
Primal Sketch: Integrating Structure and

Texture ?

Cheng-en Guo, Song-Chun Zhu, and Ying Nian Wu

Departments of Statistics and Computer Science
University of California, Los Angeles

Los Angeles, CA 90095

Abstract

This article proposes a generative image model, which we call “primal sketch,” fol-
lowing Marr’s insight and terminology. This model combines two prominent classes
of generative models, namely, sparse coding model and Markov random field model,
for representing geometric structures and stochastic textures respectively. Specifi-
cally, the image lattice is divided into structure domain and texture domain. The
sparse coding model is used to represent image intensities on the structure domain,
where edge and ridge segments are modeled by image coding functions with explicit
geometric and photometric parameters. The edge and ridge segments form a sketch
graph, which is governed by a simple spatial prior model. The Markov random field
model is used to summarize image intensities on the texture domain, where the
texture patterns are characterized by feature statistics in the form of marginal his-
tograms of responses from a set of linear filters. The Markov random fields in-paint
the texture domain while interpolating the structure domain seamlessly. We propose
a sketch pursuit algorithm for model fitting. We show a number of experiments on
real images to demonstrate the model and the algorithm.

Key words: Sparse coding, Markov random fields, Image primitives, Sketch
graphs, Lossy image coding

? We thank Arthur Pece for pointing out the connection with vector quantization.
We also thank him and an anonymous referee for detailed comments and suggestions
that have greatly improved the presentation of the paper. We thank Alan Yuille,
Zhuowen Tu, Feng Han, and Yizhou Wang for insightful discussions. The work is
supported by NSF IIS-0222967.

Email address: cguo,sczhu,ywu@stat.ucla.edu (Cheng-en Guo, Song-Chun
Zhu, and Ying Nian Wu).

Preprint submitted to Elsevier 1 October 2009

1 Introduction

Geometric structures and stochastic textures are two ubiquitous classes of
visual phenomena in natural scenes. Geometric structures appear simple, and
can be represented by edges, ridges, and their compositions such as corners and
junctions. Stochastic textures appear complex, and are often characterized by
feature statistics. Despite their apparent distinctions, texture impressions are
often caused by large number of object structures that are either too small or
too distant relative to camera resolution. Moreover, as we change the viewing
distance or camera resolution, the same group of objects may appear either
as structures or textures. It is therefore desirable to integrate structures and
textures in a common representational and computational framework.

In this article, we propose a generative model, which we call “primal sketch,”
following the insight and terminology of Marr [15]. The model combines two
prominent classes of generative models. One is sparse coding model, for rep-
resenting geometric structures. The other is Markov random field model, for
characterizing stochastic textures.

Specifically, the image lattice is divided into structure domain and texture
domain. The sparse coding model is used to represent image intensities on
the structure domain, where the most common structures are boundaries of
objects that are above a certain scale. Following Elder and Zucker [7], we
model the image intensities of object boundaries by a small number of edge
and ridge coding functions with explicit geometric and photometric parame-
ters. For instance, an edge segment is modeled by an elongate step function
convolved with a Gaussian kernel. A ridge segment is a composition of two
parallel edge segments. These edge and ridge segments form a sketch graph,
whose nodes are corners and junctions. The sketch graph is regulated by a
simple spatial prior model. The form of our sparse coding model is similar to
vector quantization by Gersho and Gray [9], where the coding functions serve
as coding vectors.

The Markov random field model is used to summarize image intensities on the
texture domain, where the texture patterns are characterized by feature statis-
tics in the form of marginal histograms of responses from a set of linear filters.
The Markov random fields in-paint the texture domain while interpolating the
structure domain seamlessly.

Figure (1) shows an example. (a) is the observed image. (b) is the sketch graph,
where each line segment represents an edge or ridge coding function. (c) is the
reconstructed structure domain of the image using these edge and ridge coding
functions. (d) is a segmentation of the remaining texture domain into a number
of homogeneous texture regions, by clustering the local marginal histograms

2

(a) Observed image (b) Sketch graph (c) Structure image

(d) Texture regions (e) Synthesized textures (f) Synthesized image

Fig. 1. An example of the primal sketch model. (a) An observed image. (b) The
sketch graph computed from the image. (c) The structure domain of the image. (d)
The remaining texture domain is segmented into a number of homogeneous texture
regions. (e) Synthesized textures on these regions. (f) The final synthesized image
that integrates seamlessly the structure and texture parts.

of filter responses. Here different regions are represented by different shades.
(e) displays the synthesized textures in the segmented regions. (f) is the final
synthesized image by putting (c) and (e) together. Because the textures are
synthesized with the structure domain as boundary conditions, the textures
interpolate the structure domain seamlessly.

In our representation, the sparse coding model and the Markov random field
model are intrinsically connected. The elongate and oriented linear filters,
such as Gabor filters [6] or Difference of Gaussian filters [25], are used to
detect edges or ridges at different frequencies. On the structure domain where
edge and ridge segments are present, the filters have large responses along the
edge or ridge directions, and the optimally tuned filters are highly connected
and aligned across space and frequency. Such regularities and redundancies in
filter responses can be accounted for by the image coding functions for edge
and ridge segments. On the remaining texture domain where the filters fail
to detect edges or ridges, the filter responses are weak and they are not well
aligned over space or frequency. So we can pool the marginal histograms of
filter responses to form statistical summaries of the image intensities. In that
sense, texture statistics arise from recycling the responses of filters that fail to
detect edges or ridges, and the sparse coding model and random field model
represent two different schemes for grouping or combining filter responses.

3

The rest of the paper is organized as follows. Section 2 reviews sparse coding
model and random field model to set the background, and then motivate our
integrated modeling scheme. Section 3 presents the primal sketch representa-
tion. Section 4 describes the sketch pursuit algorithm. Section 5 shows a set
of experiments on real images. Section 6 concludes with a discussion.

2 Background and motivation

Image modeling has been based on two alternative theories. The first theory
originated from computational harmonic analysis. It represents an image de-
terministically by a linear superposition of wavelet functions. The second the-
ory originated from statistical physics. It characterizes an image by a Markov
random field, which describes the image in terms of a set of feature statistics.

Fig. 2. A set of Difference of Gaussian filters, including elongate and oriented filters
and isotropic filters.

Both theories involve a set of localized, oriented, elongated filters (as well as
some isotropic filters) at different scales or frequencies. Two popular forms of
the linear filters are Gabor functions [6] and Difference of Gaussian functions
[25]. Such functions are localized in both spatial and frequency domains. In
Figure (2), we plot a set of Difference of Gaussian functions. Gabor filters
are similar in shape. Both forms of functions are biologically motivated by
observations on the simple cells in primary visual cortex. While the Differ-
ence of Gaussian filters emphasize the spatial domain concept of gradient and
Hessian, the Gabor filters emphasize the frequency domain concept of local
Fourier contents.

4

2.1 Sparse coding model

Let I(x, y), (x, y) ∈ Λ be an image defined on an image lattice Λ. Let {Bi(x, y),
i = 1, ..., N} be a set of coding elements such as those depicted in Figure (2).
We can represent image I by

I(x, y) =
N∑

i=1

ciBi(x, y) + ε(x, y), (1)

where ci are the coefficients and ε is the residual image. This linear represen-
tation has been intensively studied in image coding and harmonic analysis.
The interested reader is referred to the book of Mallat [13] and the references
therein.

The dictionary of coding elements {Bi(x, y), i = 1, ..., N} can be over-complete,
in the sense that the number of coding functions N is greater than the num-
ber of pixels in image I. The main principle in over-complete representation
is sparsity. That is, the dictionary {Bi} should be designed in such a way
that for a typical natural image, we only need to choose a small number of
elements to approximate it within a small error, i.e., only a small number of
coefficients in {ci} of equation (1) need to be significantly different from 0.
Using this principle, Olshausen and Field [18] learned an over-complete set
of coding elements that resemble the Gabor functions. The notion of sparsity
can also be expressed statistically by assuming that {ci} follow independent
long-tail distributions. See the paper by Pece [19] for a thorough review of this
topic.

With a given over-complete dictionary of coding elements, the matching pur-
suit algorithm of Mallat and Zhang [14] can be employed to find a sparse
representation of an image. The basic idea of this algorithm is to add one
element at a time, and each time, we choose the element that results in the
maximum reduction in the L2-norm of the reconstruction error.

We did some experiments using linear sparse coding with a set of Gabor
functions as well as isotropic Laplacian of Gaussian functions. Since these
functions can be centered at every pixel, the dictionary of all the elements
is highly over-complete. Figure (3) shows an example of sparse coding. (a)
is an observed image of 128 × 128 pixels. (b) is the image reconstructed by
300 elements selected by the matching pursuit algorithm. Figure (4) shows a
second example with a symbolic representation, where each selected elongate
and oriented Gabor function is represented by a bar at the same location, with
the same elongation and orientation. The isotropic elements are represented
by circles.

5

(a) Observed 128 × 128 image (b) Reconstructed with 300 elements

Fig. 3. A sparse coding example: the representation is computed by matching pur-
suit.

(a) Observed image (b) Reconstructed (c) Symbolic sketch

Fig. 4. A sparse coding example computed by matching pursuit. (a) is the observed
image. (b) is reconstructed with 300 elements. (c) is a symbolic representation where
each selected elongate and oriented element is represented by a bar at the same
location, with the same elongation and orientation. The isotropic elements are rep-
resented by circles.

The linear sparse coding model can capture the image structures such as
object boundaries with a small number of elements. However, a small number
of elements cannot represent textures very well, since textures are often very
random and are of high complexity. If we force the linear additive model to
represent textures, the representation will not be sparse.

Moreover, the linear additive model is still not adequate for representing struc-
tures. From the reconstructed image of Figure (4), we can see that a small
number elements cannot capture the boundaries very well, and they do not
line up into lines and curves. There are no concepts of corners and junctions
either.

2.2 Markov random field model

We use {Fk, k = 1, ..., K} to represent the set of Gabor or Difference of Gaus-
sian filters, where k indexes the shape of the filter. The response of filter k
at pixel (x, y) is denoted [Fk ∗ I](x, y) or simply Fk ∗ I(x, y). These operators

6

are generalized versions of the ubiquitous gradient operator ∇I that is used
in Canny edge detection [3] and variational/PDE approaches to image pro-
cessing (see the recent book of Aubert and Kornprobst [1], and the references
therein).

Zhu, Wu, and Mumford [26] proposed a Markov random field model [2] for
textures that can be written in the form of the following Gibbs distribution:

p(I) =
1

Z
exp{−∑

x,y

∑

k

φk(Fk ∗ I(x, y))}, (2)

where φk() are one-dimensional functions, and Z is the normalizing constant
depending on {φk()}. φk() can be further parameterized as piecewise constant
functions. Model (2) is an embellished version of the early φ-model of Geman
and Graffigne [8], which can be used as a prior distribution for Bayesian im-
age processing. The reader is refer to the book of Winkler [23] for a review of
Markov random fields and their applications in image processing. The energy
function in model (2) can also be viewed as a generalized form of the regu-
larization terms commonly used in variational/PDE methods for controlling
image smoothness [1].

The above model has an interesting connection to feature statistics. For each
operator Fk, we collect all the responses over the whole image lattice Λ, so
we have a sample {Fk ∗ I(x, y),∀(x, y) ∈ Λ}. Then we summarize this sample
by a histogram hk(I), where for each bin of this histogram, we calculate the
proportion of the responses falling into this bin, regardless of the positions of
these responses. Specifically, hk = {hk,z,∀z}, and

hk,z =
1

|Λ|
∑

(x,y)∈Λ

δ(z; Fk ∗ I(x, y)), (3)

where z indexes the histogram bins, and δ(z; x) = 1 if x belongs to bin z, and
δ(z; x) = 0 otherwise.

We call these histograms the marginal histograms [10]. Let h(I) = (hk(I), k =
1, ..., K). Then let’s consider the following image ensemble

Ω(h) = {I : h(I) = h} = {I : hk(I) = hk, k = 1, ..., K}, (4)

that is, the set of images that produce the same histograms h(h1, ..., hK). This
ensemble is termed micro-canonical ensemble in statistical physics.

According to the fundamental result of “equivalence of ensembles” in statisti-
cal physics [5], the Markov random field model or the Gibbs distribution (2)

7

converges to the uniform distribution over the micro-canonical ensemble Ω(h)
for some h, as the image lattice Λ goes to Z2, i.e., the infinite lattice. Inversely,
under the uniform distribution over the micro-canonical ensemble Ω(h), if we
fix h and let Λ → Z2, then for any fixed local patch Λ0 ⊂ Λ, the distribution
of the image patch on Λ0, i.e., IΛ0 , follows the Markov random field model (2)
for some {φk()}.

Therefore, for a relatively large image lattice, if we want to fit the Markov
random field model (2) to an observed image, and synthesize images from
the fitted model, we can directly estimate the marginal histograms of filter
responses h from the observed image, and simulate images by randomly sam-
pling from the image ensemble Ω(h). This can be accomplished using simulated
annealing algorithm. See Wu, Zhu and Liu [24] for more details.

(a) (b) (c) (d)

Fig. 5. Random field and marginal histograms: (a) and (c) are observed images. (b)
and (d) are “reconstructed” by matching marginal histograms of filter responses.

(a) (b) (c) (d)

Fig. 6. Random field and marginal histograms: (a) and (c) are observed images. (b)
and (d) are “reconstructed” by matching marginal histograms of filter responses.

Experiments show that this model is quite effective in representing stochastic
textures. See Figure (5) for two examples. However, as is evident in Figure (6),
the random field models are ineffective in representing large image structures
such as long edges.

8

2.3 Edge and ridge model

To understand the connection between the sparse coding model and the Markov
random field model, we may consider the most common image structures:
edges and ridges. Elder and Zucker [7] represent an edge segment as an elon-
gate step function convolved with a Gaussian kernel. A ridge is a composition
of two parallel edges. See Figure (7) for an illustration.

Fig. 7. An edge is modeled by a step function convolved with a Gaussian kernel. A
ridge is modeled by double edges.

Consider, for example, a long step edge between two flat regions. Such an
image structure evokes strong responses from Gabor filters (or Difference of
Gaussian filters) across space and frequency (or scale). At each frequency
or scale, the locations and orientations of the edge points can be detected
by finding the optimally tuned elements in the same manner as Canny edge
detection [3]. The orientations of these optimally tuned elements are highly
aligned across space and frequency. That is, the linear filter responses from
such an edge structure form a very regular pattern.

In our representation scheme, after detecting the locations and orientations
of the edge points using linear filters, we model the intensities of the edge
segment explicitly by fitting the model of Elder and Zucker [7]. This is the
domain where sparse coding model applies.

One can also use the optimally tuned Gabor elements to code the edge struc-
ture, but one would need quite a number of Gabor elements. This is because
a Gabor element is localized in both spatial and frequency domains, whereas
a long step edge between two flat regions spans large ranges in both spatial
and frequency domains. In order to capture the sparsity of the edge structure,
we must further model the highly regular pattern of these Gabor elements
and their coefficients. In this article, we choose not to do that, but to fit the
parametric functions of edges and ridges directly.

On the part of the image where no edges or ridges are present, the filter
responses are usually weak and are not well aligned in spatial or frequency
domains. In that case, we can pool the marginal histograms of filter responses

9

to summarize the texture patterns. This is the domain where the Markov
random field model applies.

3 Primal sketch model

According to the model, the image is generated as a mosaic as follows: the
image lattice Λ is divided into a structure domain Λstr and a textured domain
Λtex. The image intensities on the structure domain are represented by a set
of coding functions for edges and ridges. The image intensities on the tex-
ture domain are characterized by Markov random fields that interpolate the
structure domain of the image.

3.1 Structure domain

The model for the structure domain of the image is

I(x, y) =
n∑

i=1

B(x, y|θi) + ε(x, y), (x, y) ∈ Λstr, i = 1, ..., n. (5)

The coding functions B(x, y|θi) are used to represent edge and ridge segments
(as well as blobs) in the image, where θi are geometric and photometric pa-
rameters of these coding functions. Let Λstr,i be the set of pixels coded by
B(x, y | θi). They do not overlap each other except over the small number of
pixels where they join each other to form corners and junctions. Therefore,
B(x, y|θi) is similar to coding vectors in vector quantization.

An edge segment is modeled by a 2D function that is constant along the edge,
and has a profile across the edge. Specifically,

B(x, y | θ) = f(−(x− u) sin α + (y − v) cos α), (6)

where

−l < (x− u) cos α + (y − v) sin α ≤ l,

−w ≤ −(x− u) sin α + (y − v) cos α ≤ w.

That is, the function B(x, y | θ) is supported on a rectangle centered at (u, v),
with length 2l + 1, width 2w + 1, and orientation α.

10

For the profile function f(), let f0(x) = −1/2 for x < 0 and f0(x) = 1/2
for x ≥ 0, and let gs() be a Gaussian function of standard deviation s. Then
f() = a + bf0() ∗ gs(). This is the model proposed by Elder and Zucker [7].
The convolution with Gaussian kernel is used to model the blurred transition
of intensity values across the edge, caused by the three dimensional shape
of the underlying physical structure, as well as the resolution and focus of
the camera. As proposed by Elder and Zucker [7], the parameter s can be
determined by the distance between the two extrema of the second derivative
f ′′(). See Figure (8.a) for an illustration.

Thus in the coding function B(x, y | θ) for an edge segment, θ = (t, u, v,
α, l, w, s, a, b), namely, type (which is edge in this case), center, orientation,
length, width, sharpness, average intensity, intensity jump. θ captures geomet-
ric and photometric aspects of an edge explicitly, and the coding function is
non-linear in θ.

(a) Edge profile (b) Ridge profile

Fig. 8. (a) An edge profile and its second derivative. The blurring scale is determined
by the distance between the extrema of the second derivative. (b) A ridge profile is
a composition of two edge profiles.

A ridge segment has the same functional form as (6), where the profile f() is
a composition of two edge profiles. See Figure (8.b) for an illustration, where
there are three flat regions. The profile of a multi-ridge is a composition of
two or more ridge profiles. A blob function is modeled by rotating an edge

profile, more specifically, B(x, y | θ) = f(
√

(x− u)2 + (y − v)2 − r), where

(x − u)2 + (y − v)2 ≤ R2, and again f() = a + bf0() ∗ gs() being a step edge
convolved with a Gaussian kernel. This function is supported on a disk area
centered at (u, v) with radius R. The transition of intensity occur at the circle
of radius r < R.

The corners and junctions are important structures in images. They are mod-
eled as compositions of edge or ridge functions. When a number of such coding
functions join to form a corner or a junction, the image intensities of the small

11

number of overlapping pixels are modeled as averages of these coding func-
tions. The end point of a ridge is modeled by a half blob.

See Figure (9) for a sample of local structure elements, which are the coding
functions and their combinations. There are eight types of elements: blobs, end
points, edges, ridges, multi-ridges, corners, junctions and crosses. Figure (9.a)
shows the symbolic representations of these elements. Figure (9.b) displays
the image patches of these elements.

Fig. 9. A collection of local structure elements produced by our model. There are
eight types of elements: blobs, end points, edges, ridges, multi-ridges, corners, junc-
tions and crosses. (a) The symbolic representation. (b) The photometric represen-
tation.

Let Sstr = (θi, i = 1, ..., n) be the sketch graph formed by these coding func-
tions. The graph has a set of nodes or vertices V = ∪4

d=0Vd, where Vd is the set
of nodes with degree d, i.e., the nodes with d arms. For instance, a blob node
has degree 0, an end point has degree 1, a corner has degree 2, a T-junction
has degree 3, and a cross has degree 4. We do not allow nodes with more than
4 arms. Sstr is regularized by a simple spatial prior model :

p(Sstr) ∝ exp{−
4∑

d=0

λd|Vd|}, (7)

where |Vd| is the number of nodes with d arms. The prior probability or the

12

energy term γstr(Sstr) =
∑4

d=0 λd|Vd| penalizes free end points by setting λstr

at a large value. We shall give concrete parameter values in Section (4).

3.2 Texture domain

The texture domain Λtex is segmented into m regions of homogenous tex-
ture patterns, Λtex = ∪m

j=1Λtex,j. Within each region j, we pool the marginal
histograms of the responses from the K filters, hj = (hj,k, k = 1, ..., K), where

hj,k,z =
1

|Λtex,j|
∑

(x,y)∈Λtex,j

δ(z; Fk ∗ I(x, y)), (8)

where z indexes the histogram bins, and δ(z; x) = 1 if x belongs to bin z, and
δ(z; x) = 0 otherwise.

According to the previous section, this is equivalent to a Markov random field
model for each texture region:

p(IΛtex,j
) ∝ exp{− ∑

(x,y)∈Λtex,j

K∑

k=1

φj,k(Fk ∗ I(x, y))}. (9)

These Markov random fields have the structure domain as boundary condi-
tions, because when we apply filters Fk on the pixels in Λtex, these filters may
also cover some pixels in Λstr. These Markov random fields in-paint the texture
domain Λtex while interpolating the structure domain Λstr, and the in-painting
is guided by the marginal histograms of linear filters within each region. This
point of view is closely related to the in-painting work of Chan and Shen [4].

Let Stex = (Λtex,j, j = 1, ..., m) denotes the segmentation of the texture do-
main. Stex follows a prior model p(Stex) ∝ exp{−γtex(Stex)}, for instance,
γtex(Stex) = ρm to penalize the number of regions. One may use more sophis-
ticated models for segmentation (see, e.g., Tu, Chen, Yuille and Zhu [22]).

3.3 Integrated model

Formally, we can integrate the structure model (5) and the texture model (9)
into a probability distribution. Our inspiration for such an integration comes
from the model of Mumford and Shah [17]. In their method, the prior model
for the noiseless image can be written as

13

p(I, S) =
1

Z
exp{− ∑

(x,y)∈Λ/S

λ|∇I(x, y)|2 − γ|S|}, (10)

where S is a set of pixels of discontinuity that correspond to the boundaries of
objects, and |S| is the number of pixels in S. In model (10), S is the structure
domain of the image, and the remaining part is the texture domain.

Our model can be viewed as an extension of the Mumford-Shah model. Let
S = (Sstr, Stex), we have

p(I, S) =
1

Z
exp{−

n∑

i=1

∑

(x,y)∈Λstr,i

1

2σ2
(I(x, y)−Bi(x, y | θi))

2 − γstr(Sstr)

−
m∑

j=1

∑

(x,y)∈Λtex,j

K∑

k=1

φj,k(Fk ∗ I(x, y))− γtex(Stex)}. (11)

Compared to Mumford-Shah model, model (11) is more sophisticated in both
structure part and texture part.

4 Sketch pursuit algorithm

This section details the sketch pursuit algorithm for computing the sketch
graph and clustering the textures. We first present the objective function that
is used in the later phases of the algorithm after the initialization phase.

4.1 The objective function

The logarithm of p(I, S) defined in (11) should be the objective function to
maximize for inferring S. But computationally it is too demanding. Therefore,
we construct an approximated objective function by assuming that the texture
part can be approximated by Gaussian model with slowly varying means.

To derive the approximated objective function, let’s first consider the follow-
ing simple scenario first. Suppose we want to test whether a coding function
B(x, y | θ) is present in image I, we can consider the following hypothesis
testing problem:

H0 : I(x, y) = µ + N(0, σ2)

H1 : I(x, y) = B(x, y | θ) + N(0, σ2), (x, y) ∈ Λ1,

14

where Λ1 is the set of pixels covered by B(x, y | θ). µ in the null hypothesis
H0 is estimated as the average of the pixel values in Λ1.

Define

∆L(B) =
∑

(x,y)∈Λ1

[
(I(x, y)− µ)2 − (I(x, y)−B(x, y | θ))2

]
. (12)

Then the log likelihood ratio score for the above hypothesis testing is ∆L(B)/2σ2.

In order to infer the sketch graph Sstr = {Bi, i = 1, ..., n} from the image I,
we choose to maximize the following objective function

L(Sstr) =
1

2σ2

n∑

i=1

∆L(Bi)− γstr(Sstr) =
1

2σ2

[
n∑

i=1

∆L(Bi)− γ̃str(Sstr)

]
,(13)

where γ̃str(Sstr) = 2σ2γstr(Sstr). In practice, we only need to specify γ̃str(Sstr)
a priori, without explicitly specifying σ2, for maximizing L(Sstr).

The objective function (13) can be justified as the regularized log-likelihood
of the following working model:

I(x, y) = Bi(x, y | θi) + N(0, σ2), (x, y) ∈ Λstr,i, i = 1, ..., n,

I(x, y) = µ(x, y) + N(0, σ2), (x, y) ∈ Λtex. (14)

This working model is a simplified version of the integrated model presented
in the previous section, where the texture part Λtex is modeled by Gaussian
distribution with slowly varying mean µ(x, y). Specifically, let l0 be the log-
likelihood of the following background model:

I(x, y) = µ(x, y) + N(0, σ2), (x, y) ∈ Λ,

then the log-likelihood of the working model (14) is l0 +
∑n

i=1 ∆L(Bi), assum-
ing that for (x, y) ∈ Λstr,i, i.e., pixels covered by Bi, µ(x, y) in the background
model are all equal to the average of the pixel values in Λstr,i. Therefore L(Sstr)
in (13) is the regularized log-likelihood of the working model (14). Similar ob-
jective functions in the form of likelihood ratios have been previous constructed
by Pece [20] and references therein.

The reason we choose to use the working model (14) is mainly due to its
computational simplicity. It also fits our logic that texture statistics arise by
pooling the filter responses where we fail to detect and fit edge or ridge func-
tions. We currently have no proof that maximizing (13) will also maximizes
the log of (11). We shall explore this issue in further work.

15

The sketch pursuit algorithm is a greedy algorithm for achieving a local max-
imum of the object function (13). It consists of the following phases. Phase 0:
an edge and ridge detector based on linear filters is run to give an initializa-
tion for the sketch graph. Phase 1: a greedy algorithm is used to determine
the sketch graph but without using the spatial prior model. Phase 2: a greedy
algorithm based on a set of graph operators is used to edit the sketch graph to
achieve good spatial organization as required by the spatial prior model. Phase
3: the remaining portion of the image is segmented into homogeneous texture
regions by clustering the local marginal histograms of filter responses. The
inference algorithm yields two outputs. 1) a sketch graph for the image, with
edge and ridge segments, as well as corners and junctions. 2) a parameterized
representation of the image which allows the image to be re-synthesized and
to be encoded efficiently.

4.2 Phase 0: detect edges, ridges, and blobs

The detection method we use is essentially an extension of Canny edge de-
tector [3]. At each pixel, we compute the sum of the squares of D1G and
D2G responses for each scale and orientation, where D1G and D2G denote
the Difference of Gaussian filters for computing the first derivatives and sec-
ond derivatives respectively. One can also replace D1G and D2G filters by
Gabor sine and Gabor cosine filters respectively. We normalize the filters to
have mean 0 and L1 norm 1. In our implementation, we use 3-5 scales and
18 orientations. The maximum of the combined responses over these scales
and orientations is considered the edge-ridge strength at that pixel, and the
orientation of the corresponding filters is considered the orientation of this
pixel. See Figure (10) for an example. (a) is the observed image. (b) is the
map of the edge-ridge strengths. Using the non-maxima suppression method
in Canny edge detector, a pixel is considered a detected edge-ridge point if its
edge-ridge strength is above a threshold, and achieves local maximum among
the pixels on the norm direction of the edge-ridge orientation of this pixel.
Figure (10.c) is a binary map that displays the detected edge-ridge points.

The blob strength at a pixel is measured by the maximum response of the
isotropic filters over a number of scales. We use thresholding and non-maxima
suppression to get the detected blobs, as shown in Figure (10.d).

4.3 Phase 1: sequentially add coding functions

Phase 1 follows Phase 0. We assume that the image has already been nor-
malized to have mean 0 and variance 1. From the edge-ridge map, we find
the edge-ridge point of the maximum strength over the whole image. From

16

(a) Observed image (b) Edge-ridge strength

(c) Detected edge-ridge points (d) Detected blobs

Fig. 10. Sketch pursuit phase 0: detecting edges, ridges, and blobs using derivative
filters. For the observed image (a), a set of derivative filters are applied to get
the edge-ridge strength (b). The detected edge-ridge points (c) are computed by
non-maxima suppression. (d) shows the detected blobs.

this point, we connect the edge-ridge points along the orientation of this cur-
rent point to form a line segment. We do this until we cannot extend the line
segment any further. This procedure is similar to the maximal alignment of
Moisan, Desolneux, and Morel [16].

After that, we compute the profile of this line segment by averaging the image
intensities on the cross-sections of the line segment. Then we decide the ex-
trema of the second derivative of the profile (see Figure 8 for the illustration of
the extrema of the second derivative). The width of the profile is determined
so that there are two pixels beyond the extrema on the two sides of the profile.
We start from the profile of 7 pixel width, and then increase the width until
the above criterion is met. By doing so, we only model the intensity transition
across the edge or ridge, while leaving the flat regions on the two sides to be
captured by texture models. Then we fit an edge or ridge function B1, and
compute ∆L(B1). If ∆L(B1) > ε, we then accept B1. We choose ε = 5 (for
image normalized to mean 0 and variance 1) in our implementation.

We continue the procedure as follows. From each end of the accepted coding
function B1, we search the connected and aligned points in the edge-ridge
map to form a line segment. We then fit the coding function B2, and compute
∆L(B2) to decide whether to accept it or not, by comparing it to ε. By re-

17

peating the above procedure, we obtain a chain of connected coding functions
to form a curve.

If no more coding functions can be added to the ends of this curve, we then
choose the edge-ridge point with the maximum strength among all the edge-
ridge points that are not covered by existing coding functions, and start a new
curve. We repeat this process until no more curve can be started.

Figure (11) shows the results of sketch pursuit phase 1 on the horse-riding
image. The sketch graphs are obtained after 1, 10, 20, 50, 100, and 180 steps.

(a) iteration 1 (b) iteration 10 (c) iteration 20

(d) iteration 50 (e) iteration 100 (f) iteration 180

Fig. 11. Sketch pursuit phase 1: sequentially add coding functions. We show the
sketch graph after iterations 1, 10, 20, 50, 100, and 180.

4.4 Phase 2: fix corners and junctions

After getting the initial sketch graph in phase 1, we use a collection of graph
operators to edit the sketch graph to fix the corners and junctions. This phase
is accomplished by a greedy algorithm that seeks to find a local mode of the
objective function

L(Sstr) =
n∑

i=1

∆L(Bi)−
4∑

d=0

λd|Vd|, (15)

where |Vd| is the number of nodes with d arms in the sketch graph Sstr. In our
experiments, we choose λ0 = 1, λ1 = 5, λ2 = 2, λ3 = 3,λ4 = 4.

18

The reversible graph operators we use to edit the sketch graph are summarized
and explained in Figure (12).

operators graph change illustration

G1, G
′
1 create/delete

G2, G
′
2 grow/shrink

G3, G
′
3 connect/disconnect

G4, G
′
4

extend to touch/remove to
disconnect

G5, G
′
5

extend to join/remove to
disconnect

G6, G
′
6 combine/break

G7, G
′
7 combine/split

G8, G
′
8 merge/split

G9, G
′
9 create/remove a blob

G10, G
′
10

switch between stroke(s)
and a blob

Fig. 12. The ten pairs of reversible graph operators used in the sketch pursuit
process.

Figure (13) shows an example of the sketch pursuit process. (a) is an input
image. (b) is the sketch graph after phase 1. (c) is the sketch graph after phase
2. Comparing the sketch graphs in (b) and (c), we can see that some of the
corners and junctions are missed in phase 1, but they are recovered in phase
2.

An example of applying graph operators is show in Figure (14). The ten pairs
of reversible graph operators change the topological property of the sketch
graph.

The computational strategy in this phase is as follows. As illustrated in Fig-
ure (14), from a current sketch graph, we randomly choose a local subgraph.
All of the ten pairs of graph operators are attempted for editing that local
subgraph. We examine all the new subgraphs that can be produced after 3-5

19

(a) (b) (c)

Fig. 13. Sketch pursuit. (a) Observed image. (b) Sketch graph after phase 1. (c)
Sketch graph after phase 2.

steps of graph operations (usually around 5 to 20 new subgraphs). For each
new subgraph, we compute the increase in L(Sstr) in (15) if we change the
current subgraph to this new subgraph. Currently we adopt a greedy method,
where we choose the new subgraph that gives us the maximum increase in
L(Sstr). This process is repeated until no modification can be accepted.

4.5 Phase 3: texture clustering and synthesis

After Phase 2 is finished, we have the lattice Λtex for textures. We use k-mean
clustering method to divide Λtex into homogeneous texture regions. We first
compute the histograms of the derivative filters within a local window (e.g.
7×7 pixels). For example, if we use 7 filters and if 7 bins are used for each
histogram, then totally we have a 49-dimensional feature vector for each pixel.
We then cluster these feature vectors into different regions. In our current
implementation, we use a small number (5-7) of small derivative filters for
characterizing textures. After clustering Λtex into texture regions, we then
synthesize textures in these regions by matching the corresponding histograms
of filter responses.

5 Experiments

5.1 Primal sketch representation of real images

Figures (15), (16), and (17) show more experiments of the sketch pursuit
process. It appears that the primal sketch representation captures both the
structural and textural aspects of the image.

There are a number of limitations in our model. First, the relationship between

20

Fig. 14. An example of applying graph operators. (a) A local image patch from the
horse-riding image. (b) Sketch graph after sketch pursuit phase 1. (c) Sketch graph
after sketch pursuit phase 2. (d) Zoom-in view of the upper rectangle in (b). (e)
Applying graph operator G3 – connecting two vertices in (d). (f) Applying graph
operator G5 – extending two strokes to join each other. (g) Zoom-in view of the lower
rectangle in (b). (h) Applying graph operator G4 – extending one stroke to touch
another stroke. (i) Applying graph operator G4 to another stroke. (j) Combining
(h) and (i). (k) Applying graph operator G4 – extending one stroke, and applying
G′

1 – removing one stroke.

the sketch graph and the segmentation of the texture part is not modeled.
Second, the model does not include structures caused by lighting and shading.
Third, the model only assumes piecewise homogeneous textures. It cannot
account for textures on slanted surfaces.

21

(a) (b) (c)

Fig. 15. More results of the primal sketch model. (a) Observed image. (b) Sketch
graph. (c) Reconstructed image from the fitted primal sketch model.

5.2 Lossy image coding

The primal sketch model provides a lossy image coding scheme, in the sense
that the texture regions are coded by histograms of filter responses, and the
exact pixel values in texture regions are not coded. Table (1) counts the num-
ber of parameters for describing the primal sketch model in the experiment
shown in Figure (1).

The observed image has 300×240 pixels, of which 18, 185 pixels (around 25%)
are considered by our model as belonging to structure domain. The sketch
graph has 152 vertices and 275 coding functions that are coded by 1, 421
bytes. The texture pixels are summarized (instead of being exactly coded)

22

(a) (b) (c)

Fig. 16. More results of the primal sketch model. (a) Observed image. (b) Sketch
graph. (c) Reconstructed image from the primal sketch model.

coding description coding length (bits)

Sketch graph

vertices 152 152×2×9=2,736

strokes (275) 275×2×4.7=2,585

Sketch image profiles (275) 275×(2.4×8+1.4×2)=6,050

Total for structure domain 18,185 pixels 11,371

Region boundaries 3659 pixels 3659×3 = 10,977

Texture regions and histograms 7×5×13×4.5 = 2,048

Total for texture domain 41,815 pixels 13,025

Total for the whole image 72,000 pixels 3,049 bytes, 0.04 byte/pixel
Table 1
The coding length of the primal sketch model in the experiment shown in Figure 1.

by 455 parameters, with 5 filters for 7 texture regions and each pools a 1D
histogram of filter responses into 13 bins. Together with the codes for the
region boundaries, the total coding length for the textures is 1, 628 bytes. The
total coding length for the synthesized image in Figure (1.f) is 3, 049 bytes or
0.04 byte per pixel. For lossless (error = 0) JPEG 2000 coding, the compression
rate is 0.685 byte per pixel. Of course, we are not making a direct comparison
here, since our method is lossy coding. For this type of lossy coding, it is hard
to quantify the perception error. We shall leave this issue to future study.

23

(a) (b) (c)

Fig. 17. More results of the primal sketch model. (a) Observed image. (b) Sketch
graph. (c) Reconstructed image from the primal sketch model.

6 Discussion

The modeling of textures and structures has long been studied in vision. Julesz
[11] first proposed a texture theory and conjectured that a texture is a set of
images sharing some common statistics on some features related to human
perception. Later he switched to a texton theory [12] and identified bars,
edges, corners, terminators as textons. Marr [15] summarized Julesz’s theo-
ries and other experimental results and proposed primal sketch as a symbolic
representation of the raw image. In our model, the sparse coding model can
be viewed as a mathematical formulation of Julesz’s textons or Marr’s tokens.

24

The Markov random field model can be viewed as a mathematical formulation
of Julesz’s first conjecture on feature statistics. Marr argued that the primal
sketch representation should be parsimonious and sufficient to reconstruct the
original image without much perceivable distortion. This is reflected in our
model by the fact that it is generative, and it can be checked by synthesizing
images from fitted models to see if the synthesized images are visually similar
to the original image.

The filters we used are biologically motivated by neurological observations of
V1. Our model can be considered as a scheme for processing information after
linear filtering, where the strong and highly aligned responses are combined
into coding functions with explicit geometric and photometric parameters, and
the weak responses that are not aligned are grouped into marginal histograms
as texture statistics. The edge and ridge coding functions may also account
for the joint distributions of filter responses studied by Portilla and Simoncelli
[21].

In comparison with Canny edge detection [3], our representation is generative,
and is more complete, in the sense that we have not only a sketch graph for
the structure domain, but also texture patterns on the texture domain.

References

[1] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing,
Springer, 2002.

[2] J. Besag, “Spatial Interaction and the Statistical Analysis of Lattice Systems
(with discussion)”, J. Royal Statist. Soc., series B, vol.36. pp. 192-236, 1974.

[3] J. Canny. “A computational approach to edge detection”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 8:679–698, 1986.

[4] T. Chan and J. Shen, “Local inpainting model and TV inpainting”, SIAM J.
of Appl. Math, 62:3, 1019-43, 2001.

[5] D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University
Press, 1987.

[6] J. Daugman, “Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters”, Journal
of Optical Society of America, 2, 1160-1169, 1985.

[7] J.H. Elder and S. W. Zucker, “Local scale control for edge detection and blur
estimation”, IEEE Trans. PAMI, vol. 20, no. 7, 699-716, 1998.

[8] S. Geman and C. Graffigne, “Markov random field image models and their
applications to computer vision”, Proceedings of the International Congress of
Mathematicians, Vol. 1, 2, 1496-1517, 1987.

25

[9] A. Gersho and R. M. Gray, Vector Quantization and Signal Processing. Boston,
MA: Kluwer, 1992.

[10] D. J. Heeger and J. R. Bergen, “Pyramid Based Texture Analysis/Synthesis”,
Computer Graphics Proc., pp. 229-238, 1995.

[11] B. Julesz, “Visual pattern discrimination”, IRE Transactions on Information
Theory, IT-8, pp. 84-92, 1962.

[12] B. Julesz, “Textons, the elements of texture perception and their interactions”,
Nature, Vol. 290, pp. 91-97, 1981.

[13] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1998.

[14] S. Mallat and Z. Zhang, “Matching Pursuit in a Time-Frequency Dictionary”,
IEEE Sig. Proc., 41, 3397-415, 1993.

[15] D. Marr, Vision, W. H. Freeman and Company, 1982.

[16] L. Moisan, A. Desolneux, and J.-M. Morel, “Meaningful Alignments”, Int’l J.
Computer Vision, vol. 40, no. 1, pp. 7-23, 2000.

[17] D. Mumford and J. Shah, “Optimal Approx. by Piecewise Smooth Functions
and Assoc. Variational Prob.”, Comm. in Pure and Appl. Math, 42(5), 577-685,
1989.

[18] B. A. Olshausen and D. J. Field, “Emergence of Simple-cell Receptive Field
Properties by Learning a Sparse Code for Natural Images”, Nature, Vol. 381,
pp. 607-609, 1996.

[19] A. Pece, “The Problem of Sparse Image Coding”, Journal of Mathematical
Imaging and Vision, vol. 17(2), pp. 89-108, 2002.

[20] A. Pece, “Contour Tracking Based on Marginalized Likelihood Ratios”, Image
and Vision Computing, 2005.

[21] J. Portilla and E.P. Simoncelli, “A parametric texture model based on joint
statistics of complex wavelet coefficients”, Int’l Journal of Computer Vision,
40(1):49-71, October, 2000.

[22] Z. Tu, X. Chen, A. Yuille, and S.-C Zhu, “Image Parsing: Unifying
Segmentation, Detection, and Object Recognition”, Int’l J. Computer Vision,
2005.

[23] G. Winkler, Image Analysis, Random Fields, and Dynamic Monte Carlo
Methods, Springer, 1995.

[24] Y. N. Wu, S. C. Zhu, and X. W. Liu, “Equivalence of Julesz Ensemble and
FRAME Models”, Int’l Journal of Computer Vision, 38(3):245–261, 2000.

[25] R. A. Young, “The Gaussian Derivative Model for Spatial Vision: I. Retinal
Mechanism”, Spatial Vision, 2(4), 273-293, 1987.

[26] S. C. Zhu, Y. N. Wu, and D. Mumford, “Minimax Entropy Principle and Its
Applications in Texture Modeling”, Neural Computation, 9(8), 1627-1660, 1997.

26

