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I am grateful to the editor for inviting me to contribute this discussion. I have learned a great
deal from this exceedingly clever paper by Yu and Meng. Ever since the ground breaking work
of Meng and van Dyk (1997), there have been many interesting developments in the art of data
augmentation for both EM and MCMC. This paper is yet another significant contribution to this
line of research. While I feel I can contribute little to the discussion of the proposed method, I would
like to mention a different perspective of data augmentation, in the hope of broadening the scope
of the discussion. Data augmentation is not only a useful tool for MCMC, but it is also an essential
ingredient in the so-called unsupervised learning, which involves augmenting latent variables or
hidden units to explain the observed or visible data. In the context of neural science, the observed
data are collected by the sensors in the form of images or sounds, and the latent variables or
hidden units form the internal representations of the sensory data. The learning of such internal
representations often does not require class labels or detailed annotations of the training examples,
thus the learning is said to be unsupervised.

Latent variable models are abound in statistical literature, such as factor analysis, mixture
model, t-model, random effects model, probit regression, hidden Markov model, just to name a
few. In what follows, I shall briely review two popular latent variable models in neural science and
unsupervised learning, as well as their hierarchical extensions.

The first model is the sparse coding model of Olshausen and Field (1996). Let Y = (y1, ..., yamr)
be the M-dimensional vector, such as an image (where M is the number of pixels). Let Z =
(21, ..., zKr) be the K-dimensional vector of hidden units for representing Y . The model is of the
following form:

2 ~ p(z) independently, (1)
K

Y = Z 2B + €, (2)
k=1

where By’s are unknown M-dimensional basis vectors, and € is the residual. The model appears to
be very similar to factor analysis, except that K is often assumed to be greater than M, so that
the representation is said to be “overcomplete.” Moreover, p(z) is assumed to be a heavy tailed
distribution, such as Laplacian distribution, t-distribution, or a mixture of a point mass at 0 and
a normal distribution with a large variance. Such p(z) captures the sparsity of Z in the sense that
most of the K components of Z are small or 0. € is often assumed to be white noise although this
is quite unrealistic. The goal is to learn the dictionary of the basis elements B = (By, k =1, ..., K)
from training data {Y;,i = 1,...,n}, such as n image patches randomly cropped from some images
of natural scenes.
The second model is the restricted Boltzmann machine (Hinton, Osindero and Teh, 2006):

p(K Z ‘ W) S GXP{Zwkakym}v (3)
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where both y,,, and zj are assumed to be binary, and W = (wg,, k = 1,..., K,m = 1,..., M) are the
unknown parameters or the connection weights between hidden units z; and the visible units ,,.
This model looks rather unusual to statisticians, in the sense that it is not in the form of p(Z|W)
and p(Y|Z,W). In fact, the prior distribution p(Z|W) is implicit, and only the joint distribution
p(Y, Z|W) is specified. However, this model has the advantage that both p(Y'|Z, W) and p(Z|Y, W)
are simple. Given Z and W, y,, are independent, and given Y and W, z; are independent.
The model can be extended to the situation where y; are continuous, so that p(Y|Z, W) is in a
comparable form as in equation (2).

Both the sparse coding model (1) and (2) and the restricted Boltzmann machine (3) can be
extended by introducing a higher layer of hidden variables on top of the layer of Z. The extension of
(3) leads to the so-called deep belief network (Hinton, Osindero and Teh, 2006). The key observation
in this endeavor is that the undirected graphical model p(Y, Z|W) is equivalent to an infinite layer
directed graphical model where each layer is a step of Gibbs sampler with p(Y, Z|W) being the
target distribution. The extension of (1) and (2) is quite different because of the sparsity of Z.
Recently we propose an active basis model (Wu, Si, Gong and Zhu, 2010), where we assume that
on top of Z is a layer of templates or partial templates, each being a composition of a small number
of By’s selected from the dictionary B = (B, k = 1,..., K). Each selected By can be considered a
“stroke” for sketching the template. See Figure 1 for three templates learned from natural images,
where each By is illustrated by a small line segment, and the compositions of different sets of
selected Bj’s form different templates.
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Figure 1: Templates formed by different sets of selected By’s, where each By, is depicted by a small
line segment. Numbers of the selected By’s are, respectively, 80, 30, 50.

While statisticians may not be at home with discriminative supervised learning such as max-
margin classification, the hierarchical latent variable models and the associated likelihood or Bayesian
learning should be very familiar and natural to statisticians, who are well equipped to make useful
contributions.
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