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Abstract

We address the problem of learning dynamic patterns
from unlabeled video sequences, either in the form of gener-
ating new video sequences, or recovering incomplete video
sequences. This problem is challenging because the appear-
ances and motions in the video sequences can be very com-
plex. We propose to use the alternating back-propagation
algorithm to learn the generator network with the spatial-
temporal convolutional architecture. The proposed method
is efficient and flexible. It can not only generate realis-
tic video sequences, but can also recover the incomplete
video sequences in the testing stage or even in the learning
stage. The proposed algorithm can be further improved by
using learned initialization which is useful for the recovery
tasks. Further, the proposed algorithm can naturally help
to learn the shared representation between different modal-
ities. Our experiments show that our method is competitive
with the existing state of the art methods both qualitatively
and quantitatively.

1. Introduction
Understanding dynamic patterns in video sequences is

one of the most fundamental problems in computer vision
and artificial intelligence. For many real-world applica-
tions, e.g., simulation, forecasting, etc., an effective model
of dynamic patterns is needed. However, learning genera-
tive models of dynamic patterns is challenging because the
appearances and motions in video sequences can be very
complex.

We aim to address the problem of learning dynamic pat-
terns from unlabeled video sequences. A model for dy-

namic patterns must capture the underlying spatial and tem-
poral patterns in the video sequences. It should have the
ability to synthesize new video sequences, as well as re-
cover the incomplete sequences. To achieve this goal, we
capitalize on the recent advances in unsupervised learning
algorithms for generative image models [7, 17, 25, 23, 9,
15, 26, 21]. Specifically, we propose to generalize the al-
ternating back-propagation algorithm recently proposed by
Han et al. [9], to learn the spatial-temporal generator net-
work [31].

The generator network, in general, can be viewed as a
non-linear generalization of the factor analysis model [9].
Based on this observation, it is natural to generalize the al-
ternating back-propagation algorithm [9] to learn dynamic
patterns. The algorithm iterates the following two steps: (1)
inferential back-propagation, which infers the latent factors
by Langevin sampling from the posterior distribution of the
latent factors, and (2) learning back-propagation, which up-
dates the network parameters given the inferred latent fac-
tors. It has been shown in [9] that such an iterative algorithm
can be used for image modeling. However, the effective-
ness of such an algorithm for modeling dynamic patterns
remains unexplored.

In this paper, we generalize the alternating back-
propagation algorithm to learn the different types of spatial-
temporal generator networks [31]. We also implement
and provide strong baseline models, i.e., spatial-temporal
variational auto-encoder and spatial-temporal wake sleep
model that generalize the conventional variational auto-
encoder [26, 17, 18], and wake sleep model [12] to their
spatial-temporal (3D) domains. These inference-based
models are well suited for synthesizing dynamic patterns as
well as recovering incomplete patterns. We further extend



our framework to multimodal learning by sharing latent rep-
resentations among different modalities. Our experiments
demonstrate the effectiveness of our approach in both syn-
thesis and recovery/prediction tasks.

2. Related work and contributions
Our work is closely related to studies of video modeling.

However, previous works have mostly focused on recog-
nition or classification tasks [14, 6, 30, 32]. In our work,
we are interested in generating and completing dynamic
patterns, rather than detecting and retrieving features from
them.

There are two major classes of approaches to modeling
and generating dynamic patterns.

The first class of methods is based on state space mod-
els for dynamic patterns. They explicitly model the inter-
frame transitions and can be viewed as generative mod-
els conditioned on the past frames. Notably, Doretto et
al. [5] proposed an auto-regressive transition model to-
gether with linear frame-wise dimension reduction for dy-
namic textures. Using the deep learning methods, vari-
ants of RNN/LSTM have been used to model the transi-
tions of dynamic patterns [24, 27]. These approaches can be
used for pattern synthesis [33, 5], and future generation in
videos [19, 27, 37]. These models are casual, meaning that
they require the starting frame. Moreover, random noises
may be accumulated over time, so that they can only gen-
erate realistic patterns for a relatively short time span. Be-
sides, it can be difficult for such models to recover incom-
plete dynamic patterns and combine with other modalities.

The second class of methods is based on spatial-temporal
models. Our method belongs to this class. The spatial-
temporal models seek to capture the dynamic patterns di-
rectly by spatial-temporal kernels or filters. Most notably,
Vondrick et al. [31] used the generative adversarial network
to train the spatial-temporal generator network on unlabeled
videos and demonstrated realistic temporal semantics on
video generation task. Xie [34] trained the spatial-temporal
energy model and also showed sharp generation results on
dynamic textures. However, the latent factors in their mod-
els are not inferred in the adversarial training and energy-
based training, and the lack of inference makes it hard to
deal with the pattern completion task in the learning stage.
Moreover, it is generally not easy to learn shared represen-
tation when other modalities are involved.

In the literature of dynamic patterns, there have been
considerable past efforts on modeling dynamic textures.
See [3, 29] for recent literature reviews. Dynamic tex-
tures are stochastic processes that exhibit stationary regu-
larity in the temporal domain. A major class of models on
dynamic textures focus on the state space auto-regressive
model for synthesis [5, 9, 38, 4] and classification [2, 36].
However, the spatial-temporal approach to such problems

has not been thoroughly explored. In this paper, we explore
such an approach. Meanwhile, our method can also be used
to model other dynamic patterns, e.g., simple actions, as
shown in the experiment section.

We leverage the inference-based approach recently pro-
posed by [9], and apply it to the modeling of dynamic
patterns. The main differences with [9] are (1) they only
considered frame-wise spatial generator model where only
qualitative synthesis results are presented. While we pro-
pose and analyze three types of video configurations by uti-
lizing different temporal and spatial stationarities, and per-
form thorough evaluations and comparisons over different
video tasks. (2) They only learn the representation from
single data modal, where we further extend it to tackle mul-
timodal shared representation learning [10]. (3) They didn’t
consider the video recovery tasks, while in our work, we not
only evaluate our method on such tasks, but also propose to
learn the initialization to further improve the recovery accu-
racy and efficiency.

The contributions of our paper are as follows:

• Proposing and analyzing three types of video models
based on generator network, and generalizing the alter-
nating back-propagation algorithm to learn such mod-
els.

• Improving the proposed algorithm by using the learned
initialization for video recovery tasks which renders
more accurate results.

• Conducting extensive experiments to show that our ap-
proach is competitive with existing spatial-temporal
generative models both qualitatively and quantita-
tively. We further show that it can be naturally ex-
tended to deal with multimodal shared representation
learning.

3. Model and algorithm
3.1. Spatial-temporal generator model

Let I(x, y, t) be an image sequence, where (x, y) ∈ S
indexes the pixel in the spatial domain, and t ∈ T indexes
the frame in the temporal domain. We assume that I is gen-
erated by a generator network. At the top of the network is
a layer of latent factors Z = (Zk, k = 1, ..., d). The model
is a non-linear generalization of factor analysis:

I = G(Z;W ) + ε,

Zk ∼ N(0, 1), ε(x, y, t) ∼ N(0, σ2), (1)

and all the Zk and ε(x, y, t) are independent. G(Z;W ) is a
non-linear transformation parametrized by a top-down con-
volutional neural network that consists of multiple layers
of deconvolution by spatial-temporal kernels, ReLU non-
linearity, and up-sampling. W consists of all the weight



and bias parameters of the spatial-temporal kernels of the
network.

For modeling image sequence I(x, y, t), we consider the
following three versions of the generator model:

(1) The dynamic pattern in I(x, y, t) is stationary in both
the spatial and temporal domains, such as water waves, rain,
snow etc. In that case, we assume Z = Z(x, y, t,m), where
(x, y) ∈ S(0), t ∈ T (0), and m = 1, ...,M , where S(0)
and T (0) are sub-sampled spatial and temporal domains,
i.e., the index k in Z = (Zk, k = 1, ..., d) takes the form
k = (x, y, t,m), so that at the top-layer Z consists of M
Gaussian white noise image sequences. We assume that the
kernel functions are all convolutional, so that G(Z;W ) is
stationary in both spatial and temporal domains after L lay-
ers of deconvolution and up-sampling. The up-sampling ex-
pands (S(0), T (0)) at the top layer to (S, T ) at the bottom
layer.

(2) The dynamic pattern in I(x, y, t) is stationary in the
temporal domain, but non-stationary in the spatial domain,
such as dynamic textures that exhibit stochastic repetitive-
ness in the temporal domain. In that case, we assume
Z = Z(m, t), where t ∈ T (0), and m = 1, ...,M . This
model corresponds to the model in (1) where S(0) is 1× 1.
The kernel functions at the top layer are convolutional in the
temporal domain, but are fully connected in the spatial do-
main, so that G(Z;W ) is stationary in the temporal domain
but non-stationary in the spatial domain.

(3) The dynamic pattern in I(x, y, t) is non-stationary
in both spatial and temporal domains, such as actions and
movements. In that case, we assume Z = Z(m), m =
1, ...,M . The model corresponds to the model in (1) where
S(0) is a single pixel, and T (0) is a single frame. The kernel
functions at the top layer are fully connected in both the
temporal and spatial domains.

Models in (1) and (2) can be learned from a single train-
ing sequence. Models in (1) can generate image sequences
with both the spatial and temporal ranges expanded. Models
in (2) can generate image sequences with expanded tempo-
ral range. Models in (3) need to be learned from multiple
sequences because of the lack of stochastic repetitiveness in
either the spatial or temporal domain.

3.2. Alternating back-propagation

We now briefly review the alternating back-propagation
algorithm [9]. The generator model can be learned from a
training set of image sequences {Ii, i = 1, ..., n} by max-
imum likelihood. The basic idea of the learning algorithm
is to perform gradient descent on the reconstruction error∑n
i=1 ‖Ii − G(Zi;W )‖2 alternatively over {Zi} and W .

Because Zi is a random vector, it can also be sampled from
its posterior distribution.

Specifically, we can write the model as Z ∼ p(Z) and
[I|Z;W ] ∼ p(I|Z;W ). The joint distribution p(I,Z;W ) is

such that

log p(I,Z;W ) = log [p(Z)p(I|Z;W )]

= − 1

2σ2
‖Y −G(Z;W )‖2 − 1

2
‖Z‖2 + const, (2)

where the constant term has nothing to do with I, Z, W .
The model can be learned by taking gradient of the ob-

served data log-likelihood L(W ) which can be obtained by
integrating out Z [9]:

∂

∂W
L(W ) =

∂

∂W
log p(I;W )

= Ep(Z|I,W )

[
∂

∂W
log p(I,Z;W )

]
, (3)

where p(Z|I;W ) = p(I,Z;W )/p(I;W ) ∝ p(I,Z;W ) is
the posterior distribution of Z given I. The algorithm iter-
ates between the so called inferential step and learning step.

For the inferential step, Langevin dynamics is used to ap-
proximate the expectation with respect to p(Z|I;W ) which
iterates

Zτ+1 = Zτ + δEτ

− δ2

2

∂

∂Z

[
1

2σ2
‖I−G(Zτ ;W )‖2

]
, (4)

where τ indexes the step for the Langevin sampling, δ is
the step size, and Eτ ∼ N(0, Id), i.e., the components of
E are independent standard normal random variables. After
the inferential step, posterior sampled Z can be obtained for
each image sequence.

For the learning step, the inferred Zs are used to approx-
imate ∂ log p(Ii;W )/∂W , and the spatial-temporal genera-
tor can be learned by stochastic gradient descent according
to:

L′(W ) ≈
n∑
i=1

∂

∂W
log p(Ii,Zi;W )

=

n∑
i=1

1

σ2
(Ii −G(Zi;W ))

∂

∂W
G(Zi;W ).(5)

Both the inferential step and the learning step are based
on back-propagations of the error Ii −G(Zi;W ).

3.3. Initializing inferential back-propagation

To initialize Zi in the Langevin dynamics of the infer-
ential back-propagation, we can simply draw Zi from its
prior distribution in the first epoch. In each subsequent
epoch, we initialize Zi from its current value. This is the
approach used in the original alternating back-propagation
algorithm [9]. But this approach may be ineffective when
dealing with incomplete data, since the Langevin may need



Algorithm 1 Alternating back-propagation
Require:

(1) training image sequences {Ii, i = 1, ..., n}
(2) number of Langevin iterations l and learning itera-
tions T

Ensure:
(1) learned generator network parameters W
(2) inferred latent factors {Zi, i = 1, ..., n}
(3) (Optional) learned initialization network parameters
V

1: Let t← 0, initialize W .
2: Initialize Zi (or Zi = f(Ii, V0)), for i = 1, ..., n.
3: repeat
4: Inferential step: For each i, run l steps of Langevin

dynamics to sample Zi ∼ p(Zi|Ii,W ) by starting
from the current Zi (or Zi = f(Ii;V )), each step
follows equation (4).

5: Learning step: Update W ←W + ηtL
′(W ), where

L′(W ) is computed according to equation (5), with
learning rate ηt.
(Optional) Update V ← V + εtR

′(V ) where R(V )
is the reconstruction error based on generated Ĩi (see
Section 3.3), with learning rate εt.

6: Let t← t+ 1
7: until t = T

a long run to get mixed when only partial information
is available. Therefore, the informative starting point is
needed for the Langevin dynamics. We propose to learn an
initialization network Ẑ = f(I;V ), so that for each Ii, we
initialize the Langevin dynamics from Ẑi = f(Ii;V ). We
can learn f(I;V ) from the data generated by the current
model. Specifically, we generate (Z̃i, Ĩi, i = 1, ..., ñ) ∼
p(Z)p(I|Z;Wt). Then we update V by gradient descent
that minimizes R(V ) =

∑ñ
i=1 ‖Z̃i − f(Ĩi;V )‖2. This

method is related to the sleep phase of the wake-sleep al-
gorithm. It is different from the wake-sleep algorithm [12]
in that we do not use Ẑi as the inferred value. It only serves
to initialize the Langevin dynamics that samples from the
posterior distribution. Algorithm 1 describes the the learn-
ing and sampling algorithm.

3.4. Recover incomplete sequences

The alternating back-propagation learning method can
be used to recover the incomplete image sequences in ei-
ther the testing stage or the training stage.

(1) Pattern completion in the testing stage. Suppose we
learn the generator model G(Z;W ) from complete training
image sequences {Ii}. For a testing sequence I, suppose
some frames or pixels are occluded. We can recover I using
the inferential step described in the above subsection. The

only difference is in the computation of ‖I − G(Z;W )‖2
in equation (4), where, instead of summing over all the pix-
els in the image sequence, we only sum over the observed
pixels. After inferring Z by the Langevin dynamics, we can
then feed it to the learned generator model to recovery I as
G(Z;W ).

(2) Pattern completion in the training stage. Suppose we
want to learn a generator model G(Z;W ) from incomplete
training image sequences {Ii}, where some frames or pixels
of each Ii are occluded. We can still learn the model with
a minor change in the learning algorithm. Again the differ-
ence is in the computation of ‖Ii−G(Zi;W )‖2 in equation
(4) in the inference step and in equation (5) in the learning
step, where we only sum over the observed pixels. At the
end of the learning algorithm, we obtain {Zi} and W , so
that the training image Ii can be recovered by G(Zi;W ).

3.5. Multimodal shared representation

The alternating back-propagation algorithm can also be
used to learn a shared representation when multiple modal-
ities are presented.

Suppose we have image sequences {Ii} and correspond-
ing audio sequences {Ai}. In order to learn the common
representation, we can build one spatial-temporal generator
G(Z;WI) for video and one temporal generator G(Z;WA)
for audio. These generators should share the same latent
factor Z. This task can be naturally fitted into the cur-
rent algorithm, by adding an extra reconstruction ‖A −
G(Z;WA)‖2 for the inferential step to drive the represen-
tation Z to contain information from both image sequences
and audio sequences. During testing, we can use the learned
generator for one modality (e.g., audio) to infer the common
Z, then feed it to the learned generator of the other modality
(e.g., video) to make a prediction.

4. Experiments
We train the spatial-temporal generator network on a

wide range of dynamic patterns randomly selected from the
DynTex [22] database, action database [8], and from the
Internet. Representative ones that contain various spatial-
temporal features are chosen for our experiments. Each
video sequence from the selected category is partitioned
into segments of 32 frames, and such segments are used
for training and testing. The pixel values are scaled to be
within the range of [-1, 1]. For the generator network, we
adopt the architecture that is similar to the generator net-
work of [31] with different top-layer structures for differ-
ent models. All the deconvolution layers are followed by
the batch normalization [13] and the ReLU non-linearity
except the last layer where tanh is used. The detailed de-
scriptions of our model structures will be given later. We
fix the standard deviation of noise vector σ = 1 for qualita-
tive experiments and σ = 0.5 for quantitative experiments.



Figure 1. Synthesized dynamic sequences using three versions of the generator model. For each category, the first row displays frames
of the training sequence, and the second row displays the frames of the generated sequence. The first category shows the synthesized
sequence generated by model-1 with the original length. Category 2, category 3 display the synthesized sequences generated by model-2
with doubled length. The last category displays the generated sequence by model-3.

Figure 2. The comparison results for moving grid sequence. First
row: 8 frames of the training sequence. Second row: 8 frames of
the generated sequence using our method. Third row: 8 frames of
the generated sequence using [9]. Fourth row: 8 frames of gener-
ated sequence using [5].

We use l = 20 steps of Langevin dynamics in each learn-
ing iteration, and the Langevin step size is set to 0.1. We
use the Adam [16] optimizer with a fixed learning rate of
0.0002 and momentum term of 0.5. The algorithm is ter-
minated after 500 iterations. More results can be found on
the project page: https://hthth0801.github.io/

UCLA_files/wacv2019_project/main.html

4.1. Qualitative experiments

Our method can be used to generate different dynamic
patterns. Once the spatial-temporal generator network
is learned, we randomly sample the latent factors from
N(0, I), and then use the learned generator to transform the
latent factors to the synthesized video sequence.

We perform two sets of qualitative experiments to visu-
alize the learned spatial-temporal generator networks and
compare with other popular video models in the literature.

Dynamic pattern synthesis. Most of the dynamic pat-
terns exhibit some regularities in either the spatial or tem-
poral domain. By utilizing various convolutional structures,
we can synthesize realistic patterns even with a single train-
ing video. Specifically, we experiment with three model
structures corresponding to the three versions of the gener-
ator models described in section 3.1,

(1) Model-1 corresponds to the model that is stationary



Figure 3. First row: bark water training sequence. Second row:
frames from the generated sequences using our method. Third
row: frames from the generated sequences using 3D GAN [31].
in both the spatial and temporal domains. We learn a 4-layer
ConvNet, where there are 256, 128, 64 and 3 filters with the
size of 4 × 4 × 4 and a stride of 2 in 4 layers respectively.
We use 8 × 8 × 4 × 2 latent factors to generate dynamic
patterns.

(2) Model-2 corresponds to the model that is stationary
in the temporal domain, but non-stationary in the spatial do-
main. We learn a 6-layer ConvNet, where the first layer has
512 filters with a size of 4 × 4 × 1 and a stride of 1. The
second layer has 64 filters with a size of 7 × 7 × 7 and a
stride of 1. There are 256, 128, 64 and 3 filters with a size
of 4 × 4 × 4 and a stride of 2 from layer 3 to layer 6. We
use 1 × 1 × 8 × 20 latent factors to generate the dynamic
patterns of the double length.

(3) Model-3 corresponds to the model that is non-
stationary in both the spatial and temporal domains. We
learn a 6-layer ConvNet, where the first layer has 512 fil-
ters with the size of 4 × 4 × 1 and stride of 1. The second
layer has 384 filters with the size of 7 × 7 × 7 and stride
of 1. There are 256, 128, 64 and 3 filters with the size of
4 × 4 × 4 and stride of 2 from layer 3 to layer 6. We use
1× 1× 1× 20 latent factors to generate dynamic patterns.

We use 64 frames for training in model-1 and model-2,
and show various synthesis results in Figure 1.

Comparison. We compare our method with state space
auto-regressive models [9, 5] for dynamic textures. Since
their methods are based on frame-wise modeling, we set
the latent dimension to 20 for each frame as suggested in
their papers. Figure 2 shows one comparison result. It can
be seen that frame-wise modeling can accumulate noises,
rendering less sharp synthesis results as time evolves.

We also compare our method with 3D generative adver-
sarial model [31], i.e., 3D GAN. We use the code provided
on their webpage. Figure 3 shows one comparison result.

4.2. Quantitative experiments

To evaluate our method quantitatively, we perform four
sets of experiments. We first apply the model-2 structure
on a single training sequence for the interpolation task.
Then we compare our model, i.e., 3D ABP, with the cur-
rent state of the art generative adversarial model [31], i.e.,
3D GAN, for recovery tasks. In addition, we perform mul-
timodal representation learning and compare the predic-
tion errors with the baseline method. For fair compari-

Table 1. Interpolation errors for various training videos with dif-
ferent occlusion masks.

Methods Consecutive Block Random Block
LHD ours LHD ours

flag 0.1359 0.0392 0.1111 0.0300
waterfall 0.2720 0.2558 0.2666 0.2393

waterstone 0.1899 0.1321 0.1717 0.1251
light 0.0728 0.0725 0.0586 0.0400

elevator 0.1043 0.0768 0.0735 0.0463
son with [31], we adopt the model-3 structure which as-
sumes non-stationarity in both the spatial and temporal do-
mains. For recovery tasks, we further use learned initializa-
tion to improve the original model, i.e., LI-ABP, and we also
provide strong baseline models, i.e., 3D variational auto-
encoder (3D VAE), based on the original variational auto-
encoder [17, 25], and 3D wake sleep models (3D WS) based
on [12]. The 3D VAE and 3D WS share the same generator
network structure as our models and 3D GAN [31]. For the
inference network for 3D VAE, 3D WS and our model (LI-
ABP), it has the “mirror” structure as its generator network,
with convolution and LeakyReLU (with ratio 0.2) to replace
the deconvolution and typical ReLU used in the generator.
For all five models, we set the latent factor dimension to
100.

Interpolation of time-stationary patterns. For video
sequences with repetitive patterns in the temporal domain,
our method can efficiently learn such patterns by assum-
ing Z = Z(m, t) even on a single training sequence. We
evaluate our method by interpolation. We consider two
types of missing patterns. The first type is the consecu-
tive block, in which we entirely block 8 consecutive frames
in the middle of the training sequence. The second type
is the random block, in which we entirely block 3 consec-
utive frames in 3 randomly chosen positions in the train-
ing sequence. Each interpolation experiment is performed
on only one video training sequence. Note that the cur-
rent 3D GAN model [31] cannot easily do this, because the
spatial-temporal non-stationary structure is used in their pa-
per and it lacks the inference mechanism. We compare our
approach with the widely used Laplacian Heat Diffusion
method (LHD) where we extend the 2D Laplacian kernel
to 3D version, and we use 500 sweeps for the video inter-
polation with learning rate 0.5. Table 1 shows the recovery
errors for various kinds of dynamic patterns and different
missing patterns. The recovery error is defined as the per-
pixel absolute difference between the ground truth video
and the recovered video on the occluded pixels. Figure 4
shows the interpolation results on the consecutive block pat-
tern. It can be seen that our method can get sharper and
more realistic results.

Video recovery. For this task, we split the train-
ing/testing video sequences by about 4:1 in proportion, and
randomly block the testing videos using different occlu-
sion patterns. For adversarial trained network [31], we ap-



Figure 4. Interpolation results. The first row displays the occluded training sequence. The second row displays the interpolation results by
our method. The third row shows the interpolation results by using Laplacian heat diffusion.

Videos flag elevator grid windmill flower traffic

M0.5

3D GAN [31] 0.3385 0.1679 0.3696 0.2151 0.1084 0.1697
3D VAE [17] 0.1603 0.0485 0.2516 0.1170 0.0624 0.0943

3D WS 0.2074 0.1345 0.2526 0.1341 0.0750 0.1142
3D ABP 0.1370 0.0457 0.2106 0.1157 0.0662 0.0903
LI-ABP 0.1179 0.0456 0.1996 0.1143 0.0598 0.0898

P20

3D GAN [31] 0.3380 0.1796 0.3542 0.2483 0.1160 0.1780
3D VAE [17] 0.1511 0.0591 0.1981 0.1643 0.0686 0.1037

3D WS 0.2003 0.1109 0.2221 0.1869 0.0783 0.1275
3D ABP 0.1459 0.0562 0.2044 0.1621 0.0733 0.1001
LI-ABP 0.1286 0.0553 0.1914 0.1585 0.0655 0.0993

B35

3D GAN [31] 0.3382 0.1803 0.4505 0.2626 0.1208 0.1740
3D VAE [17] 0.1801 0.0591 0.2082 0.1851 0.0752 0.1012

3D WS 0.2905 0.1060 0.2339 0.2462 0.0932 0.1237
3D ABP 0.1778 0.0577 0.2159 0.1779 0.0831 0.0991
LI-ABP 0.1583 0.0570 0.2000 0.1758 0.0728 0.0965

Table 2. Recovery errors for various incomplete testing videos with different occlusion masks.

ply the inferential mechanism powered by Langevin dy-
namic for direct comparison with our method. For 3D VAE
and 3D WS, we use their own learned inference networks
and iteratively impute the occluded pixels during inference
stages [25].

We experiment on three types of occlusions: (1) salt and
pepper mask (M) which covers roughly 50% (M0.5) of the
pixels per-frame. (2) 2D patch occlusion (P) where we ran-
domly place a 20×20 (P20) mask on each frame. (3) 3D
block occlusion (B) where we randomly place a 35×35×20
block in the whole video. For the inference stage on oc-
cluded testing videos, we run the inference step for 200 it-
erations with step size 0.05 for Langevin dynamic. Table
2 shows recovery errors for various kinds of dynamic pat-
terns and different occluding masks. It can be seen that our
proposed ABP based methods show competitive or supe-
rior performance over baseline models, in particular, ABP
with learned initialization outperform all models. ABP with
leaned initialization further boost the performance over 3D
ABP since the initializer learned can give us a more infor-
mative starting point of Langevin dynamics in the testing
stage than one from simple Gaussian distribution.

Learning from incomplete videos. We also evaluate

our methods on a much more difficult task: learning directly
from incomplete videos while completing them during the
learning stage. This task is generally infeasible for mod-
els that do not have an inference mechanism, because such
models cannot easily borrow strength from other training
videos. Our methods and the baseline methods can be eas-
ily adapted to this task with a simple modification in which
we only consider the observed pixels for our objective func-
tion. To the best of our knowledge, there is no prior work on
this task using video generative models, so we only compare
our methods with the implemented 3D VAE and 3D WS as
our baselines.

We again experiment on three types of occlusions for this
task, including salt and pepper noise, 2D patch occlusion
and 3D block occlusion as described above. Table 3 dis-
plays the recovery errors on various dynamic patterns for 3
different occlusion types. It can be seen that the inference-
based methods are well suited for this task, and our methods
are competitive and outperform baseline methods in terms
of recovery errors. Compared to 3D ABP, if we use learned
initialization, it tends to give better recovery results in most
cases, the reason is that the initialization network can pro-
vide sensible starting point of latent factors transition, there-



Experiments elevator windmill flag1 flamingo flag2

M0.5

3D VAE [17] 0.0421 0.0442 0.0296 0.0478 0.0775
3D WS 0.0423 0.0451 0.0300 0.0483 0.0787
3D ABP 0.0415 0.0412 0.0283 0.0471 0.0772
LI-ABP 0.0410 0.0418 0.0279 0.0467 0.0739

P20

3D VAE [17] 0.0422 0.0464 0.0375 0.0467 0.9746
3D WS 0.0422 0.0479 0.0397 0.0457 0.0955
3D ABP 0.0415 0.0439 0.0363 0.0441 0.0947
LI-ABP 0.0416 0.0434 0.0369 0.0441 0.0927

B25X25X15

3D VAE [17] 0.0525 0.0773 0.0400 0.0603 0.1601
3D WS 0.0487 0.0758 0.0384 0.0606 0.1591
3D ABP 0.0476 0.0769 0.0389 0.0589 0.1592
LI-ABP 0.0463 0.0751 0.0370 0.0589 0.1582

Table 3. Recover error for the various incomplete training videos based on different occlusion masks.

Experiments Execuse Goodby Hello How Nice Seeyou Sorry Thank Time Welcome

V → A
CCA 0.1779 0.1828 0.1878 0.1894 0.1870 0.1889 0.1943 0.1842 0.1818 0.1821
ours 0.0179 0.0243 0.0199 0.0379 0.0210 0.0184 0.0306 0.0164 0.0301 0.0348

A→ V
CCA 0.4269 0.4468 0.4326 0.6225 0.4549 0.4811 0.5945 0.4472 0.6044 0.5892
ours 0.1771 0.1860 0.1758 0.1735 0.1791 0.1747 0.1788 0.1713 0.1846 0.1743

Table 4. Average prediction errors on missing modality for different phrases.
fore would not easy to trap in local modes compared to 3D
ABP which updates the latent factors based on their current
values. Note that we only ran 10 steps of Langevin in LI-
ABP which is more efficient.

Multimodal shared representation learning. We fur-
ther evaluate the shared representation learned for both
video and audio modalities. Most of the existing meth-
ods [20, 28, 1], used spectrogram for audio representation,
and require labels for both modalities, so they could hardly
generate raw signals. In this paper, we directly use raw au-
dio and video sequences as inputs and focus on the gen-
eration of the missing modality. Note that this task is in
general infeasible for models without inference mechanism
and not easy for variational methods which need elaborately
designing the proper approximate shared posteriors. One
feasible and well-known approach for this task is canonical
correlation analysis (CCA) [11, 35] which finds the linear
transformations of audio and video data to form a shared
representation. Our model can be naturally seen as a non-
linear version of CCA where two generator nets are trained
to find non-linear transformations and latent factors Z are
shared across both modalities during inference.

We experiment on OuluVS dataset [39] which includes
audio and pre-extracted mouth ROI sequences for 20 per-
sons speaking 10 phrases 5 times. We circularly add or
delete mouth images to make each video clip contains 32
frames, each of size [64, 64]. We also fix the length of au-
dios to be 48, 000 which equals the sample rate, and only
keep the first sound channel for simplicity. We use Model-3
spatial-temporal generator structure for videos, and 4-layer
1D ConvNet for audios. For audio net, there are 512, 256,

128, 1 filters for each deconvolution layer, and the filter
size is 20 × 1 of stride 10 for all layers. We also uti-
lize batch normalization and ReLU non-linearity except the
last layer where tanh is used. For training, we randomly
choose 10 persons, each saying 10 phrases 5 times, and use
corresponding audios and videos to learn our model and
CCA. For testing, we randomly select 3 new persons to:
(1) predict the mouth movement based on their audios only
(A → V ), (2) predict the audio track based on their mouth
movements only (V → A). We run 200 steps of Langevin
dynamics with stepsize 0.1 for the inference of our model.
Table 4 shows the mean absolute per-pixel/signal prediction
error on 10 different phrases. A lower error indicates a more
powerful model for preserving the common information be-
tween two modalities.

5. Conclusion

This paper proposes to learn different types of gener-
ator networks from video sequences using the alternating
back-propagation method. We show that our method can
learn realistic models of dynamic patterns, recover incom-
plete video sequences. We further propose to use learned
initialization for better recovery and we show the proposed
method can help to learn shared representation over multi-
ple modalities.
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