(f,p(T; A)) + Eops[K L(p(T; A*), p(T; A))]
= entropy(p(T; A*)) — entropy(f) + Eas[KL(p(T; A*), p(T A))].  (14)
The following proposition relates entropy(p(I; A*)) to entropy(p(I; f\))

Proposition 3 In the above notation,
entropy(p(L; A*)) = Eopslentropy(p(T; A))] + Eos[K L(p(L; A), p(I; A%)].  (15)

See appendix for proof.
According to Proposition 3, the entropy of p(I; A) is on average smaller than the
entropy of p(I; A*), this is because A is estimated from each specific training data,

and hence p(I; A) does better job than p(I; A*) in fitting the training data.

Combining equation (14) and equation (15), we have

Eows[KL(f, p(I; A))] = Eops[entropy(p(I; A))] — entropy(f) + Ci + Cy (16)
where the two correction terms are
Cy = Eus[KL(p(L; A*),p(;A))], Oy = Eus[KL(p(T; A), p(T; A%))].
Following Ripley (1996, Section 2.2), we have
1 —1 ~3/2
Ci=0Cy= mtrace[VfV;,* ]+ 0(M3/?)

where V; = Var[(¢M (1), ..., g¥)(T))], and Vpe = Varymas (9P (T), ..., F)(D))]. V5
and Vp+ can be estimated from the observed images and synthesized images respec-
tively. If V; =~ Vp+, then C;,Cy are approximately the number of free parameters
in the model, i.e., the model complexity, divided by 2M. Therefore, we have the
following form of the Akaike information criterion (Akaike 1977),

Eous[KL(f, p(T; A))] ~ Eqps|entropy(p(I; A))] — entropy(f) + %trace(VfV;,*l),

where we drop the higher order term O(M~%/2). Equation (17) leads to the following

correction of the minimum entropy principle.

" 1
S* = arg msln{ entropy(ps(I; A)) + Mtrace(VfVil) + (17)

16



which chooses the optimal set of features over all possible S, where the decrease
in entropy by including more features is balanced by the second term which mea-
sures the model complexity. This provides another reason for restricting the model
complexity besides scientific parsimony and computational efficiency. Another per-
spective for this issue is the minimum description length (MDL) principle (Rissanen
1989).

This corrected version of minimum entropy principle leads to a corrected version
of the feature pursuit procedure, where at each step, the decrease in entropy(p(I; /A\))
by introducing a new feature is penalized by the increase in model complexity. The
entropy decrease can still be approximated by the quadratic form or even more
simply the /,-norm distance, and the increase in model complexity can be roughly
measured by the number of free parameters brought by the new feature. The feature
pursuit procedure stops as soon as the entropy decrease does not compensate for
the increase in model complexity.

When I is a homogeneous image, the features ¢(® themselves can often be ex-
pressed as the average of local features 1(®) over all pixels, where 1(® is a function
defined on the local windows W centered at v € D, i.e.,

@) Z¢ (Iwis), a=1,.., K.
\DI veD
Therefore, even if M is small, large sample effects can still take place when the image
is large, and asymptotic studies can also be conducted for this situation. However,
this is often complicated by phase transition, and we shall not pursue it in this

article.

3 Application to texture modeling

This section applies the minimax entropy principle to texture modeling.
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3.1 The general problem

Texture is an important characteristic of surface property in visual scenes and is a
power cue in visual perception. A general model for textures has long been sought for
in both computational vision and psychology, but such a model is still far from being
achieved because of the vast diversity of the physical and chemical processes that
generate textures, and the large number of attributes that need to be considered. As
an illustration of the diversity of textures, figure (3) displays some typical texture

images.
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Figure 3: Some typical texture images.

Existing models for textures can be roughly classified into three categories. 1)
Dynamic equations or replacement rules, which simulate specific physical and chem-
ical processes to generate textures (Witkin and Kass 1991, Picard 1996). 2) The
kth-order statistics model for texture perception, i.e. the famous Julesz’s conjecture
(Julesz 1962). 3) Markov random field models. For a discussion of previous models
and methods, the reader is referred to (Zhu, Wu, and Mumford 1996).

In our method, a texture is considered as an ensemble of images of similar texture

appearances, and this texture ensemble is governed by a probability distribution
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f(I), where I is defined on a random field D as discussed in section (2). The
objective of texture modeling is to estimate f(I) by building a model p(I; A) from
a set of observed images. Model p(I; A) should be consistent with human texture
perception in the sense that if p(I; A) estimates f(I) closely, then the sample images
from p(I; A) should be perceptually similar to the training images.

3.2 Choosing features and their statistics

To apply the minimax entropy principle to texture modeling, the first step is to
choose features and their statistics, i.e. ¢(®(I) and ,uc(flfs) a=12,., K.

Without loss of generality, features of texture images can be extracted by “filters”
F(©@ where F(® can be a linear or nonlinear function of the intensities of the image
I. Let I(®)(%) denote the filter response at point 7 € D, i.e., I¥(¥) = F@) (I 5) is
a function depending on the intensities inside window W centered at ¥, we compute
the histogram of the filtered image I(*) as the features of I. Therefore in texture
modeling the notation ¢(®)(I) is replaced by

H@(I, 2) Zé(z—l 7)), a=12.,K, zeR
| dep
where 6() is the Dirac point mass function concentrated at 0. Correspondingly the

(a)

ops are defined as

observed statistics u
pz) = = ZH (1% 2 a=1,2 .. K.

H©)(I, z) and u((,';z (2) are, in theory, continuous functions of z, 2 but in practice,
they are approximated by piecewise constant functions of a finite number L of bins,
and therefore H®(I) and p2) are taken as L (e.g., L = 32 dimensional vectors in

the rest of the paper.

2Compared with the definitions of ¢(®)(I) and u b), H()(I,2) and ,u obs (z) are considered as

vectors of infinite dimensions.
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As the sample size M is large or the images 1% are large so that the large sample
(@)

s (2) Will be a close estimate of the marginal

effect takes place by ergodicity, then y
distributions of f(I):

F@(2) = Bf[H(1, 2)].

There are two motivations for us to choose the histograms of filtered images as

feature statistics. The first comes from the following mathematical result.

Theorem 2 Let f(I) be the continuous probability distribution of an N X N texture
image, Then f(I) is determined by the marginal distributions f(®(z).

See appendix for a proof.

Therefore if we choose ugzg(z) ~ f@)(2) = Ef[H)(I, 2)] as the observed statis-
tics, and p(I; A) is an ME distribution so that Epga)[H® (I)] = E;[H®(I)] for all
possible a, then p(I; A) = f(I). But this will involve uncountable number of filters
F(® and each filter is as big as the image I.

However, recent psychophysical research on human texture perception suggests
that two homogeneous textures are often difficult to discriminate when they pro-
duce similar marginal distributions of responses from a bank of filters (Bergen and
Adelson 1991, Chubb and Landy 1991). This means that it is plausible to ignore
some statistical properties of f(I) which are not important for human texture dis-
crimination.

Motivated by the psychophysical research, we make the following assumptions
to limit the number of filters and the window size of each filter for computational
reason, though these assumptions are not necessary conditions for our theory to
hold true. 1). We limit our model to homogeneous textures, thus f(I) is stationary
with respect to location . 2). All features which concern texture perception can
be captured by “locally” supported filters. By “locally” we mean that the sizes of
filters should be much smaller than the size of the image. For example, the size of

image is 256 x 256 pixels, and the window sizes of filters are limited to be less than
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33 x 33 pixels. 3). Only a finite set of filters are used. Although we often have
access to only one or a few training texture images, assumption 1) and 2) enable
ergodicity takes effects, so that the observed histograms of the filter images make
reasonable estimates for the marginal distributions of f(I).

Substituting H® (I) for ¢(*(I) in equation (2), we obtain

p(T;A) = Z(lA) exp{— i <A@ F@(T) ), (18)

which we call the FRAME (Filter, Random field, And Minimax Entropy) model.
Here the angle brackets indicates that we are taking a sum over bin z: i.e., <
M) HE(T) >= 3, A H(T, 2).

The computation of the parameters A and the selection of filters F(® proceed as

described in the last section. Detailed analysis of the texture modeling algorithm is

referred to (Zhu, Wu, Mumford 1996).

3.3 FRAME: a new class of MRF models

In this section, we derive a continuous form for the FRAME model in equation (18),
and compare it with existing MRF models.

Since the histograms of an image are continuous functions, therefore the con-
straint in ME optimization problem is the following:

1
E,,(I;A)[w' 3 6(z - 19@)] = u2)(2), VzeR,VieD, Va. (19)
veED

By an application of Lagrange multipliers, maximizing the entropy of p(I) under the

above constraints gives,

PEA) = o en(- Sy [ |D|Zéz—1<a ())dz)

a= 1vE’D
1
= exp AT 20
2 P Z% N 0

Since z is a continuous variable, there are infinite number of constraints, therefore

the Lagrange multipliers A = (A(®)(),a = 1, ..., K) take the form as one-dimensional
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potential functions. More specifically when the filters are linear, I(®) (%) = F(®)x1(%),

and we can rewrite equation (20) as,

p(IA) = i expl= 3 Y AO(FD 4 17} (21
(A) a1'7

Clearly, equation (20) and (21) are Markov Random Field (MRF) models, or
equivalently, Gibbs distributions. But unlike the previous MRF models, the po-
tentials are built directly on the filter response instead of cliques, and the forms
of the potential functions A(®() are learnt from the training images, so they can
incorporate high order statistics and thus model non-Gaussian properties of images.
The FRAME model has much stronger expressive power than existing MRF models
which are based on pair cliques, and at the same time, the complexity of the model
is under check since every filter introduces the same number of L parameters regard-
less of its window size, which enables us to explore structures at large scales (e.g.,
the 33 x 33 pixel filters in modeling the fabric texture in section (3.5)). It is easy to
show that existing MRF models for texture are special cases of the FRAME model
with the filters and their potential functions specified. Detailed comparison between

the FRAME model and the MRF models are referred to (Zhu, Wu, Mumford 1996).

3.4 Designing a filter bank

To describe a wide variety of textures, we need to specify a general filter bank, from
which filters can be selected when describing a certain texture. This filter bank
serves as the “vocabulary”, and the selected filters can be considered as “words”,
by analogy to language. We shall not discuss the rules for constructing an optimal
filter bank, instead, we use the following five kinds of filters motivated by the multi-
channel filtering mechanism discovered and generally accepted in neurophysiology
(Silverman et al. 1989).
1) The intensity filter, i.e., §(), for capturing the DC component.

2) The Laplacian of Gaussian filters, which are isotropic center-surrounded, and
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are often used to model retinal ganglion cells. The impulse response functions are

of the following form

7z2+y2

LG(z,y | T) = const - (2> +y*> = T*e 72, (22)

where T = /20 controls the scales of the filters. We choose eight scales with
T =+/2,1,2,3,4,5,6. The filter with scale T is denoted by LG(T).
3) The Gabor filters, which are models for the frequency and orientation sensitive

simple cells. The impulse response functions are of the following form

_1_

Gabor(m’ Y | T’ 9) = const - e212 (4(wc050+ysin0)2+(—zsin0+yco.90)2)e_iz%(mcosa_'_ysino)’ (23)

where T controls the scales and 6 controls the orientations. We choose 6 scales
T = 2,4,6,8,10,12 and 6 orientations 6 = 0°,30°,60°,90°,120°,150°. One can
notice that these filters are not nearly orthogonal to each other, so there is overlap
among the information captured by them. The sine and cosine components are
denoted by Gsin(T,6) and Gcos(T, 6) respectively.

4) The non-linear Gabor filters, which are models for the complex cells, and
responses from which are the powers of the responses from a pair of Gabor filters,
| Gabor(z,y | T,0)* I |?, which, in fact, is the local spectrum of I at (z,y) smoothed
by a Gaussian function, and therefore such filters serve as local spectrum analyzers.

5) Some specially designed filters for texton primitives, see subsection (3.5).

3.5 Experiments of texture modeling

This section describes the modeling of natural textures using the algorithm studied
in section (2), and the first texture image is described in details in order to illustrate
how the filter pursuit algorithm works.

Figure (4.a) is an observed image of animal fur. We starts from the uniform
white noise image, which is displayed in figure (4.b). Then the algorithm picks up
the first filter, which is a 5 X 5 pixels Laplacian of Gaussian filter with scale T' = 1.0,
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and which has the largest entropy decrease (d(¢®)) = 0.611) among all the filters
in the filters bank. Then a texture image is synthesized by matching the histogram
of the filter response and is shown in figure (4.c).

Comparing figure (4.c) with figure (4.b), it is evident that this filter captures
local smoothness features of the observed texture image. Continuing the algorithm,
5 more filters are sequentially added, which are, respectively, 2) Gcos(6.0,120°), 3)
Gcos(2.0,30°), 4) Geos(12,60°), 5) Geos(10.0,120°), and 6) intensity &(), each of
which captures features at various scales and orientations. The d(¢(#)), i.e., the mea-
sure of entropy decrease for these filters are respectively 0.424,0.207,0.132,0.157, 0.059
and the texture images synthesized using 2, 3,6 filters are displayed in figure (4.d,
4.e, 4.f). Obviously, with more filters added, the synthesized texture image gets
closer to the observed one. It appears that the filters chosen in later steps make
less contributions to p(I), and thus confirms our early assumption that the marginal
distributions of a small number of filtered images should be adequate for capturing
the essential features of the underlying probability distribution f(I).

Figure (5.a) is the scene of mud ground with scattered animal footprints, which
are filled with water and thus get brighter. This texture image shows sparse features.
Figure (5.b) is the synthesized texture image using 5 filters.

Figure (6.a) is an image taken from the skin of a cheetah, and figure (6.b) displays
the synthesized texture using 6 filters. One may notice that the original observed
texture image is not homogeneous, since the shapes of the blobs vary systematically
with spatial locations, and the left upper corner is darker than the right lower one.
The synthesized texture, shown in figure (6.b), also has elongated blobs introduced
by different filters, but the bright pixels seem to spread uniformly across the image
due to the effect of entropy maximization.

Figure (7.a) shows a texture of fabric which has clear periods along both horizon-
tal and vertical directions. We want to use this texture to test the use of non-linear

filters, so we choose 2 spectrum analyzers, one in the horizontal direction, the other
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i

Figure 4: Synthesis of the fur texture. a. the observed image, b),c),d),e),f) are the

synthesized images using 0, 1, 2, 3, 6 filters respectively.
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Figure 5: a. the observed texture—-mud, b, the synthesized one using 5 filters
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Figure 6: a) the observed texture image — cheetah blob. b) the synthesized one
using 6 filters
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Figure 7: a. the input image of fabric, b. the synthesized image with 2 pairs of

Gabor filters plus the Laplacian of Gaussian filter. ¢,d two more images sampled at

different steps of the Gibbs sampler.
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in the vertical direction with their periods tuned to the periods of the texture, and
the window sizes of the filters are 33 x 33 pixels. We also use the intensity filter
6() and a Laplacian of Gaussian filter LG(v/2/2) with window size 3 x 3 pixels,
to take care of the intensity histogram and the smoothness features. Three syn-
thesized texture images are displayed in figure (7.b, 7.c, 7.d) at different sampling
steps. This experiment shows that once the Markov chain becomes stationary or
gets close to stationary, the sampled images from p(I) will always have perceptually

similar appearances but with different details.
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Figure 8: Two typical texton images of 256 x 256 pixels. a) circle, b) cross, c). and
d) are the two synthesized images of 128 x 128 pixels.

Figure (8.a) and (8.b) show two special binary texture images formed from iden-
tical textons (circles and crosses), which are studied extensively by psychologists for

the purpose of understanding human texture perception. Our interest here is to see
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whether this class of textures can still be modeled by FRAME. We use the linear
filter whose impulse response function is a 15 x 15 pixels mask with the correspond-
ing primitive at the center. With this filter selected, the FRAME algorithm starts
from a uniform white noise image, and gradually matches the histogram of the filter
responses from the simulated image to the histogram obtained from the observed
image. However, with an examination of figure (1.b), which plots the histograms
obtained from the observed image (solid curve) and that from a uniform noise im-
age (dotted curve), one can observe that there are many isolated peaks in observed
histogram, which set up “potential wells”, so that it is very unlikely to change a
filter response from one peak to another during the FRAME algorithm which flips
one pixel at a time, and therefore it will take a long time for the algorithm to match
the histograms. In these experiments, we proposed an annealing approach which
smooth the histograms and matching the smoothed histogram first and gradually
the target histogram becomes less and less smoothed. Some details of this heuristics
is referred to (Zhu,Wu,Mumford 1996). Figure (8.c), and (8.d) are two synthesized

images.

3.6 More on texture modeling

There are various artificial categories for textures with respect to various attributes,
such as Fourier and non-Fourier, deterministic and stochastic, and macro- and micro-
textures. FRAME erases these artificial boundaries and characterizes them in a
unified model with different filters and parameter values. It has been well recognized
that the traditional MRF models, as special cases of FRAME, can be used to model
stochastic, non-Fourier, micro-textures. From the textures we synthesized, it is
evident that FRAME is also capable of modeling periodic and deterministic textures
(fabric), textures with large-scale elements (fur and cheetah blob), and textures
with distinguishable textons (circles and cross bars), thus FRAME realizes the full
potential of MRF models.
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Our method for texture modeling was inspired by and bears some similarities to
the recent work by Heeger and Bergen (1995) on texture synthesis, where many nat-
ural looking texture images are successfully synthesized by matching the histograms
of filter responses organized in the form of a pyramid. Compared with Heeger and
Bergen’s algorithm, the FRAME model has the following advantages. Firstly we
obtain a probability model p(I; A) instead of merely synthesizing texture images.
Secondly the Monte Carlo Markov chain for model estimation and texture sampling
is guaranteed to converge to a stationary process which follows the estimated dis-
tribution p(I; A) (Geman and Geman 1984), and the observed histograms can be
matched closely. Thirdly a theoretical proof is provided to show that if the marginal
distributions of filter responses for all linear filters under f(I) are matched, then we
eventually obtain the underlying model, i.e., p(I; A) = f(I). But the FRAME model
is computationally very expensive. Approaches for further facilitating the computa-
tion are yet to be developed, for more discussion in this aspect, the reader is referred

to (Zhu, Wu, and Mumford 1996).

Figure 9: Two challenging texture images.

Many textures seem still difficult to model, such as the two human synthesized
cloth textures shown in figure (9). It appears that synthesizing such textures requires
far more sophisticated or high-level features than those we have used in this work,

and these high-level features may correspond to high-level visual process such as
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the geometrical properties of object shape. In this paper, we choose filters from a
fixed set of filters, but in general it is not understood that how to design such set

of features or structures for an arbitrary applications.

4 Discussion

This paper proposes a minimax entropy principle for building probability models
in a variety of applications. Our theory answers two major questions. The first
is feature binding or feature fusion — how to integrate image features and their
statistics into a single joint probability distribution without limiting the forms of
the features. The second is feature selection — how to choose a set of features
to best characterize the observed images. Algorithms are proposed for parameter
estimation and stochastic simulation. A greedy algorithm is developed for feature
pursuit, and the model complexity is studied in the presence of sample variations.

The minimax entropy principle is applied to texture modeling where the feature
extracted from images are the empirical marginal distributions (or histograms) of
filtered images. A new MRF model- FRAME is derived, and the experiments
described in section (3.5) demonstrate that our method is capable of modeling a
wide variety of textures which are previously considered as belonging to different
categories. The results of texture modeling support the psychological experiments
which suggest that two texture images are often difficult to discriminate if they
produce similar empirical marginal distributions for filter responses from a bank of
filters (Bergen and Adelson 1991, Chubb and Landy 1991).

Our theory and methodology also contributes to possible image representing
strategy in our brain after a biologically-plausible Gabor filter analysis. An impor-
tant issue is whether the minimax entropy principle for model inference is ‘biolog-
ically plausible’ and might be considered a model for the method used by natural

intelligences in constructing models of classes of images. The maximum entropy
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phase of the algorithm, from a computational standpoint, consists mainly in approx-
imating the values of the Lagrange multipliers, which we have done by hill-climbing
with respect to log-likelihood. Specifically, we have used Monte Carlo methods to
sample our distributions and plugged the sampled statistics into the gradient of
log-likelihood. One of the authors has conjectured that feedback pathways in cortex
may serve the function of forming mental images on the basis of learned models of
the distribution on images (Mumford 1992). Such a mechanism might well sample
by Monte Carlo as in the algorithm in this paper. That theory further postulated
that cortex seeks out the ‘residuals’, the features of the observed image which are
different from those of the mental image. The present algorithm shows how such
residuals can be used to drive a learning process in which the Lagrange multipliers
are gradually improved to increase the log-likelihood. We would conjecture that
these Lagrange multipliers are stored as suitable synaptic weights in the higher vi-
sual area or in the top-down pathway. Given a) the massively parallel architecture,
b) the apparent stochastic component in neural firing and c¢) the huge amount of
observed images processed every day, the computational load of our algorithm may
not be excessive for cortical implementation.

The minimum entropy phase of our algorithm has some direct experimental
evidence in its favor. There has been extensive psychophysical experimentation on
the phenomenon of ‘pre-attentive’ texture discrimination. We propose that textures
that can be pre-attentively discriminated are exactly those for which suitable filters
have been incorporated into a minimum entropy cortical model and that the process
by which subjects can train themselves to pre-attentively discriminate new sets
of textures is exactly that of incorporating a new filter feature into the model.
Evidence that texture pairs which are not pre-attentively segmentable by naive
subjects become segmentable after practice has been reported by many groups, most
notably by Karni and Sagi (1991). The remarkable specificity of the reported texture

discrimination learning suggests that very specific new filters are incorporated into
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the cortical texture model, as in our theory.
Recently, the minimax entropy principle has been applied to model general nat-
ural images (Zhu and Mumford 1996). It is our hope that this work will simulate

future research efforts in this direction.

Appendix: mathematical details

1) Proof of Theorem 1: Since Eyr.a-)[¢(*)(I)] = Ef[¢)(I)], a=1,.., K.

Ej[logp(I;A*)] = —Ef[log Z(A")] Z Ef[< X ¢ (1) >],
a=1
= —log Z(A*) — Z<)\ (1)) >,
= —logZ(A*) — Z<A (A% [0 (T)] >

= Ep(I;A* [logp( aA*)] - _entropy(p(l; A*))a

and the result follows. O
2) Proof of Proposition 1: Let &(I) = (¢()(1),...,¢5)(I)). Clearly, E,[®(1)] =
E,, [®(I)] = Ef[®(I)]. Let &, = (3(I),¢\¥)(I)). By a Taylor expansion argument (Corol-

lary 4.4 of Kullback 1959, page 48), the entropy decrease is
d(¢¥)) = D(ps;p)

= %(Em [ ()] = Ep[@4 (D)) Vary[@4 (D] (Bp, [2+(T)] — Ep[@4 (1))

= %(Ef [0 @)] — B[0P @DV, (B7 6P (D) — B[P (D)),
where p’ is a distribution whose expected feature statistics are between those of p and
P+, Vi1 = Vary[d(T)], Vaz = Vary[¢¥)(T)], Vi = Covy[®(T), 6P)(T)], and V,; = Vay —
VlleﬁlVlg is the conditional variance. Hence the result follows. O
The conditional variance V; can also be interpreted as follows. Let C' = ~V; 'V,
and let ¢¥)(I) = ¢®)(I) + C'®(I) being the linear combination of ¢(8)(I) and &(I),
then under p’, it can be shown that gb(f)(l) is uncorrelated with ®(I), i.e., gb(f)(l) is an
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orthogonalization of ¢(3)(I) with respect to ®(I). Then we have Vy =Vary [ngS_ﬂ) (D], i.e.,
Vs is the variance of #®)(I) with its dependence on &(I) being eliminated.

3) Proof of Proposition 2: From the proof of Theorem 1, we know E¢[logp(I; A*)] =
Ep5;a%)[log p(I; A*)], and by similar derivation we have E¢[log p(I; A)] = Epg;p+)[log p(I; A)]
for any A. Thus

KL(f,p(I;A)) = Eglog f(I)] — Ey[logp(I; A)]
= Ef[log f(I)] — Ep;a+)llog p(I; A)]
= Eg[log f(I)] — Ef[log p(I; A*)] + Ep;ax[log p(I; A*)] — Ep;ax[log p(I; A)]

= KL(f,p(I; A%)) + KL(p(T; A*), p(T; A)).

So the result follows by setting A = A. The above derivation also shows that p(L; A*) best
approximates f(I) among all possible p(I; A). O
4) Proof of Proposition 3 As in subsection 2.2, let

Los(A) = Z log p(I?**; A)
=1

be the log-likelihood function, where we use the subscript obs to emphasize the fact that

Lops(A) is a random variable depending on the observed images. First, we show

N 1 M .
Lobs(A) = HZ{—]OgZA Z )\(Ot ¢(a Iob3) }
=1

K
= —logZ(A) =Y <X B, 146 (@) >

= —entropy(p(L; A)).
By similar derivation, we can prove that Eps[Lops(A*)] = —entropy(p(I; A*)) and
Lops(A) — Lops(A*) = K L(p(L; A), p(I; A*)). (24)
Applying E,s to both sides of equation (24), we have

—Egps[entropy(p(I; A))] + entropy(p(I; A*)) = Eops[K L(p(T; A), p(T; AY))),
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and the result follows. O.
5) Proof of Theorem 2: f(I) can be connected to f(®)(z) via the Fourier transform.

First, an application of the inverse Fourier transform gives
1 . R
I :7// 2mi<l, F> F\dF
where F is a vector of the same size as I, and f(F) is the characteristic function of f(I),

fF) = /_/6—27ri<F, > (1)l

= /e—zmdz/-/d(< F,I > —2)f(I)dI
_ /6—27rz'z 7@ (2)dz

where < -, > is the inner product, f(®)(z) = [- [ §(< F®) T > —2)f(I)dI is the marginal
distribution of < F(®) I >, with F(® being a specific linear filter, and « the index of

filters. So the result follows. O
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