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Motivation





CHAPTER 1

Introduction to the Weil conjectures

The story of the Weil conjectures has many layers to it. On the surface it
might seem simple enough: the conjectures postulated the existence of certain
formulas for the number of solutions to equations over finite fields. The rather
amazing thing, however, is that the conjectures also provided a link between these
formulas and the world of algebraic topology. Understanding why such a link
should exist—and in the process, proving the conjectures—was one of the greatest
mathematical achievements of the twentieth century. It is also one which has had
lasting implications. Work on the Weil conjectures was one of the first places that
deep algebraic-topological ideas were developed for varieties over arbitrary fields.
The continuation of that development has taken us through Quillen’s algebraic
K-theory and Voevodsky’s motivic cohomology, and is still a very active area of
research.

In Sections 1 and 2 of this chapter we will introduce the Weil conjectures via
several examples. Section 3 discusses ways in which the conjectures are analogs
of properties of the classical Riemann zeta function. Then in Sections 4 and 5
we outline the cohomological approach to the problem, first suggested by Weil
and later carried out by Grothendieck and his collaborators. The chapter has two
appendices, both dealing with further examples. Appendix A introduces the reader
to some tools for computer calculations. Appendix B treats the class of examples
originally handled by Weil, which involve an intriguing connection with algebraic
number theory.

1. A first look

Let’s dive right in. Suppose given polynomials f1, . . . , fk ∈ Z[x1, . . . , xn]. Fix
a prime p, and look at solutions to the equations

f1(x1, . . . , xn) = f2(x1, . . . , xn) = . . . = fk(x1, . . . , xn) = 0

where x1, . . . , xn ∈ Fpm and the coefficients of the fi’s have been reduced modulo
p. Let Nm denote the number of such solutions. Our task will be to develop a
formula for Nm as a function of m.

In the language of algebraic geometry, the mod p reductions of the fi’s define
an algebraic variety X = V (f1, . . . , fk) over the field Fp. The set of points of this
variety defined over the extension field Fpm is usually denoted X(Fpm), and we have
Nm = #X(Fpm).

Example 1.1. Consider the single equation y2 = x3 + x and take p = 2.
Over F2 there are exactly two solutions for (x, y), namely (0, 0) and (1, 0). Over
F4 = F2[ω]/(ω2+ω+1) one has four solutions: (0, 0), (1, 0), (ω, ω), and (ω+1, ω+1).
So we have N1 = 2 and N2 = 4.
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6 1. INTRODUCTION TO THE WEIL CONJECTURES

We will mostly want to talk about projective varieties rather than affine va-
rieties. If F is a field, let An(F ) = {(x1, . . . , xn) : xi ∈ F} and let Pn(F ) =
[An+1(F )− 0]/F ∗ where F ∗ acts on An(F ) by scalar multiplication. Given homo-
geneous polynomials fi ∈ F [x0, . . . , xn], consider the set of common solutions to
the fi’s inside of Pn(F ). These are the F -valued points of the projective algebraic
variety X = V (f1, . . . , fk).

Example 1.2. Consider the single equation y2z = x3 +xz2. Over F2 there are
three solutions in P3, namely [0, 0, 1], [1, 0, 1], and [0, 1, 0]. Over F4 there are five
solutions: [0, 0, 1], [1, 0, 1], [ω, ω, 1], [ω + 1, ω + 1, 1], [0, 1, 0].

Given homogeneous polynomials f1, . . . , fk ∈ Z[x1, . . . , xn+1], we will be con-
cerned with counting the number of points of V (f1, . . . , fk) defined over Fpm . We
will start by looking at two elementary examples which can be completely under-
stood by hand.

Example 1.3. X = Pd. As Pd(Fpm) = [Ad+1 − 0]/(Fpm)∗ we have

Nm(X) =
(pm)d+1 − 1

pm − 1
= 1 + pm + p2m + · · ·+ pdm.

Example 1.4. X = Gr2(Ar), the variety of 2-planes in Ar. The points of X
are linearly independent pairs of vectors modulo the equivalence relation given by
the action of GL2. To specify a linearly independent pair, one chooses a nonzero
vector v1 and then any vector v2 which is not in the span of v1. The number of
ways to make these choices is [(pm)r − 1] · [(pm)r − pm]. Similarly, the number of
elements of GL2(Fpm) is [(pm)2 − 1] · [(pm)2 − pm]. Hence one obtains

Nm(X) =
[(pm)r − 1] · [(pm)r − pm]

[(pm)2 − 1] · [(pm)2 − pm]
= 1 + pm + 2p2m + 2p3m + 3p4m + 3p5m + · · ·

To take a more specific example, when X = Gr2(A6) one has

Nm(X) = 1 + pm + 2p2m + 2p3m + 3p4m + 2p5m + 2p6m + p7m + p8m.

Now, the above examples are extremely trivial—for reasons we will explain
below—but we can still use them to demonstrate the general idea of the Weil
conjectures. Recall that the rational singular cohomology groups of the space CP d

(with its classical topology) are given by

Hi(CP d; Q) =

{
Q if i is even and 0 ≤ i ≤ 2d,

0 otherwise.

Likewise, the odd-dimensional cohomology groups of Gr2(C6) all vanish and the
even-dimensional ones are given by

i 0 1 2 3 4 5 6 7 8

H2i(X ; Q) Q Q Q2 Q2 Q3 Q2 Q2 Q Q

Note that in both examples the rank of H2i(X ; Q) coincides with the coefficient of
pim in the formula for Nm(X). This is the kind of phenomenon predicted by the
Weil conjectures: relations between a formula for Nm(X) and topological invariants
of the corresponding complex algebraic variety.
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In the cases of Pd and Gr2(Ad) (as well as all other Grassmannians), there is a
very easy explanation for this coincidence. Consider the sequence of subvarieties

∅ ⊆ P0 ⊆ P1 ⊆ · · · ⊆ Pd−1 ⊆ Pd

Each complement Pi − Pi−1 is isomorphic to Ai, and we can calculate the points
of Pd by counting the points in all the complements and adding them up. As the
number of points in Ai defined over Fpm is just (pm)i, this immediately gives

Nm(Pd) = 1 + pm + p2m + · · ·+ pdm

just as we found earlier.
But the same sequence of subvarieties—now considered over the complex

numbers—gives a cellular filtration of CP d in which there is one cell in every even
dimension. The cells are the complements CP i − CP i−1. Of course this filtration
is precisely what let’s one calculate H∗(CP d; Q).

The same kind of argument applies to Grassmannians, as well as other flag
varieties. They have so-called “algebraic cell decompositions” given by the Schubert
varieties, where the complements are disjoint unions of affine spaces. Counting the
Schubert cells determines both Nm(Grk(Cn)) and H∗(Grk(Cn); Q).

1.5. Deeper examples. If all varieties had algebraic cell decompositions then
the Weil conjectures would be very trivial. But this is far from the case. In fact,
only a few varieties have such decompositions. So we now turn to a more difficult
example.

Example 1.6. X = V (x3 + y3 + z3). This is an elliptic curve in P2 (recall that

the genus of a degree D curve in P2 is given by
(

D−1
2

)
). So if we are working over

C, then topologically we are looking at a torus.
Counting the number of points ofX defined over Fpm is a little tricky. Weil gave

a method for doing this in his original paper on the conjectures [W5], using some
nontrivial results about Gauss and Jacobi sums. We will give this computation
in Appendix B, but for now we’ll just quote the results. When p = 7 (to take a
specific case), computer calculations show that

N1 = 9, N2 = 63, N3 = 324, and N4 = 2331.

Weil’s method gives the formula

Nm = 1−
[(−1 + 3

√
3i

2

)m

+

(−1− 3
√

3i

2

)m
]

+ 7m,

which is in complete agreement. For convenience let α1 = (−1 + 3
√

3i)/2 and
α2 = α1.

Let’s compare the above formula for Nm to the singular cohomology of the
torus. It probably seems unlikely that the latter would ever let us predict the
strange numbers α1 and α2! Despite this, there are several empirical observa-
tions we can make. If T is the torus, recall that H0(T ; Q) = H2(T ; Q) = Q and
H1(T ; Q) = Q ⊕ Q. We can surmise that the even degree groups correspond to
the 1 and 7m terms, just as we saw for projective spaces and Grassmannians. The
two Q’s in H1(T ; Q) are somehow responsible for the αm

1 and αm
2 terms. Note

that |α1| = |α2| =
√

7, so this suggests that in general Hj(X ; Q) should contribute

terms of norm (7
j
2 )m to the formula for Nm(X). The way we have written the
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above formula further suggests that terms coming from Hj(X ; Q) are counted as
negative when j is odd, but positive when j is even.

Also notice that α1α2 = 7. This should be compared to what one knows about
H∗(T ; Q), namely that the product of two generators inH1 gives a generator forH2.
This is related to Poincaré duality, and perhaps that is a better way to phrase this
observation. The role of Poincaré duality is most evident in the Gr2(A6) example
done earlier, where one clearly sees it appearing as a symmetry in the formula for
Nm. We can write this symmetry as follows. If d is the dimension of the variety
X , then

Nm(X)

pdm
= N−m(X)

where the right-hand-side means to formally substitute −m for m in the formula
for Nm(X). The relation α1α2 = 7 says precisely that this equation is satisfied in
the case of our elliptic curve.

Let’s take a moment and summarize the observations we’ve made so far. Sup-
pose X is a projective algebraic variety of dimension d defined by equations with
integral coefficients. Let’s also assume it’s smooth, although the necessity of that
assumption is not yet clear. Fix a prime p. We speculate that there is a formula

Nm(X) = 1− [αm
1,1 + αm

1,2+ · · ·+ αm
1,b1 ] + [αm

2,1 + · · ·+ αm
2,b2 ]− · · ·

+ (−1)2d−1[αm
2d−1,1 + · · ·+ αm

2d−1,b2d−1
] + pmd

in which bj is the rank of Hj(XC; Q) and |αj,s| = p
j
2 . Note that bj = b2d−j, by

Poincaré duality for XC (as XC is a 2d-dimensional real manifold). We specu-
late that there is an associated duality between the coefficients αj,s and α2d−j,s

which can be described either by saying that the set {αj,s}s coincides with the set
{pd/α2d−j,s}s, or by the equality of formal expressions

Nm(X)

pdm
= N−m(X).

We have just stated the Weil conjectures, although in a slightly rough form—
we have, after all, not been so careful about what hypotheses on X are actually
necessary. More formal statements will be given in the next section. For the
moment we wish to explore a bit more, continuing our empirical investigations.

Perhaps more should be said about the mysterious coefficients αj,s. In the
example of X = V (x3 +y3 +z3) and p = 7, α1 and α2 are algebraic integers—roots
of the polynomial x2 + x + 7. Could this polynomial have been predicted by the
cohomology of the torus? Let’s look at the variety Y = V (y2z−x3−xz2), which is
another elliptic curve in P2. When p = 7 computer calculations (see Appendix A)
give that

N1 = 8, N2 = 64, N3 = 344, and N4 = 2304.

One can check that this agrees with the formula

Nm(Y ) = 1−
[
(
√

7i)m + (−
√

7i)m
]

+ 7m.

In this case the α1 and α2 are the roots of the polynomial x2 − 7, which differs
from our earlier example. So the moral is that the algebraic topology of the torus,
while accounting for the overall form of a formula for Nm, does not determine the
formula completely.
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So far we have been working only with smooth, projective varieties. In the next
two examples we explore whether these hypotheses are really necessary.

Example 1.7 (Singular varieties). Again take p = 7, and let X be the nodal
cubic in P2 given by the equation y2z = x3 +x2z. This is the compactification—by
adding the single point [0 : 1 : 0]—of the plane curve y2 = x3 + x2 shown below:

-2
.5 -2

-1
.5 -1

-0
.5 0

0
.5 1

1
.5 2

2
.5-1.5

-1

-0.5

0

0.5

1

1.5

Over the complex numbers, X is the quotient of a torus by one of its fundamen-
tal circles (or equivalently, X is obtained from S2 by gluing two points together).
So the cohomology groups are equal to Z in dimensions 0, 1, and 2. Based on our
earlier examples, we might expect a formula Nm = 1 − Am + 7m where |A| =

√
7.

Yet simple computer calculations, explained in Appendix A below, show that

N1 = 7, N2 = 49, and N3 = 343.

The only value of A which is consistent with these numbers is A = 1, and of course
this does not have the correct norm. So the Weil conjectures do not seem to hold
for singular varieties.

This example can be better understood by blowing up the singular point of X .
This blow-up X̃ turns out to be isomorphic to P1, and the map X̃ → X just glues
two points together to make the singularity (this is the easiest way to understand
the topology of X over C). It is then clear that one has

Nm(X) = Nm(P1)− 1 = [pm + 1]− 1 = pm

(for any base field Fp). It is suggestive that we still have the formula

Nm = 1m −Am + pm,

except that the norm of A is 1 rather than p
1
2 . To fit this into context, consider

X as the quotient S2/A where A = {N,S} consists of the north and south pole.
Then the long exact sequence in cohomology gives

0 = H̃0(S2)→ H̃0(A)→ H1(X)→ H1(S2) = 0.

This gives H1(X) ∼= Z, but what is important is that the Z in some sense ‘came
from’ an H0 group; this seems to be responsible for it it contributing terms to the

formula for Nm of norm 1 rather than norm p
1
2 .

What we are seeing here is the beginning of a long story, which would eventually
take us to motives, mixed Hodge structures, and other mysteries. We will not pursue
this any further at the moment, however. Suffice it to say that the Weil conjectures
do not hold, as stated, for singular varieties, but that there may be some way of
fixing them up so that they do hold.

Example 1.8 (Affine varieties). Consider X = Ak− 0. Then over the complex
numbers this is homotopy equivalent to S2k−1, hence its cohomology groups have
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a Z in dimension 0 and 2k − 1. The Weil conjectures might lead one to expect a

formula Nm = 1−Am where |A| = q
2k−1

2 . What is actually true, however, is

Nm = (qm)k − 1 = (qk)m − 1m.

So we find that the Weil conjectures—in the form we have given them—do not hold
for varieties which are not projective.

This discrepancy can again be corrected with the right perspective. The key
observation is that here one should not be looking at the usual cohomology groups,
but rather at the cohomology groups with compact support . We will discuss this
more in Chapter 2, but for now suffice it to say that these are just the reduced
cohomology groups of the one-point compactification. In our case, the one-point
compactification of Ck − 0 is S2k with the north and south poles identified. The
cohomology with compact supports therefore has a Z in degrees 1 and 2k, with
the Z in degree one in some sense ‘coming from’ an H0 as we saw in the previous
example. Thus, the formula Nm = −1m +(qk)m now fits quite nicely with the Weil
conjectures.

For the rest of this chapter we will continue to focus on smooth, projective
varieties. But it is useful to keep the above two examples in mind, and to realize
that with the right perspective some form of the Weil conjectures might work in a
more general setting.

2. Formal statement of the conjectures

We will state the Weil conjectures in two equivalent forms. The first is very
concrete, directly generalizing the discussion from the last section. The second ap-
proach, more common in the literature, uses the formalism of generating functions.

First we review some basic material. If K is a number field (i.e., a finite
extension of Q), recall that the ring of integers in K is the set OK ⊆ K consisting
of elements which satisfy a monic polynomial equation with integral coefficients. If
℘ ⊆ OK is a prime ideal, then OK/℘ is a finite field.

In the last section we started with homogeneous polynomials fi ∈ Z[x0, . . . , xn]
and considered their sets of zeros over extension fields of Fp. One could just as well
start with fi ∈ OK [x0, . . . , xn] and look at solutions in extension fields of OK/℘,
for any fixed prime ℘ ⊆ OK .

Let X be a variety defined over a finite field Fq. One says that X lifts to
characteristic zero if there is an algebraic variety X defined over the ring of
integers O in some number field, together with a prime ideal ℘ ⊆ O, such that
O/℘ ∼= Fq and X is isomorphic to the mod ℘ reduction of X.

2.1. First form of the Weil conjectures. Let X be a smooth, projective
variety defined over a finite field Fq (here q = pe for some prime p). Write Nm(X) =
#X(Fqm), and let d be the dimension of X .

Conjecture 2.2 (Weil conjectures, version 1).

(i) There exist non-negative integers b0, b1, . . . , b2d and complex numbers αj,s for
0 ≤ j ≤ 2d and 1 ≤ s ≤ bj such that

Nm(X) =

2d∑

j=0

(−1)j

( bj∑

t=1

αm
j,s

)
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for all m ≥ 1. Moreover, b0 = b2d = 1, α0,1 = 1, and α2d,1 = qd.

(ii) The αj,s are algebraic integers satisfying |αj,s| = qj/2.
(iii) One has bj = b2d−j for all j, and the two sequences (αj,1, . . . , αj,bj

) and

(qd/α2d−j,1, . . . , q
d/α2d−j,bj

) are the same up to a permutation.
(iv) Suppose that X lifts to a smooth projective variety X defined over the ring of

integers O in a number field. Let X(C) be the topological space of complex-
valued points of X. Then bj equals the jth Betti number of X(C), in the sense
of algebraic topology; that is, bj = dimQH

j(X(C); Q).

2.3. Second form of the conjectures. The equation given in 2.2(i) is some-
what awkward to work with, and it’s form can be simplified by using generating
functions. To see how, notice that if Nm = Am − Bm then one has an equality of
formal power series

∞∑

m=1

Nm
tm

m
= log

(
1

1−At

)
− log

(
1

1−Bt

)
= log

(
1−Bt
1 −At

)
.

Generalizing, the equation in 2.2(i) says that
∞∑

m=1

Nm
tm

m
= log

(
P1(t)P3(t) · · ·P2d−1(t)

P0(t)P2(t) · · ·P2d(t)

)

where Pj(t) =
∏

s(1− αj,s t).

It is traditional to define a formal power series

Z(X, t) = exp

( ∞∑

m=1

Nm
tm

m

)
.

This is called the zeta function of X . Using this, we may rephrase the Weil
conjectures as follows:

Conjecture 2.4 (Weil conjectures, version 2).

(i) There exists polynomials P0(t), . . . , P2d(t) such that

Z(X, t) =
P1(t)P3(t) · · ·P2d−1(t)

P0(t)P2(t) · · ·P2d(t)
.

Moreover, P0(t) = 1− t and P2d(t) = 1− qdt.
(ii) The reciprocal roots of Pj(t) are algebraic integers whose norm is qj/2.
(iii) If e =

∑
j(−1)j degPj(t), then there is an identity of formal power series

Z
(
X,

1

qdt

)
= (−1)bd+aqde/2 · te · Z(X, t).

where bd = degPd(t) and a is the multiplicity of −q−d/2 as a root of Pd(t).
(iv) Suppose that X lifts to a smooth projective variety X defined over the ring of

integers in a number field. Then degPj(t) coincides with the jth Betti number
of X(C), in which case the number e from (iii) is the Euler characteristic of
X(C).
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The statement in (i) is usually referred to as the rationality of the zeta-function.
The statement in (ii) that the inverse roots of Pj(t) have norm qj/2 is called the
Riemann hypothesis (for algebraic varieties over finite fields). The equation in
(iii) is called the functional equation for Z(X, t). These last two terms come from
analogies with the classical Riemann zeta function which will be explained in the
next section.

Remark 2.5. We have been somewhat vague in specifying where the coeffi-
cients of the Pi(t)’s actually live. A priori they need only live in C, but conjecture
(2.2)(ii) immediately implies that the coefficients of the Pi(t)’s will actually be al-
gebraic integers. We will see later that even more is true, and in fact the Pi(t)’s
will all live in Z[t].

We’ll briefly indicate the derivation of 2.4(iii), the other parts being obvious.
From the statement in (2.2iii) we have

P2d−j(t) =
∏

s

(1 − α2d−j,st) =
∏

s

(
1− qd

αj,s
t
)

(2.6)

=
(∏

s

αj,s

)−1

·
∏

s

(αj,s − qdt)

= (−1)bd · (qdt)bd ·
(∏

s

αj,s

)−1

·
∏

s

(
1− αj,s

qdt

)

= (−1)bd · (qdt)bd ·
(∏

s

αj,s

)−1

· Pj

( 1

qdt

)
.

Using that bj = b2d−j and
∏

s αj,s ·
∏

s α2d−j,s = (qd)bj (which follows from (2.2iii)),
we get

Pj(t)P2d−j(t) = (qdt)2bj · (qd)−bj · Pj

( 1

qdt

)
· P2d−j

( 1

qdt

)

= (qd)
bj+b2d−j

2 · t(bj+b2d−j) · Pj

( 1

qdt

)
· P2d−j

( 1

qdt

)
.

We may substitute this formula into the rational expression from (2.4i) and thereby
replace all the products Pj(t)P2d−j(t), but the middle term Pd(t) is left over. For
this term one must use (2.6) itself, which says that

Pd(t) = (−1)bd · (qdt)bd · ±q−
bd
2 · Pd

( 1

qdt

)
= ±(−1)bd · (qd)

bd
2 · tbd · Pd

( 1

qdt

)
.

Here we have used (2.2iii) to analyze the product
∏

s αd,s. We certainly have that

(
∏

s αd,s) · (
∏

s αd,s) = (qd)bd , and so
∏

s αd,s = ±(qd)bd/2. We must determine the

sign. Every term αd,s has a ‘dual’ term giving a product of qd, so as long as a term
is not its own dual its sign will cancel out of the product

∏
s αd,s. Some terms may

be their own dual, however. This can only happen if the term is qd/2 or −qd/2. The
terms qd/2 are positive and therefore do not affect the sign of

∏
s αd,s. So the sign

of this product is (−1)a, where a is the number of terms αd,s which are equal to

−qd/2.
Putting everything together, we have

Z(X, t) = (−1)bd+a(qd)−e/2 · t−e · Z(X,
1

qdt
)
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and this is equivalent to the functional equation from (2.4iii).

3. Zeta functions

In this section we will take a brief detour and discuss the relation between
various kinds of zeta functions—in particular, those of the Weil conjectures and
the classical Riemann zeta function. This will lead us to a third form of the Weil
conjectures, and will make it clear why the norm condition in (2.4ii) is called the
Riemann hypothesis .

3.1. Riemann’s function and its progeny. Recall that the Riemann zeta
function is defined by

ζ(s) =

∞∑

n=1

1

ns
=
∏

p

(
1− 1

ps

)−1

.

This is convergent and analytic in the range Re(s) > 1, but can be analytically
continued to give a meromorphic function on the whole plane. This meromorphic
function has zeros at all negative even integers (called the ‘trivial’ zeros), and these
are the only zeros in the rangeRe(s) < 0. There are no zeros in the rangeRe(s) > 1,
and the Riemann Hypothesis is that the only zeros in the so-called ‘critical strip’
0 ≤ Re(s) ≤ 1 are on the line Re(s) = 1

2 . The only pole of ζ(s) is a simple pole at
s = 1.

It is useful to define a ‘completed’ version of the Riemann zeta function by

ζ̂(s) = π− s
2 Γ
(s

2

)
ζ(s).

Here Γ is the classical gamma-function of complex analysis. One is supposed to
think of the above formula as adding an extra factor to the product

∏
p(1− p−s)−1

corresponding to the ‘prime at infinity’. It has the effect of removing the zeros at
the even negative numbers, and adding a pole at s = 0. The Riemann Hypothesis

is equivalent to the statement that all the zeros of ζ̂(s) lie on the line Re(s) = 1
2 .

Finally, we remark that ζ̂(s) satisfies the so-called functional equation ζ̂(s) =

ζ̂(1− s).
For all of the above facts one may consult [A, Chapter 5.4], or any other basic

text concerning the Riemann zeta function.

Let K be a number field with ring of integers O. One may generalize the
Riemann zeta function by defining

ζK(s) =

∞∑

n=1

αn

ns

where αn is the number of ideals I ⊆ O such that O/I has n elements (this is known
to be finite). Then ζK is called the Dedekind zeta function for K, and ζQ is just
the classical Riemann zeta function. It is known that ζK is analytic in the range
Re(s) > 1, and that it can be analytically continued to give a meromorphic function
on the plane with a single, simple pole at s = 1. There is a product formula, namely

ζK(s) =
∏

℘⊆O prime

(
1−N(℘)−s

)−1

where N(℘) denotes the order of the residue field O/℘.
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One again has a completed version of this zeta function, here defined as

ζ̂K(s) = Ds

(
Γ(s/2)

πs/2

)r1
(

Γ(s)

(2π)s

)r2

ζK(s)

where r1 and r2 are the numbers of real and complex places of K, and D is a
certain invariant ofK (the details are not important for us, but one may consult [Lo,
Chapter VIII.2]). This completed zeta function again satisfies a functional equation

ζ̂K(s) = ζ̂K(1− s), and the generalized Riemann Hypothesis is the conjecture that

all the zeros of ζ̂K lie on the line Re(s) = 1
2 .

Actually, we can generalize still further. Let X be a scheme of finite type over
Spec Z. For every closed point x ∈ X , the residue field κ(x) is a finite field (in fact,
κ(x) being a finite field is equivalent to x being a closed point in X). Write Xmax

for the set of closed points in X . Note that when X = SpecR this is just the set
of maximal ideals in R.

When x ∈ Xmax, define Nx = #κ(x), the number of elements in κ(x). Then
one defines

ζX(s) =
∏

x∈Xmax

(
1− (Nx)−s

)−1

in strict analogy with the classical Riemann zeta function. Note that when X =
Spec O, where O is a ring of integers in a number field, this definition does indeed
reduce to the Dedekind zeta function from above.

One must, of course, worry about whether the infinite product in the definition
of ζX actually makes sense. One can show that the product converges absolutely
when Re(s) > dimX , but not much is known beyond this. It is conjectured that
ζX has an analytic continuation to the entire plane, but this is only known in some
special cases. We refer the reader to [Se2] for an introduction.

3.2. Schemes over finite fields. The function ζX simplifies in the special
case where X is finite type over a finite field Fq. The residue fields of closed points

x ∈ X will all be finite extensions of Fq, and so one always has Nx = qdeg(x) where

deg(x) = [κ(x) : Fq].

For a general schemeX over Spec Z there will be different bases for the exponentials
in Nx as x varies, but for schemes over Fq this base is always just q. Based on this
observation, it is reasonable to perform the change of variable t = q−s and write
ζX as a function of t:

ζX(s) =
∏

x∈Xmax

(
1− tdeg(x)

)−1

.(3.4)

We claim that the expression on the right is none other than Z(X, t). Incidentally,
once we show this we will also have that Z(X, t) ∈ Z[[t]], as the above product
certainly is a power series with integer coefficients.

The coefficient of tn in (3.4) is readily seen to be

#
{
x ∈ Xmax : deg(x) = n

}
+

1

2
·#
{
x ∈ Xmax : deg(x) =

n

2

}

+
1

3
·#
{
x ∈ Xmax : deg(x) =

n

3

}
+ · · ·
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We have to relate this sum to #X(Fqn).
If F is a field over Fq, recall that an F -valued point of X is a map of Fq-schemes

SpecF → X . Specifying such a map is equivalent to giving a closed point x ∈ X
together with an Fq-linear map of fields κ(x)→ F . It follows that

#X(Fqn) =

∞∑

j=0

(
#{x ∈ Xmax : deg(x) = j} ·#Hom(Fqj ,Fqn)

)
.

But there are field homomorphisms Fqj → Fqn only when j|n, and the number of
such homomorphisms which are Fq-linear is just #Gal(Fqj/Fq) = j. So we have

#X(Fqn) =
∑

j|n

(
j ·#{x ∈ Xmax : deg(x) = j}

)

= n · (coefficient of tn in (3.4)).

We have therefore identified the product in (3.4) with Z(X, t). That is to say, one
has

ζX(s) = Z(X, q−s).

3.5. Zeta functions and the Weil conjectures.
Now we restrict to the case where X is smooth and projective over Fq, in which

case the Weil conjectures may be reinterpreted as statements about ζX(s).
What are the properties we would like for ζX(s)? In analogy with the classical

case, we would certainly like it to be meromorphic on the entire plane. But in fact
it is even nicer: according to the first Weil conjecture (2.4i), Z(X, q−s) is a rational
function in q−s. So ζX(s) is not only meromorphic, it is actually rational when
regarded in the right way.

The Riemann Hypothesis (2.4iii) says something about the zeros and poles of

ζX(s). Specifically, it says that ζX(s) = 0 only if |q−s| = q−
j
2 for some odd integer

j in the range 1 ≤ j ≤ 2d−1, where d = dimX . This is equivalent to the statement
that Re(s) = j

2 , for some j in this range. Likewise, (2.4iii) says that ζX has a pole

at s only if |q−s| = q−
j
2 for some even integer j in the range 0 ≤ j ≤ 2d. So we have

that the zeros of ζX satisfy Re(s) ∈ { 1
2 ,

3
2 , . . . ,

2d−1
2 } and the poles of ζX satisfy

Re(s) ∈ {0, 1, 2, . . . , d}. Moreover, the only pole satisfying Re(s) = 0 is s = 0 and
the only pole satisfying Re(s) = d is s = d.

Notice the relation with the classical Riemann Hypothesis for ζ̂, which is
morally the case where X is a compactified version of Spec Z. Here d = 1, and

so the statement is that the zeros of ζ̂ lie only on the line Re(s) = 1
2 , and the only

poles of ζ̂ are 0 and 1.
Finally we turn to the functional equation. Re-writing the equation in (2.4iii)

in terms of s, one immediately gets

ζX(s) = Z(X, q−s) = (−1)bd+a · qe(s− d
2 ) · Z(X, qs−d)

= (−1)bd+a · qe(s− d
2 ) · ζX(d− s).

Recall that bd is the degree of Pd(t) and a is the multiplicity of −q−d/2 as a root of
Pd(t). Alternatively, a can be taken to be the order of vanishing of ζX at the point
s = d

2 − π
ln q i (since this gives the same sign).

Here is a summary of everything we’ve just said:
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Conjecture 3.6 (Weil conjectures, version 3). Let X be a smooth, projective
variety of finite type over the field Fq. Let d = dimX.

(i) The zeta function ζX(s) is a rational function of q−s. It has simple poles at
s = 0 and s = d.

(ii) The zeros and poles of ζX lie in the critical strip 0 ≤ Re(s) ≤ d. All of

the zeros lie on the lines Re(s) = j
2 where j is an odd integer in the range

1 ≤ j ≤ 2d− 1. The poles lie on the lines Re(s) = j where j is an integer in
the range 0 ≤ j ≤ d.

(iii) ζX satisfies a functional equation of the form ζX(s) = ±qe(s− d
2 )ζX(d− s) for

some integer e.
(iv) Suppose that X lifts to a smooth projective variety X defined over the ring of

integers in a number field. Then when j is odd, the number of zeros of ζX on
the line Re(s) = j

2 coincides with the jth Betti number of X(C). When j is
even, the jth Betti number of X(C) is the number of poles of ζX on the line

Re(s) = j
2 .

4. A plan to prove the conjectures

The Weil conjectures were introduced, quite briefly, in [W5]. Weil spent most
of that paper working out a class of examples, stated his conjectures in the last
pages, and then stopped without further remark. It is not until the ICM lecture
[W6] that one finds a published suggestion for how one might go about proving
them.

Let X →֒ Pn be a smooth, projective variety over Fq. There is a canonical
morphism F : X → X which is the identity on the underlying topological space of
X and induces the qth power map OX(U) → OX(U) for every open set U ⊆ X .
This is called the geometric Frobenius morphism. (Note that if q = pe then there is
also a map of schemes X → X which induces the pth power—rather than the qth
power—on the ring of functions, but this is not a morphism of schemes over Fq).

For any extension field Fq →֒ E, let X(E) denote the set of maps SpecE → X
over Spec Fq. Then F induces the map

F : X(E)→ X(E), (x0, . . . , xn) 7→ (xq
0, . . . , x

q
n).

Let X = X×SpecFq
(Spec Fq) be the base extension of X to Fq. There are three

morphisms X → X which arise naturally. One is the map F × id. Another is the
map X → X which is the identity on topological spaces and is the qth power map
on rings of functions; we’ll call this map FX . Finally, there is a third map which

can be defined as follows. Let σ ∈ Gal(Fq/Fq) be the Frobenius element α 7→ αq.

Recall that Gal(Fq/Fq) ∼= Ẑ and σ is a topological generator. Then one also has

the map of schemes id × σ : X → X, called the arithmetic Frobenius morphism.
Note that F = F × σ = (F × id) ◦ (id× σ).

The only one of these three maps X → X which is a map of schemes over Fq is
F × id. Because of this, it is common to just write F as an abbreviation for F × id.
Be careful of the distinction between F and FX .

If X(Fq) denotes the set of maps Spec Fq → X over Spec Fq, then F induces
the map

F : X(Fq)→ X(Fq), (x0, . . . , xn) 7→ (xq
0, . . . , x

q
n).
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The fixed points of this map are therefore precisely the points of X(Fq), and more
generally the fixed points of the mth power Fm are the points of X(Fqm).

With this point of view, the Weil conjectures become about understanding the
number of fixed points of powers of F . In algebraic topology, the most basic tool
one has for understanding fixed points is the Lefschetz trace formula. This says
that if f : Z → Z is a continuous endomorphism of a compact manifold then the
number of fixed points of f (counted with appropriate multiplicities) is the same
as the Lefschetz number

Λ(f) =

∞∑

j=0

(−1)j tr
[
f∗∣∣

Hj(X;Q)

]
.

Note that this is really a finite sum, of course.

4.1. Cohomological approach. Weil proposed that one might be able to
attach to the scheme X a sequence of algebraically defined cohomology groups
which we’ll call Hj

W (X). These should ideally be finite-dimensional vector spaces
defined over some characteristic 0 field E, and should be non-vanishing only in the
range 0 ≤ j ≤ 2d, where d = dimX . There should be a Lefschetz trace formula
analagous to the one above. So one would have

Nm(X) = #X(Fqm) = #{fixed points of Fm} =

2d∑

j=0

(−1)j tr
[
(F ∗)m

∣∣
Hj

W
(X)

]
.

To explain how this helps with the conjectures, we need a simple lemma from
linear algebra:

Lemma 4.2. Let V be a finite-dimensional vector space over a field k, and let
L : V → V be a linear transformation. Define PL(t) = det(I − Lt) ∈ k[t]. Then
one has an identity of formal power series

log

(
1

PL(t)

)
=

∞∑

m=1

tr(Lm) · t
m

m
.

Proof. We may as well extend the field, and so we can assume k is alge-
braically closed. Using Jordan normal form, we can write L = D + N where
D is represented by a diagonal matrix and N is strictly upper triangular. Then
PL(t) = PD(t) and tr(Lm) = tr(Dm), hence one reduces to the case where L = D.
But this case is obvious. �
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Now we simply compute:

Z(X, t) = exp

( ∞∑

m=1

Nm
tm

m

)

= exp

( ∞∑

m=1

2d∑

j=0

(−1)j tr
[
(F ∗)m|Hj

W (X)

]
· t

m

m

)

=

2d∏

j=0

(
exp

( ∞∑

m=1

tr
[
(F ∗)m|Hj

W (X)

]
· t

m

m

))(−1)j

=

2d∏

j=0

Pj(t)
(−1)j+1

by Lemma 4.2,

where Pj(t) = det(I − φjt) with φj = F ∗|Hj

W
(X).

Notice that this gives the rationality of Z(X, t), as predicted in (2.4i). The ex-
pected equality P0(t) = 1−t would follow from knowing H0

W (X) is one-dimensional
and F ∗ = id on this group (as would happen in algebraic topology). The conjecture
P2d(t) = 1− qdt likewise suggests that H2d

W (X) should be one-dimensional, with F ∗

acting as multiplication by qd.
One can continue in this way, re-interpreting the Weil conjectures as expected

properties of the cohomology theory H∗
W . For instance, note that the αj,s’s of (2.2i)

will be the reciprocal roots of Pj(t), which are just the eigenvalues of F ∗ acting on

Hj
W (X). This is so important that we will state it again:

(∗∗) The numbers αj,s of (2.2i) are the eigenvalues of F ∗ acting on Hj
W (X).

We will next show that (2.2iii) is a consequence of a Poincaré Duality theorem
for H∗

W . It is reasonable to expect a cup product on H∗
W (X) making it into a

graded ring, and for F ∗ to be a ring homomorphism. Poincaré Duality should say
that when X is smooth and projective then

Hj
W (X)⊗H2d−j

W (X)
∪−→ H2d

W (X)

is a perfect pairing, and hence dimK Hj
W (X) = dimK H2d−j

W (X). If F ∗ acts on

H2d
W (X) as multiplication by qd, it follows immediately that the eigenvalues {αj,s}

(counted with multiplicity) of F ∗ acting on Hj
W are related to those of F ∗ acting

on H2d−j
W by the formula

{qd/αj,s}s = {α2d−j,s}s.
But this is exactly what is required by (2.2iii), or the equivalent statement (2.4iii).

4.3. The Künneth theorem. Let X and Y be two smooth, projective va-
rieties over Fq. Then (X × Y )(Fqm) = X(Fqm) × Y (Fqm), and so Nm(X × Y ) =
Nm(X) ·Nm(Y ). If we have formulas

Nm(X) =
∑

j,s

(−1)jαm
j,s and Nm(X) =

∑

k,t

(−1)kβm
k,t
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as specified by the Weil conjectures, multiplying them together gives a similar
formula

Nm(X × Y ) =
∑

l

(−1)l
∑

j+k=l
s,t

(αj,sβk,t)
m.

In terms of our cohomological interpretation, this says that if we know the eigen-
values of F ∗ on H∗

W (X) and on H∗
W (Y ), then their products give the eigenvalues

of F ∗ on H∗
W (X × Y ).

The cup product on H∗
W (X × Y ) allows us to define a map of graded rings

κ : H∗
W (X)⊗H∗

W (Y )→ H∗(X × Y )

in the usual way: κ(a⊗b) = π∗
1(a)∪π∗

2(b). The above observations about the eigen-
values of F ∗ are in exact agreement with the hypothesis that κ is an isomorphism.
So it is reasonable to expect our conjectural theory H∗

W to satisfy the Künneth
theorem.

4.4. Behavior under base-change. We will postpone a cohomological in-
terpretation of (2.2ii) until Chapter 3, as this will require a detour through Hodge-
Lefschetz theory. Let us instead move on to (2.2iv), the comparison with ordinary
singular cohomology. For this, we need to move outside of the realm of finite fields.

Let us suppose that H∗
W can be defined for any scheme of reasonable type. In

particular, it can be defined for schemes over C. It is reasonable to expect a natural
transformation

H∗
W (X)→ H∗

sing(X(C);E)

of ring-valued functors, for C-schemes X (remember that E is the coefficient field of
H∗

W ). One can hope that when X is smooth and projective this is an isomorphism.
Now suppose that X is a scheme defined over the ring of integers O in a number

field. Let ℘ ⊆ O be a prime, and let X℘ be the pullback of X along the map
Spec O℘ → Spec O. One can choose an embedding O℘ →֒ C, and of course one
has the projection O℘ ։ O℘/℘; note that O℘/℘ is a finite field. One forms the
following diagram of pullbacks:

X //

��

X℘

��

XC

��

oo

Spec O℘/℘ // Spec O℘ Spec C.oo

We then have induced maps H∗
W (X℘) → H∗

W (X) and H∗
W (X℘) → H∗

W (XC) →
H∗(X(C);E). The Weil conjecture of (2.2iv) will follow if one knows these induced
maps are isomorphisms.

4.5. The coefficient field. At this point we have built up an impressive
amount of speculation about this mysterious cohomology theory H∗

W . Does such
a thing really exist? The first thing one is forced to consider is the choice of the
coefficient field E.

Of course it seems reasonable, and desirable, to just have E = Q. But an
early observation due to Serre shows that with this coefficient field no such H∗

W

can exist. In fact, no such cohomology theory exists in which E is a subfield of R.
The explanation is as follows.

Suppose that one has a theory H∗
W defined for schemes over a given field F ,

and let E be the coefficient field of the theory. For any F -scheme X , let Hom(X,X)
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denote the endomorphism monoid of X (the monoid of self-maps in the category
of F -schemes). Since H∗

W is a functor, it follows that Hom(X,X) acts on H∗
W (X).

Now suppose X is an abelian variety. This means there is a map µ : X×X → X
which is commutative, associative, unital, and there is an additive inverse map
ι : X → X . Let End(X) denote the set of homomorphisms X → X regarded now
as a ring, where the multiplication is composition and the addition is induced by
µ. Specifically, if f, g : X → X then f + g is defined to be the composite

X
∆−→ X ×X f×g−→ X ×X µ−→ X.

The monoid Hom(X,X) from the last paragraph is just the multiplicative monoid
of R.

One can check that H1
W (X) is necessarily a module over End(X). This will

not be true for the other Hk
W (X)’s, but works for H1 because of the isomorphism

π∗
1 ⊕ π∗

2 : H1
W (X) ⊕H1

W (X) → H1
W (X × X) given by the Künneth theorem. See

Exercise 4.6 at the end of this section.
When X is an elliptic curve, quite a bit is known about the endomorphism

ring End(X). In particular, it is a characteristic zero integral domain of finite rank
over Z, and End(X) ⊗ R is either R, C, or H. See [Si, Cor. III.9.4]. Much more
is known about End(X) than just this statement, but this is all that we will need.
An elliptic curve is called supersingular precisely when End(X)⊗ R ∼= H.

If our speculation about H∗
W is correct, then for X an elliptic curve H1

W (X)
must be a two-dimensional vector space over the coefficient field E. So End(X)
has a representation on E2. But if E ⊆ R, one then obtains a representation of
End(X) ⊗ R on R2 by extending the coefficients. This is impossible in the case
where X is supersingular, as there is no representation of H on R2. So we have
obtained a contradiction; there is no theory H∗

W having the expected properties
and also having E ⊆ R.

Exercise 4.6. Verify that End(X) is indeed a ring, with the addition and
multiplication defined above. If f, g : X → X , show that there is a commutative
diagram

H1
W (X ×X)

(f×g)∗ // H1
W (X ×X)

∆∗

**TTTTTTTTT

H1
W (X)

µ∗ 44jjjjjjjjj

D **TTTTTTTTT
H1

W (X),

H1
W (X)⊕H1

W (X)

∼= π∗
1⊕π∗

2

OO

f∗⊕g∗
// H1

W (X)⊕H1
W (X)

π∗
1⊕π∗

2
∼=

OO

σ

44jjjjjjjjj

where D(a) = (a, a) and σ(a, b) = a+b. Use this to verify that H1
W (X) is a module

over End(X).

5. Some history of the proofs of the conjectures

Nice summaries of the work on the Weil conjectures can be found in [Ka] and
[M3]. Here we will only give a very brief survey.

When Weil made his conjectures, he was generalizing what was already known
for curves. In fact it was Weil himself who had proven the Riemann Hypothesis
in this case, a few years earlier. The challenge was therefore was to prove the
conjectures for higher dimensional varieties. The first to be proven in this generality
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was the rationality of the zeta function. This was done by Dwork [Dw], using an
approach via p-adic analysis that was very different from what we outlined above.
In particular, Dwork’s approach is entirely non-cohomological.

Independently, Grothendieck, M. Artin, and others were developing étale co-
homology. This work produced a family of cohomology theories H∗

W , one for each
prime l different from the characteristic of the ground field. These so-called ‘l-adic’
cohomology theories had Ql as their coefficient field.

Grothendieck and his collaborators proved the Lefschetz trace formula and
Poincaré Duality for these l-adic cohomology theories, and in this way established
(2.4i) and (2.4iii). They also proved the necessary comparison theorems to singular
cohomology, from which (2.4iv) follows. All of this requires quite a bit of work and
machinery.

Two things were left unanswered by this original work of Grothendieck et al.
The first is the Riemann Hypothesis (2.4ii). The second is the so-called question
of “independence of l”. Each l-adic cohomology theory H∗(−; Ql) gives rise to a
Lefschetz trace formula and a resulting factorization

Z(X, t) =
∏

i

[Pi(t)l]
(−1)i+1

.

However, the polynomials Pi(t)l could only be said to lie in Ql[t] rather than Z[t],
and it was not clear whether different choices of l led to different polynomials.

Grothendieck and Bombieri independently developed a plan for answering these
final questions. Everything was reduced to two conjectures on algebraic cycles
which Grothendieck called the “Standard Conjectures”. See [G2] and [Kl1]. These
conjectures are very intriguing, and really explain the geometry underlying the Weil
conjectures. But they have so far resisted all attempts on them, and remain open
except in special cases.

The Riemann Hypothesis and the independence of l were proven for smooth,
projective varieties by Deligne in the early 1970s. In the earlier papers [D1] and
[D2] Deligne had proven the Riemann hypothesis for K3 surfaces and for certain
complete intersections, but these results were eclipsed by the complete solution
two years later in [D4]. Deligne’s very ingenious method avoided the Standard
Conjectures completely, much to everyone’s surprise. For a very nice summary, see
[Ka].

Closing thoughts

In this chapter we have given a quick overview of the Weil conjectures and how
they inspired the search for a suitable cohomology theory for algebraic varieties.
This is only the beginning of a long story with many branches, some of which we
now outline.

(1) We have given cohomological interpretations for all aspects of the Weil conjec-
tures except two. These are the Riemann hypothesis and the conjecture that the
polynomials Pi(t) (appearing in the rational expression for the zeta function)
should have integral coefficients. Cohomological explanations for these two con-
jectures were provided by Grothendieck’s “Standard Conjectures”. These will
be described in Chapter 3 below.

(2) The Riemann hypothesis for curves was proven by Weil in the 1940s. Later
Grothendieck gave a proof using the Riemann-Roch theorem, and Stepanov
gave an elementary proof. Weil’s proof is very interesting, however, because he
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was able to use the Jacobian variety of the curve as a geometric substitute for
the cohomology group H1. This idea of cohomology theory having a geometric
“motive” underlying it was later developed by Grothendieck and led to his
conjectural category of motives.

(3) Grothendieck, Artin, Verdier, and others developed étale cohomology. This
required a vast amount of machinery, and has been very influential. We will
describe étale cohomology in Chapter 4.

(4) Zeta functions are part of a much broader class of objects called L-functions .
Grothendieck was able to use étale cohomology to generalize the Weil con-
jectures, and get information not only about the zeta functions of algebraic
varieties over finite fields but also about a larger class of L-functions.

(5) Dwork proved the rationality of the zeta function using methods of p-adic anal-
ysis, and later he was able to prove most of the Weil conjectures for hyper-
surfaces using those techniques. This work then led to the development of
p-adic cohomology theories for characteristic p varieties, building off of p-adic
differential calculus. Monsky and Washnitzer developed a theory called formal
cohomology, and Grothendieck outlined a theory—developed by Berthelot—
called crystalline cohomology. In later years Berthelot also developed a theory
called rigid cohomology, and this has been very influential as of late.

Appendices to Chapter 1

A. Computer calculations

In the course of learning any area of mathematics, it is nice to sit down and work
out specific examples. As mathematics has become more sophisticated, however,
working out examples has become harder and harder. Counting—by hand—the
number of points of a variety defined over finite fields Fpk is very unpleasant. But
modern computers can help with this somewhat, and in this section we will describe
some simple tools for getting started.

Now, let’s be honest. Given a set of equations, the number of computations
necessary to count solutions over Fpk is going to grow exponentially with k. So
even computers are going to be very limited in the number of examples they can
actually work out. But being able to look at a few examples is better than not
being able to look at any.

There are different computer packages available for handling arithmetic in finite
fields. Mathematica can handle this, as can Macaulay2. Here we will describe how
to do this using a software package called Sage, which is an extension of the Python
programming language. Sage is open source software which is freely available for
download, and Python is a very wonderful programming language—it is easy to
use, intuitive, and its style works well for mathematicians.

To download sage, visit the website

www.sagemath.org

Sage can be run either from a “command line” or from a “notebook”. For sim-
plicity, we will assume it is being run from the command line. This will mean
that the program gives the prompt “sage:” when it waits for input. One can type
“2ˆ3+17*5”, and after hitting return the software will evaluate that expression.

Try the following commands:
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sage: E=GF(5)

sage: for a in E:

.... : print a,a^2,a^3

.... : [Return]

Note that we have written “[Return]” to indicate that the user should press
the Return or Enter key. Also note that the indentation in the above code is
important: Sage and Python use indentation in a structural way, to control looping
and conditional statements. The identation in the above example tells Sage that
the print command is part of the for loop.

Upon entering the above commands, Sage will output the following list showing
the elements of F5 (called GF (5) in Sage), as well as their squares and cubes:

0 0 0

1 1 1

2 4 3

3 4 2

4 1 4.

For something more sophisticated, try:

sage: F.<z>=GF(25)

sage: for a in F:

.... : print a,"\t",a^2

.... : [Return]

The “z” which appears in “F.<z>” is a variable name for a primitive element
of this extension field of GF (5). The \t in the print command produces a tabbed
space between the outputs a and a2.

Try some arithmetic in E and F :

sage: (1+3*z)^3

sage: 2^4

sage: E(2)^4

sage: F(2)^4

Note that Sage interprets the number 2 in the second line as an ordinary integer.
If we want to talk about 2 as an element of F , Sage requires us to use “F(2)”.
However, to refer to the element 2z ∈ F we can write either 2*z or F(2)*z; Sage
understands that they mean the same thing.

To find out whether 1 + 3z has a square root in F , we could do the following:

sage: for a in F:

.... : if a^2==1+3*z:

.... : print a," is a square root of 1+3z"

.... : [Return]

You will note that Sage has no output upon running this routine—which just
tells us that it didn’t find any square roots. Try running a similar routine to find
the cube roots of 1 + 3z in F .

One can define functions in Sage. Here is a simple example to try:
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sage: def f(a,b):

.... : return a^2+3*a*b

.... : [Return]

sage: f(1+3*z,2+z)

Sage has various built-in functions for dealing with finite fields. The two we
will need return the order of a field and the multiplicative order of a given element.
Here are some samples:

sage: order(F)

25

sage: multiplicative_order(1+3*z)

8

Here is a short function which will return a generator for the multiplicative
group of units of a given finite field. Note that Sage understands the idea of dummy
variables, and so it knows that the “F” in the code below is not the F we have
globally defined to be GF (25).

sage: def mult_generator(F):

.... : for a in F:

.... : if a==0:

.... : continue

.... : if order(F)-1==multiplicative_order(a):

.... : return a

.... : [Return]

Now try the following two commands:

sage: mult_generator(E)

sage: mult_generator(F)

At this point we have all the techniques we need to have Sage count solutions
to equations for us—nothing fancy, just brute force enumeration. The following
function takes two inputs: a field F and a function of three variables f . It then
returns the number of triples (a, b, c) ∈ F 3 such that f(a, b, c) = 0.

sage: def count3(F,f):

.... : output=0

.... : for a in F:

.... : for b in F:

.... : for c in F:

.... : if f(a,b,c)==0:

.... : output=output+1

.... : return output

.... : [Return]

There are a couple of important observations to make about the above code.
First, recall that Sage uses indentation for structural purposes. It is very important
that the “return output” command have the same indentation as the “for a in

F:” command. This tells Sage that the return command should be executed after
the “for a in F” loop is completely finished.
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Secondly, because it’s easy to make mistakes when typing, it can be a pain
to define routines like count3 via Sage’s command line. It is more convenient to
use a text editor to put the code into a file, let’s say one called weil.sage. The
command

sage: attach "weil.sage"

will then load the file into Sage’s memory and execute all the commands.
To use the above counting routine, try:

sage: def f(x,y,z):

.... : return x^3+y^3+z^3

.... : [Return]

sage: F.<x>=GF(5^2)

sage: count3(F,f)

Sage should return the number 865, which is the number of (affine) solutions
to the equation x3 + y3 + z3 in F25. To get the number of projective solutions one
of course subtracts 1 and divides by 24, to get 36.

One can use count3 to count the number of solutions of other three-variable
functions as well. For instance, try:

sage: def g(x,y,z):

.... : return x^2+x*y^3-y*z

.... : [Return]

sage: E.<w>=GF(5^3)

sage: count3(E,g)

As the size of the finite field gets large, it can take Sage a long time to do
the above kind of brute force enumeration. It pays to use a little intelligence now
and then. For instance, suppose we want to count the number of points of the
projective variety defined by x3z2 +xyz3−x3y2 = 0. When z = 0 we get x3y2 = 0,
which means either x = 0 or y = 0. So there are two solutions when z = 0, namely
[1 : 0 : 0] and [0 : 1 : 0]. When z 6= 0 we can normalize z to be 1, which means we
are then interested in the affine solutions to x3 + xy − x3y2 = 0. It is much faster
for Sage to count solutions to this equation—and to add two to the answer—then
to count the number of solutions to the original equation.

We close this section with one last example, which will be used in Appendix B.
It serves to demonstrate Sage’s syntax for complex arithmetic and list manipulation.

Let F = Fq, and recall that the group of units F ∗ is cyclic. Let ζ = −1+
√

3i
2 .

If 3|q − 1 then there is a group homomorphism χ : F → C such that χ(g) = ζ. By
convention we set χ(0) = 0. In Appendix B we will have to evaluate sums of the
form

J(χ) =
∑

u1+u2+u3=0

χ(u1)χ(u2)χ(u3)

where the ui’s range over all elements of F .
First note that Sage has built-in capabilities for complex arithmetic. Try
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sage: zeta=(-1+sqrt(3)*I)/2

sage: zeta^2

sage: zeta^3

sage: expand(zeta^2)

You will note that Sage performs the operations algebraically, without any simpli-
fication, unless it is given the expand command.

The following routine takes a field F and a multiplicative generator g, and
returns the sum J(χ). For some reason, the Sage routines for complex arithmetic
are somewhat slow—in the sense that doing 100 computations takes a noticeable
amount of time. The code avoids this issue by putting off all complex arithmetic
until the end. Each term χ(u1)χ(u2)χ(u3) is either 1, ζ, or ζ, and what the code
does is count the number of times each possibility appears. Then only at the very
end does it form the appropriate linear combination of complex numbers. Here is
the code:

sage: zeta=(-1+sqrt(3)*I)/2

sage: zetabar=(-1-sqrt(3)*I)/2

sage: def J(g,F):

.... : count=[0,0,0]

.... : list=[]

.... : k=1

.... : while k<=order(F)-1:

.... : list.append(g^k)

.... : k=k+1

.... : a=1

.... : while a<=order(F)-1:

.... : b=1

.... : while b<=order(F)-1:

.... : c=-g^a-g^b

.... : if c==0:

.... : b=b+1

.... : continue

.... : k=1

.... : while k<=len(list):

.... : if c==list[k-1]:

.... : break

.... : k=k+1

.... : exponent=mod(a+b+k,3)

.... : count[exponent]=count[exponent]+1

.... : b=b+1

.... : a=a+1

.... : output=count[0]+count[1]*zeta+count[2]*zetabar

.... : return expand(output)

To use the code, try the following:
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sage: F=GF(31)

sage: z=mult_generator(F)

sage: J(z,F)

Enjoy playing around!

There are nice references for learning more about both Sage and Python. Tu-
torials and reference manuals can be found at the following two websites:

www.sagemath.org/doc and www.python.org/doc

B. Computations for diagonal hypersurfaces

In [W5] Weil verified his conjectures for hypersurfaces defined by an equation
of the form a0x

d
0 + a2x

d
2 + · · ·+ akx

d
k = 0. His technique involved writing a formula

for Nm in terms of so-called Gauss and Jacobi sums, and then appealing to certain
theorems from number theory. This section will describe Weil’s method.

There are two main reasons we have included this material. Foremost, these
hypersurfaces provide the first examples of the Weil conjectures which are not trivial
in the way that projective spaces and Grassmannians are. The fact that these
examples actually work really shows that there is something interesting going on.
From a topological perspective, hypersurfaces are the simplest algebraic varieties—
their cohomology looks exactly like that of Pk except in the middle dimension. It
is a remarkable experience to actually see this cohomological behavior reflected in
the Weil formulas for Nm, appearing almost out of nowhere. The second reason we
include this material is to accentuate the fact that Weil’s method is very number-
theoretic. It is precisely this mysterious connection between number theory on the
one hand, and algebraic topology on the other, which makes the Weil conjectures
so wonderful and tantalizing.

B.1. Multiplicative characters. Before jumping into the calculation we
need a simple tool. Let F = Fν be a finite field. Recall that the multiplicative
group F ∗ is cyclic of order ν − 1.

Fix a positive integer d > 1. The dth roots of unity in F constitute the kernel of

the dth power map F ∗ → F ∗. Up to isomorphism this is Z/(ν − 1)
d−→ Z/(ν − 1),

which has the same kernel as multiplication by e, where e = (d, ν − 1). Since
e|(ν− 1), this kernel evidently has e elements. Our conclusion is that the dth roots
of unity in F coincide with the eth roots of unity, and that there are e of them. In
particular, F contains all dth roots of unity precisely when d|ν − 1.

If u ∈ F , let {u 1
d } denote the number of dth roots of u in F . This number

equals 1 if u = 0, it equals 0 if u is not a dth power, and if u is a dth power then it
is equal to the number of dth roots of unity in F . Since the latter also equals the
number of eth roots of unity in F , we have verified that

{u 1
d } = {u 1

e }
for any u ∈ F .

Recall that a multiplicative character is a group homomorphism χ : F ∗ →
C∗. Since F ∗ is finite, the image will necessarily lie inside the roots of unity in C;
and since F ∗ is cyclic, χ is completely determined by what it does to a generator g.
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Let 1 denote the trivial character. For the moment we will mostly be considering
characters F ∗ → µd, where µd denotes the group of dth roots of unity in C. For such
a character, χ(g) is both d-torsion and (ν−1)-torsion, and hence it is in fact e-torsion
(since e is a Z-linear combination of d and ν−1). So all characters F ∗ → µd actually
land inside of µe. Of course there are precisely e distinct characters F ∗ → µe.

By convention we set χ(0) = 0 except when χ = 1, in which case we set
χ(0) = 1. With these conventions one has that

{u1/d} =
∑

χ : F∗→µd

χ(u)(B.2)

where the sum runs over all characters. To see why this works, first note that both
sides remain the same upon replacing d by e. Let ζ be a primitive eth root of unity
in C. Write u = gk, for some k, and then observe that the right-hand side is equal
to 1 + ζk + ζ2k + · · · + ζ(e−1)k. If e|k then ζk = 1 and this sum evidently equals

e. If e ∤ k then ζk 6= 1, and this expression equals (ζk)e−1
ζk−1 ; but this is zero, since

ζe = 1. The condition that e|k is readily seen to be equivalent to u having an eth
root in F , and so this completes the proof of (B.2).

Note that the above discussion is a bit easier in the case d|ν − 1, only because
we don’t have to introduce e at all. This will play a role in the arguments below.

B.3. Counting points. Fix an integer d > 1, and fix a prime power q. Let X
be the hypersurface over Fq defined by xd

0+· · ·+xd
n = 0, which is a projective variety

in Pn. Our goal is to compute Nm(X), the number of points in X with values in
Fqm . To make our calculation easier we will assume d|q− 1, as this ensures that Fq

(and all its extension fields) have a complete set of dth roots of unity.
Write F = Fqm , and let ANm denote the number of affine solutions to the

equation xd
0 + · · ·+ xd

n = 0 lying in F . So

ANm =
∑

u0+···+ud=0

{u
1
d

0 } · {u
1
d

1 } · · · {u
1
d
n }

where the sum is taken over tuples (u0, . . . , ud) ∈ F d+1 and {u 1
d } denotes the

number of dth-roots of u in F . Using (B.2), we have

ANm =
∑

u0+···+un=0

[
∑

χ0,...,χn

χ0(u0)χ1(u1) · · ·χn(un)

]
(B.3)

=
∑

χ0,...,χn

[
∑

u0+···+un=0

χ0(u0)χ1(u1) · · ·χn(un)

]

where the characters χi are understood to take values in µd. The expression inside
the brackets is a kind of Jacobi sum, which we will explore in (B.14) below. For
now we just introduce the notation

J0(λ1, . . . , λn) =
∑

u1+···+un=0

λ1(u1)λ2(u2) · · ·λn(un).

Note that J0(1, 1, . . . , 1) = (qm)n−1.

Lemma B.4. Let χ1, . . . , χn : Fν → C be multiplicative characters.

(a) If some of the χi’s are trivial and some are nontrivial, then J0(χ1, . . . , χn) = 0.
(b) If the product χ1χ2 · · ·χn is nontrivial, then J0(χ1, . . . , χn) = 0.
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Proof. Both parts are based on the following observation. If χ is a nontrivial
character on Fν , then

∑

u∈Fν

χ(u) = χ(g) + χ(g2) + · · ·+ χ(gν−1)

= [1 + χ(g) + χ(g)2 + · · ·+ χ(g)ν−1]− 1

=

[
χ(g)ν − 1

χ(g)− 1

]
− 1

=

[
χ(gν)− 1

χ(g)− 1

]
− 1 =

[
χ(g)− 1

χ(g)− 1

]
− 1 = 0.

We will prove (a) and (b) in the case n = 3, and it will be clear how the general
case follows. For (a), note that if χ3 is nontrivial then

J0(1, χ2, χ3) =
∑

u1+u2+u3=0

χ2(u2)χ3(u3) =
[∑

u2∈F

χ2(u2)
]
·
[∑

u3∈F

χ3(u3)
]

= [??]·0 = 0.

For (b), let β = χ1χ2χ3. If β 6= 1 then at least one χi is nontrivial; assume it
is χ3. Then

J0(χ1, χ2, χ3) =
∑

u1+u2+u3=0

χ1(u1)χ2(u2)χ3(u3)

=
∑

u1+u2+u3=0,u3 6=0

χ1(u1)χ2(u2)χ3(u3)

=
∑

u1+u2+u3=0,u3 6=0

χ1(u1)χ2(u2) ·
β(u3)

χ1(u3)χ2(u3)

=
∑

u1+u2+u3=0,u3 6=0

χ1

(u1

u3

)
χ2

(u2

u3

)
β(u3)

=
∑

a+b+1=0,u3 6=0

χ1(a)χ2(b)β(u3)

=
[ ∑

a+b+1=0

χ1(a)χ2(b)
]
·
[∑

u6=0

β(u)
]
.

If β is nontrivial then we know that
∑

u6=0 β(u) =
∑

u β(u) = 0, and hence

J0(χ1, χ2, χ3) = 0. �

At this point we have shown that many terms vanish in the sum (B.3). What
we have left is

ANm = (qm)n +
∑

χi 6=1,
Q

i χi=1

J0(χ0, . . . , χn)(B.5)

where the characters χi have the form Fqm → µd. To analyze the J0 terms further,
we will need the norm function N = NFqm/Fq

: F∗
qm → F∗

q given by

N(x) = x · xq · xq2 · · ·xqm−1

= x1+q+q2+···+qm−1

.

This is a homomorphism of multiplicative groups, and it is actually surjective. To

see this, note that the kernel of N is the set of roots of the polynomial x
qm−1

q−1 − 1,

and so the number of elements in the kernel is less than or equal to qm−1
q−1 . Since the
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domain has qm−1 elements, the image must therefore have at least q−1 elements.
So the image must encompass all of F∗

q .
If λ : Fq → C is a multiplicative character, then λ ◦N is a multiplicative char-

acter for Fqm . Denote this character by λ(m). Our assumption that d|q − 1 shows

that every character Fqm → µd has the form λ(m), for some λ : Fq → µd (this uses
the fact that N is surjective). So we may rewrite (B.5) as

ANm = (qm)n +
∑

λi 6=1,
Q

i λi=1

J0(λ
(m)
0 , . . . , λ(m)

n )(B.6)

where the sum ranges over all characters λi : Fq → µd.

We wish to compare J0(χ1, . . . , χn) to J0(χ
(m)
1 , . . . , χ

(m)
n ), and to do this it

turns out to be convenient to introduce an auxilliary definition. Given characters
λi : Fν → C, define

j(λ1, . . . , λn) = (−1)n J0(λ1, . . . , λn)

ν − 1
.

The following result concerns this j function. It has a slightly involved proof, which
depends on some very clever manipulations with Gauss sums (introduced below).
For the moment we will defer the proof, and instead focus on how the result allows
us to complete our calculation of the numbers Nm.

Theorem B.7. Let χ1, χ2, . . . , χk : Fq → C be nontrivial multiplicative charac-
ters. Then

(a) j(χ1, . . . , χk) is an algebraic integer of norm q
k−2
2 .

(b) j(χ1, . . . , χk) = j(χ1, . . . , χk).

(c) j(χ
(m)
1 , . . . , χ

(m)
k ) = [j(χ1, . . . , χk)]m. That is,

(−1)k · J0(χ
(m)
1 , . . . , χ

(m)
k )

qm − 1
=

[
(−1)k J0(χ1, . . . , χk)

q − 1

]m

.

Proof. See Section B.14 below. �

Returning now to equation (B.6), Theorem B.7(c) lets us make the substitution

J0(λ
(m)
0 , . . . , λ

(m)
n ) = (−1)n+1(qm − 1)j(χ0, . . . , χn)m. Finally, recall that we are

really interested in counting the number of projective solutions of our equation
rather than the number of affine solutions. Using Nm = (ANm − 1)/(qm − 1) we
get

Nm = [(qm)n−1 + · · ·+ q + 1] + (−1)n+1
∑

λi 6=1,
Q

i λi=1

j(λ0, . . . , λn)m(B.8)

where the sum runs over characters λi : Fq → µd. Note that in the above equation
we have finally removed all references to Fqm .

B.9. A special case: elliptic curves in P2. For the moment we will now
restrict to the case n = 2 and d = 3. That is, X is the subvariety of P2 defined by
x3 + y3 + z3 = 0. We are working over a field Fq where 3|q − 1.

Notice that there are exactly three characters F∗
q → µ3, as a multiplicative

generator can be sent to any of the three cube roots of unity. Let g denote a chosen

generator for F∗
q , let ζ = − 1

2 +
√

3
2 i, and let χ denote the character sending g to ζ.

Let χ̄ denote the character sending g to ζ̄.
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There are only two ways to give three non-trivial characters χ1, χ2, χ3 with∏
χi = 1: one can have χ1 = χ2 = χ3 = χ or χ1 = χ2 = χ3 = χ̄. So (B.8) reduces

to
Nm = qm + 1− [Am +Bm]

where A = j(χ, χ, χ) and B = j(χ̄, χ̄, χ̄). Note that this is the form of Nm expected
by the Weil conjectures, and that we have |A| = |B| = √q by Theorem B.7(a)—

thereby confirming the Riemann hypothesis in this case. Also, since Ā = B by
Theorem B.7(b), we have A = q/Ā = q/B, and this verifies Poincaré Duality.

Now we will choose specific values for q and compute the numbers A and B
explicitly. Take q = 7 to start with, and let g = 3 be our chosen generator for F∗

q . We
must compute J0(χ, χ, χ) =

∑
u1+u2+u3=0 χ(u1)χ(u2)χ(u3), where u1, u2, u3 ∈ F7.

If any ui = 0 then χ(ui) = 0 and we can neglect that term. So there are really
30 terms in the sum: six non-zero choices for u1, and then u2 can be chosen to be
anything in F7−{0,−u1}. Going through these 30 terms by brute force, we find that
12 of them have χ(u1)χ(u2)χ(u3) = 1 and 18 of them have χ(u1)χ(u2)χ(u3) = ζ̄.
So

J0(χ, χ, χ) = 12 + 18ζ̄

and

j(χ, χ, χ) = −12 + 18ζ̄

7− 1
= −1− 3

√
3i

2
.

Recall A = j(χ, χ, χ) and B = j(χ̄, χ̄, χ̄) = Ā. That is,

A =
−1 + 3

√
3i

2
and B =

−1− 3
√

3i

2
.

The same computations can be made with other values for q. A computer is
useful for the brute force enumerations at the end. One finds the following, for
example:

q J0(χ, χ, χ) A Z(X, t)

7 12 + 18ζ̄ −1+3
√

3i
2

1−t+7t2

(1−t)(1−7t)

13 24 + 36ζ + 72ζ̄ 5+3
√

3i
2

1+5t+13t2

(1−t)(1−13t)

19 144 + 54ζ + 108ζ̄ 7−3
√

3i
2

1+7t+19t2

(1−t)(1−11t)

31 330 + 360ζ + 180ζ̄ 2 + 3
√

3i 1+4t+31t2

(1−t)(1−31t)

37 288 + 540ζ + 432ζ̄ −11−3
√

3i
2

1−11t+37t2

(1−t)(1−37t)

43 462 + 756ζ + 504ζ̄ −4 + 3
√

3i 1−8t+43t2

(1−t)(1−43t)

B.10. The cohomology of complex hypersurfaces. Our next task is to
generalize the above example to all diagonal hypersurfaces, which means explaining
how (B.8) meets the criteria of the Weil conjectures. Since the conjectures relate
the number of points of varieties over finite fields to topological invariants of asso-
ciated complex varieties, we will need to know a little about the topology of these
hypersurfaces. If X is a degree d hypersurface in CPn, its cohomology groups are
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completely determined by d. This will be explained in more detail in Chapter 2, so
for now we will be content to just state the facts.

Except for the middle dimension n− 1, the cohomology groups of X are equal
to Z in every even dimension between 0 and 2(n− 1), and are equal to 0 in every
odd dimension. In the middle dimension, Hn−1(X) ∼= ZRd where

Rd =

{
(d−1)n+1−(d−1)

d if n is even,
(d−1)n+1+2d−1

d if n is odd.

The number Rd can also be written as

Rd =

{
R′

d if n is odd,

R′
d + 1 if n is even.

where

R′
d =

1

d

[
(d− 1)n+1 + (−1)n+1(d− 1)

]
.

This can be interpreted as saying thatH∗(X) consists of a Z in every even dimension
between 0 and 2n− 2, with an extra R′

d copies of Z in the middle dimension n− 1.
Finally, we remark that the numbers R′

d satisfy the recurrence relation R′
d +

R′
d−1 = (d− 1)n, and so an easy induction yields

R′
d = (d− 1)n − (d− 1)n−1 + · · ·+ (−1)n−1(d− 1).

These different ways of looking at the number R′
d will be important below.

B.11. The general case of diagonal hypersurfaces. Now we return our
analysis. Recall we have fixed q, and X →֒ Pn is the hypersurface defined by the
equation xd

0 + · · ·+ xd
n = 0. Under the assumption d|q − 1 we have shown that

(B.11)

Nm = [(qn−1)m + (qn−2)m + · · ·+ qm + 1] + (−1)n+1
∑

λi 6=1,
Q

i λi=1

j(λ0, . . . , λn)m.

where the summation ranges over all characters λi : Fq → µd.
Let Cn denote the number of (n+1)-tuples of characters (λ0, . . . , λn) such that

λi : Fq → µd, each λi 6= 1, and λ0λ1 · · ·λn = 1; in other words, Cn is the number of
terms in the summation part of (B.11). Also, let Dn denote the number of (n+ 1)-
tuples satisfying λi 6= 1 and

∏
i λi 6= 1. Clearly Cn +Dn = (d−1)n+1. One also has

Cn = Dn−1, using the correspondence which assigns an n-tuple (λ0, . . . , λn−1) with∏
λi 6= 1 to the (n+1)-tuple (λ0, . . . , λn, (

∏
i λi)

−1). Hence we have the recurrence
relation Cn = (d− 1)n − Cn−1, so that

Cn = (d− 1)n − (d− 1)n−1 + (d− 1)n−2 − · · ·+ (−1)n(d− 1).

This is precisely the number R′
d from the previous section.

Recall from Section B.10 that the cohomology groups of X consist of a Z in
every even dimension from 0 through 2(n− 1), together with an extra R′

d copies of
Z in the middle dimension n− 1. Comparing this to equation (B.11), we see that
the terms 1+qm+ · · ·+(qn−1)m correspond to the former Z’s, whereas the Cn = R′

d

terms inside the summation correspond to the ‘extra’ Z’s in the middle dimension.
By Theorem B.7(a), the norms of these terms inside the summation are precisely
[q(n−1)/2]m, in agreement with the Riemann Hypothesis. Also by Theorem B.7(a),
the numbers j(λ0, . . . , λn) are algebraic integers. Finally, Poincaré Duality asks
that the two sequences of numbers {j(λ0, . . . , λn)} and {qn−1/j(λ0, . . . , λn)} be



B. COMPUTATIONS FOR DIAGONAL HYPERSURFACES 33

the same up to permutation. We see this by noting that j(λ0, . . . , λn) is equal to
qn−1/j(λ0, . . . , λn), by Theorem B.7(a,b).

Finally, consider the zeta function Z(X, t) for our hypersurface. The formula
(B.11) shows that this function has the form

Z(X, t) =
P (t)(−1)n

(1− t)(1− qt)(1 − q2t) · · · (1− qn−1t)
(B.12)

where

P (t) =
∏

λi 6=1,
Q

λi=1

(
1− j(λ0, . . . , λn)t

)
.

The original definition of Z(X, t) shows that its coefficients lie in Q. Solving (B.12)
for P (t) then shows that the coefficients of P (t) are also in Q. However, the above
product expansion tells us that the coefficients of P (t) are also algebraic integers.
The only rational numbers which are algebraic integers are the actual integers,
so therefore P (t) ∈ Z[t]. We have now verified all of the Weil conjectures for
hypersurfaces defined by equations xd

0 + · · ·+xd
n = 0 over Fq, assuming that d|q−1.

Exercise B.13. LetX be the projective variety over Fq defined by the equation
a0x

d
0 + · · · + anx

d
n = 0, where a0, . . . , an ∈ F∗

q . Show that the number of affine
solutions to this equation over Fqm is

ANm =
∑

χ0,...,χn : Fqm→µd

χ0(a
−1
0 ) · · ·χn(a−1

n ) · J0(χ0, . . . , χn).

Building off of the case a0 = a1 = · · · = an = 1, show that the Weil conjectures
hold for all diagonal hypersurfaces provided d|q − 1.

B.14. Gauss sums and Jacobi sums. In this final section we turn to the
proof of Theorem B.7, which was the key step in our calculation of Nm for diagonal
hypersurfaces. The techniques of this proof will not be needed elsewhere in this
document, and so this material is a bit of a digression. In order to keep it from
being too much of a digression, we will not actually give the whole proof—the key
step is the Hasse-Davenport relation from number theory, and for this we will just
refer to an appropriate source. Still, it seems worthwhile to introduce Gauss and
Jacobi sums, which are important tools in number theory and which serve to give
some context to Weil’s results. Our treatment has been heavily influenced by the
one in [IR].

Consider a finite field F = Fq, where q = pe. Given s ∈ F and characters
χ1, . . . , χn : F → C, define the Jacobi sum as

Js(χ1, . . . , χn) =
∑

u1+···+un=s

χ1(u1) · · ·χn(un).

Lemma B.15. If s 6= 0 then Js(χ1, . . . , χn) = (χ1 · · ·χn)(s) · J1(χ1, . . . , χn).

Proof. One uses the change-of-variable ai = ui/s to see that
∑

u1+···+un=s

χ1(u1) · · ·χn(un) =
∑

a1+···+an=1

χ1(s · a1) · · ·χn(s · an)

= χ1(s) · · ·χn(s) · J1(χ1, . . . , χn).

�
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Next we introduce Gauss sums. An additive character is a homomorphism
from the additive group of F to the multiplicative group C∗. If we choose in advance
a primitive pth root of unity ζ, then we can construct a canonical additive character
ψ : Fq → C by

ψ(x) = ζtr(x)

where tr = TrFq/Fp
: Fq → Fp is the usual trace function, given by

tr(x) = x+ xp + xp2

+ · · ·+ xpe−1

.

The additive character ψ is ‘canonical’ in the sense that the same formula works
for all extension fields of Fp.

If χ : F → C is a multiplicative character, define the Gauss sum of χ to be

g(χ) =
∑

x∈F

χ(x)ψ(x).

Note that all the terms χ(x) and ψ(x) are algebraic integers (being roots of unity),
and so every Gauss sum is an algebraic integer.

The following two theorems contain most of what we will need about Gauss
sums:

Theorem B.16. Let χ be any multiplicative character for F = Fq. Then

(a) g(χ−1) = χ(−1)g(χ).

(b) If χ is nontrivial then g(χ)g(χ) = q.

Proof. For (a), note that χ−1 = χ, and that for any t ∈ F one has ψ(t) =
ψ(t)−1 = ψ(−t). Then

g(χ) =
∑

t∈F

χ(t) · ψ(t) =
∑

t

χ(t) · ψ(−t) =
∑

s

χ(−s)ψ(s)

=
∑

s

χ−1(−1) · χ−1(s)ψ(s)

= χ−1(−1) · g(χ−1).

For (b) one first introduces the auxilliary sums gα(χ) =
∑

t χ(t)ψ(αt). One
readily checks that g0(χ) = 0 and that gα(χ) = χ(α−1)g(χ) for α 6= 0. Now

consider the sum A =
∑

α gα(χ)gα(χ). One the one hand we have

A =
∑

α

χ(α−1)g(χ) · χ(α−1) · g(χ) = (q − 1)g(χ)g(χ).

Looking at it another way, we have that

A =
∑

α

[∑

t

χ(t)ψ(αt)
]
·
[∑

s

χ(s)ψ(αs)
]

=
∑

t,s

χ(t)χ(s)
∑

α

ψ(α(t− s)).

Consider the term
∑

α ψ(α(t− s)). If t− s = 0 then this sum is |F | = q; if t− s 6= 0
then by a change of variable it is just

∑
β ψ(β), which is 0 by Lemma B.17 below.

Using these observations, we now have

A =
∑

t

χ(t)χ(t) · q =
(∑

t6=0

1
)
· q = (q − 1)q.

Comparing our two formulas for A, we find that g(χ)g(χ) = q. �

The following lemma was used in the above proof:
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Lemma B.17.
∑

t∈F ψ(t) = 0.

Proof. Let B =
∑

t ψ(t). For any x ∈ F we have that

ψ(x) ·B =
∑

t∈F

ψ(x+ t) =
∑

u∈F

ψ(u) = B.

But it is easy to see that there exists an x such that ψ(x) 6= 1, and therefore B
must be zero. �

Theorem B.18 (Hasse-Davenport relation). For any character χ : Fq → C,
one has

g(χ(m)) = (−1)m+1 · g(χ).

Proof. See [IR, Chapter 11.4]. The proof is elementary, but somewhat too
long to include here. �

Now we turn to the connection between Gauss and Jacobi sums.

Theorem B.19. Let χ1, . . . , χn be multiplicative characters Fq → C.

(a) g(χ1) · · · g(χn) = J0(χ1, . . . , χn) + J1(χ1, . . . , χn)[g(χ1 · · ·χn)− (χ1 · · ·χn)(0)].

(b) If
∏

i χi 6= 1 then J1(χ1, . . . , χn) =
g(χ1) · · · g(χn)

g(χ1 · · ·χn)
.

(c) If all χi 6= 1 and
∏

i χi = 1, then

J0(χ1, . . . , χn) = (q − 1) ·
[g(χ1) · · · g(χn)

q

]
.

Proof. We start with (a).

g(χ1) · · · g(χn) =
[∑

u1

χ1(u1)ψ(u1)
]
· · ·
[∑

un

χn(un)ψ(un)
]

=
∑

s

∑

u1+···+un=s

χ1(u1) · · ·χn(un)ψ(s)

=
∑

s

Js(χ1, . . . , χn)ψ(s)

= J0(χ1, . . . , χn) +
∑

s6=0

J1(χ1, . . . , χn) · (χ1 · · ·χn)(s) · ψ(s)

= J0(χ1, . . . , χn) + J1(χ1, . . . , χn)[g(χ1 · · ·χn)− (χ1 · · ·χn)(0)].

To prove part (b), first note that if χ1 · · ·χn 6= 1 then (χ1 · · ·χn)(0) = 0.
Second, recall that we have already proven in Lemma B.4(b) that J0(χ1, . . . , χn) =
0 if

∏
i χi 6= 1. So (b) follows at once from (a).
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To prove (c) we argue as follows. First,

J0(χ1, . . . , χn) =
∑

u1+···+un=0

χ1(u1) · · ·χn(un)

=
∑

un 6=0

∑

u1+···+un=0

χ1(u1) · · ·χn(un) (since χn 6= 1)

=
∑

s6=0

[ ∑

u1+···+un−1=−s

χ1(u1) · · ·χn−1(un−1)
]
· χn(s)

=
∑

s6=0

J−s(χ1, . . . , χn−1) · χn(s)

=
∑

s6=0

J1(χ1, . . . , χn−1)(χ1 · · ·χn−1)(−s) · χn(−1)χn(−s)

= J1(χ1, . . . , χn−1)
∑

s6=0

χn(−1) (since χ1 · · ·χn = 1)

= χn(−1) · (q − 1)J1(χ1, . . . , χn−1).

But χ1 · · ·χn−1 = χ−1
n 6= 1, and so by (b) we have that

J1(χ1, . . . , χn−1) =
g(χ1) · · · g(χn−1)

g(χ−1
n )

=
g(χ1) · · · g(χn−1)

χn(−1) · g(χn)
=

g(χ1) · · · g(χn)

χn(−1) · g(χn)g(χn)

=
g(χ1) · · · g(χn)

χn(−1) · q .

We have used Theorem B.16 in the second and fourth equalities. Putting everything
together we now have J0(χ1, . . . , χn) = (q − 1) · g(χ1) · · · g(χn)/q. �

Finally, we close with the

Proof of Theorem B.7. We have that

j(χ1, . . . , χn) = (−1)n J0(χ1, . . . , χn)

q − 1
= (−1)n g(χ1) · · · g(χn)

q

using the preceding theorem. So

|j(χ1, . . . , χn)| = 1

q
· |g(χ1)| · · · |g(χn)| = 1

q
· qn/2 = q(n−2)/2.

Also, during the proof of Theorem B.19 we showed that j(χ1, . . . , χn) is equal to
(−1)nχn(−1)J1(χ1, . . . , χn), and the latter is manifestly an algebraic integer. We
also have

j(χ1, . . . , χn) = (−1)n g(χ1) · · · g(χn)

q
= (−1)nχ1(−1) · · ·χn(−1) · g(χ1) · · · g(χn)

q

= j(χ1, . . . , χn)

where in the last equality we have used χ1 · · ·χn = 1. Finally, Theorem B.7(c) is a
direct consequence of Theorem B.19(c) and the Hasse-Davenport relation. �



CHAPTER 2

Topological interlude: the cohomology of algebraic

varieties

This chapter represents a brief detour. Our goal is to review some basic facts
about the topology of complex algebraic varieties. This material will be applied
in the next chapter, when we return to the Weil conjectures and the search for a
cohomology theory for varieties in characteristic p.

Given a smooth, compact algebraic variety over C, what do its singular co-
homology groups look like? Of course they must satisfy Poincaré Duality, but it
turns out one can say much more. The pioneering work on this topic was done by
Lefschetz [L], but that book is hard to read from a modern perspective—and some
of the proofs may be incomplete. Lefschetz’s theorems have been reproven over the
years, and expanded on, using Morse and Hodge theory. Hodge’s techniques [Ho]
have been particularly important.

The first four sections of this chapter review Lefschetz and Hodge theory, just
giving the basic facts without proof. In the final chapter we review the main ideas of
correspondences (also due to Lefschetz, actually). These apply not just to varieties
but to all compact manifolds.

1. Lefschetz theory

Let X be a complex projective algebraic variety. By a hyperplane section of
X one means any variety of the form X ∩H where H is a hyperplane in CPn and
X →֒ CPn is some embedding. Lefschetz was interested in studying the topology
of X via the topology of its hyperplane sections.

Remark 1.1. Suppose X →֒ CPn and Z is a hypersurface in CPn. Then
X ∩ Z is a hyperplane section of X . To see this, recall that Z can be defined by
the vanishing of a single homogeneous polynomial f ∈ C[X0, . . . , Xn]. Let d be the
degree of f . Let {M0, . . . ,MN} be a complete list of the degree d monomials in

the Xi’s, where N =
(
n+d

n

)
− 1. Write f =

∑
j ajMj . Finally, recall the Veronese

embedding CPn →֒ CPN given by sending a point x = [x0 : x1 : · · · : xN ] to the
sequence of monomials [M0(x) : M1(x) : . . . : MN(x)].

We now have X →֒ CPn →֒ CPN . Let H be the hypersurface in CPN defined
by a0Y0 + a1Y1 + · · · + aNYN = 0, where the Yi’s are the evident homogeneous
coordinates on CPN . One checks that X ∩ Z is homeomorphic to X ∩H .

Theorem 1.2 (Weak Lefschetz). Let W be a smooth, connected, projective,
complex algebraic variety of dimension n+ 1, and let X →֒ W be a smooth hyper-
plane section (so dimX = n). Then the following statements hold:

(a) H∗(X)→ H∗(W ) is an isomorphism for i < n and a surjection for i = n.
(b) H∗(W )→ H∗(X) is an isomorphism for i < n and an injection for i = n.

37
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(c) π∗(X)→ π∗(W ) is an isomorphism for i < n and a surjection for i = n.

To remember the above result, note that each part says that X →֒ W induces
isomorphisms up through (but not including) the middle dimension of X . Parts
(a) and (b) are equivalent, and are consequences of (c). The best proofs of this
theorem seem to be via Morse theory. Proofs of (a) and (b) can be found in [AF]
and [Mr1]. For (c) one must look to Bott [B].

Example 1.3 (The cohomology of hypersurfaces). Let X →֒ Pk be a smooth
hypersurface. In particular, X is a hyperplane section of Pk. The Weak Lefschetz
Theorem says that H∗(Pk)→ H∗(X) is an isomorphism for ∗ < k−1. By Poincaré
Duality for X , this completely determines H∗(X) except for ∗ = k − 1.

Poincaré Duality also gives that the torsion subgroup ofHi(X) is isomorphic to
the torsion subgroup of H2k−3−i(X), and in particular that the torsion subgroups
of Hk−1(X) and Hk−2(X) are isomorphic. But as Hk−2(X) ∼= Hk−2(Pk), it has
no torsion. So Hk−1(X) is free abelian.

We can compute the rank ofHk−1(X) if we know the Euler characteristic χ(X),
since we know all the other cohomology groups. To be precise, one has

rankHk−1(X) =

{
k − χ(X) if k − 1 is odd

χ(X)− k + 1 if k − 1 is even.

The Euler characteristic of a hypersurface may be computed by the Hirzebruch-
Riemann-Roch Theorem, and it turns out to only depend on the degree d of the
hypersurface. Using [H, Thm. 22.1.1] in conjunction with [H, Thm. 15.8.1] one
finds that χ(X) for a degree d hypersurface in Pk is the coefficient of zk in the
formal power series

1

(1− z)2 ·
d · z

1 + (d− 1)z
.

Some calculating shows this number to be

χ(X) =
(1− d)k+1 − 1

d
+ k + 1.

Putting everything together, one has

rankHk−1(X) =

{
(d−1)k+1−d+1

d if dimX is odd
(d−1)k+1+2d−1

d if dimX is even.

As an example of the above, let’s consider the surface x3 +y3 +z3+u3+w3 = 0
in CP 4. This is 3-dimensional and it has degree 3. We have completely determined
its cohomology groups:

i 0 1 2 3 4 5 6

Hi(X) Z 0 Z Z10 Z 0 Z

Example 1.4 (The cohomology of complete intersections). Recall that a com-
plete intersection is a subvariety of CPn defined by the vanishing of homogeneous
polynomials f1, . . . , fk ∈ C[x0, . . . , xn] such that the fi’s are a regular sequence.
Applying the Weak Lefschetz Theorem inductively, one finds that if X is a com-
plete intersection then Hi(CPn)→ Hi(X) is an isomorphism for i < dimX . If X
is smooth, this determines Hi(X) for i > dimX by Poincaré Duality. The only
unknown cohomology group is the middle one.
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Just as before, Poincaré duality now shows that this middle cohomology group
is torsion free. So its rank is completely determined by χ(X), which can be com-
puted using the Hirzebruch-Riemann-Roch theorem. If di = deg fi, then the Euler
characteristic is the coefficient of zn in the series

1

(1− z)2 ·
∏

i

[
diz

1 + (di − 1)z

]

(by [H, Thm. 22.1.1] and [H, Thm. 15.8.1] again). These coefficients are very
computable in any specific case, but general formulas become unwieldy beyond this
point.

As a specific example, suppose X is a complete intersection in CP 5 defined
by two forms, of degrees 2 and 3. One can use Mathematica to expand the above
power series. The commands to do this are as follows:

In[1]:= f[z ]:=(2*z/(1+z))*(3*z/1+2z)*1/(1-z)^2

In[2]:= Series[f[z],{z,0,7}]

The “In[1]:” and “In[2]:” are Mathematica prompts, not to be entered by the
user. Mathematica will return the power series 6z2−6z3+24z4−36z5+90z6−162z7,
and we are interested in the coefficient of z5.

We know that X is a 3-dimensional complex projective variety whose coho-
mology agrees with P3 except in the middle dimension, where it is free abelian.
The above power series calculation gives χ(X) = −36, and this shows H∗(X) is as
follows:

i 0 1 2 3 4 5 6

Hi(X) Z 0 Z Z40 Z 0 Z

2. The Hard Lefschetz theorem

The complex structure on CPn determines an orientation, which determines
the Poincaré Duality isomorphism. We let ξ ∈ H2(CPn) denote the Poincaré dual
to the fundamental class [CPn−1] ∈ H2n−2(CPn).

Let X →֒ CPn be a smooth subvariety of dimension r. The image of ξ under
the map H2(CPn) → H2(X) will also be denoted ξ, by abuse. We define the
Lefschetz operator L : Hi(X) → Hi+2(X) by L(x) = x · ξ. The class ξ ∈ H2(X)
is often called a hyperplane section of X ; under Poincaré Duality it corresponds
to the fundamental class of [X ∩ CPn−1] ∈ H2(n−1)(X) for a sufficiently general

CPn−1 in CPn.

Theorem 2.1 (Hard Lefschetz). Let X →֒ CPn be a smooth subvariety of
dimension r. Then the map Lr−i : Hi(X ; Q) → H2r−i(X ; Q) is an isomorphism,
for every i in the range 0 ≤ i ≤ r.

Remark 2.2. The Hard Lefschetz theorem is not true with integral coefficients.
As one example, consider the quadric Q →֒ CP 4 defined by x2 + y2 + z2 +w2 = 0.
The cohomology ring is H∗(Q) ∼= Z[x, y]/(x2 = 2y, y2) where x has degree 2 and y
has degree 4. The map L : H2(Q)→ H4(Q) sends a generator to twice a generator,
and so is not an isomorphism.

One has the following simple corollary:
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Corollary 2.3. Let X be a smooth, compact, algebraic variety over C. Then
the even (resp. odd) Betti numbers of X are monotone increasing up through the
middle dimension. That is, one has

β0 ≤ β2 ≤ β4 ≤ · · · and β1 ≤ β3 ≤ β5 ≤ · · ·
with the chain of inequalities stopping (or reversing itself, if you like) after passing
βdim X .

It follows from the Hard Lefschetz theorem that for i ≤ r one can decompose
the group Hi(X ; Q) into two pieces. One piece is the image of L : Hi−2(X ; Q) →
Hi(X ; Q) (which is an injection, by the above theorem) and represents the ‘unin-
teresting’ part of Hi(X ; Q). The other piece is called the primitive part of Hi(X):
one defines

PHi(X ; Q) = ker
[
Lr−i+1 : Hi(X ; Q)→ H2r−i+2(X ; Q)

]
.

It is an easy exercise to verify that one has a direct sum decomposition

Hi(X ; Q) = PHi(X ; Q)⊕ imL.

It follows that there is a decomposition

Hi(X ; Q) = PHi(X ; Q)⊕ L[PHi−2(X ; Q)]⊕ L2[PHi−4(X ; Q)]⊕ · · ·
This is called the Lefschetz primitive decomposition for H∗(X ; Q). Note that it
depends on the embedding X →֒ CPn, as that is what determines the class ξ. For
this reason the decomposition is not natural in X .

Because we will need it in the next chapter, we briefly mention the Lefschetz
Λ-operator. This is a map Λ: Hi(X ; Q) → Hi−2(X ; Q) (defined for all i) which
in some ways plays the role of an inverse to L. Specifically, one has ΛL = id on
Hi(X ; Q) if i <= dimX − 2, and LΛ = id on Hi(X ; Q) if i ≥ dimX + 2. It is
clear how to define Λ on each of the pieces of the primitive decomposition: for
a ∈ Hi(X ; Q), define

Λ(a) =

{
0 if a ∈ PHi(X ; Q),

Lj−1a if a 6= 0 and a = Ljb, for some b ∈ PHi−2j(X) and some j ≥ 1.

Exercise 2.4 (The Λc-operator). This exercise concerns a different way of
viewing the Lefschetz primitive decomposition of H∗(X ; Q). Consider the Lie al-
gebra sl2(Q) of trace zero 2 × 2 matrices. This is three-dimensional over Q with
generators

e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
, and h =

[
1 0
0 −1

]
,

satisfying the commutation relations

[e, f ] = h, [e, h] = −2e, [f, h] = 2f.

For each integer n, define an irreducible sl2(Q)-module W (n) as follows: it has
dimension n+ 1 and generators wn, wn−2, wn−4, . . . , w−n, subject to the relations

f.wi = wi+2, h.wi = iwi, and e.wn−2i = (i+ 1)(n− i)wn−2i+2.

In writing these relations our convention is that wn+2 = 0 = w−n−2. Note also
that h acts diagonally on W (n), with integral eigenvalues, and the i-eigenspace is
the one-dimensional subspace spanned by wi.
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(a) Verify that W (n) is an sl2(Q)-module, and that it is irreducible.
(b) Let X be a smooth, projective algebraic variety of dimension d, and let

ξ ∈ H2(X ; Q) be the class of a hyperplane section. Define an operator
Λc : Hi(X ; Q) → Hi−2(X ; Q) by using the following formula and extending
linearly:

Λc(a) =

{
0 if a ∈ PHi(X ; Q),

j(d− i+ j + 1)Lj−1b if a = Ljb for b ∈ PHi−2j(X ; Q), j ≥ 1.

Verify that H∗(X ; Q) then becomes an sl2(Q)-module via the formulas

f.a = La, e.a = Λca, h.a = (i− d).a
for a ∈ Hi(X ; Q).

(c) Verify that the primitive decomposition of H∗(X ; Q) is the same as a decompo-
sition into irreducible sl2(Q)-modules. Specifically, if ak denotes the dimension
of PHk(X ; Q) for 0 ≤ k ≤ d, then as an sl2(Q)-module H∗(X ; Q) is isomorphic
to ⊕

0≤k≤d

W (d− k)⊕ak .

3. The Hodge index theorem

LetX be a smooth, compact variety over C, and let r = dimX . The orientation
on X determines an isomorphism η : H2r(X ; Q) → Q. The cup product therefore
induces a bilinear form on Hr(X ; Q) by setting 〈a, b〉 = η(a · b). When r is even
this form is symmetric, whereas when r is odd it is alternating. Poincaré Duality
gives that the bilinear form is nondegenerate, since it says that the cup product
Hr(X ; Q)⊗Hr(X ; Q)→ H2r(X ; Q) is a perfect pairing.

Theorem 3.1 (Hodge index theorem). Suppose r = 2j. Then the symmetric
bilinear form 〈−,−〉 on PHr(X ; Q) is positive definite if j is even, and negative
definite if j is odd.

Example 3.2 (Cohomology ring of even-dimensional complete intersections).
Let X be a complete intersection of complex dimension 2n. By Weak Lefschetz we
know that H2i+1(X) = 0 for all i, and H2i(X) = Z for 0 ≤ i ≤ 2n and i 6= n. We
also know H2n(X) ∼= Zk for some k, and we can determine the rank in terms of the
degrees of the equations defining X .

Let ξ ∈ H2(X) be the class of a hyperplane section. The Hard Lefschetz
theorem implies that ξj is a generator for H2j(X ; Q) for all 0 ≤ j ≤ 2n except
j = n.

Now, PH2n(X ; Q) is by definition the kernel of multiplication by ξ. It is
therefore a vector space of dimension k − 1. We will have completely computed
the ring structure on H∗(X ; Q) if we know it on PH2n(X ; Q). While the Hodge
Index Theorem does not completely calculate this for us, it does calculate the ring
H∗(X ; R): it implies there exists a basis b1, . . . , bk−1 for PH2n(X ; R) such that
bi · bj = (−1)nδi,j .

For example, consider the quadric Q2n given by x2
0 + x2

1 + · · ·+ x2
2n+1 = 0. In

this case H2n(Q) ∼= Z ⊕ Z. If n = 2k then H∗(Q; R) ∼= R[x, y]/(xn+1, xy, y2 − xn)
where x has degree 2 and y has degree 2n. If n = 2k + 1 then H∗(Q; R) ∼=
R[x, y]/(xn+1, xy, y2 + xn) where the degrees of x and y are as before.
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The following is an easy consequence of the Hodge Index Theorem, using Weak
Lefschetz. It generalizes the index theorem to all cohomology groups, rather than
just the middle-dimensional one.

Corollary 3.3. Choose a hyperplane section of X and let L be the associated
Lefschetz operator. For any j such that 2j ≤ dimX, the symmetric bilinear form
on H2j(X ; Q) given by

x, y 7→ η(Lr−2j(x) · y)
restricts to a positive definite form on PH2j(X ; Q) if j is even, and a negative
definite form if j is odd.

Proof. The proof is by induction on dimX − 2j. If this number equals zero,
then the result is just Theorem 3.1. Otherwise, let Y be a hyperplane section of X ,
and let j : Y → X be the inclusion. Then j∗ : H2j(X)→ H2j(Y ) is an injection by
the Weak Lefschetz Theorem (in fact it is an isomorphism if 2j < dimX − 1). For
any class z ∈ H2r−2(X) it is true that ηX(ξ · z) = ηY (j∗(z)). Using this, we have
that

ηX(ξr−2jx · y) = ηY (j∗(ξr−2j−1xy)) = ηY (j∗(ξ)r−2j−1 · j∗(x) · j∗(y)).
By induction, the form a, b 7→ ηY (j∗(ξ)r−2j−1a · b) on H2j(Y ) is positive-definite
when j is even, and negative-definite when j is odd. The same can therefore be
deduced for our form on H2j(X). �

It is sometimes convenient to have a positive definite form defined on all of
H2j(X ; Q), not just on the primitive part. We can construct one using the Lefschetz
decomposition

H2j(X ; Q) = PH2j(X ; Q)⊕ L[PH2j−2(X ; Q)]⊕ L2[PH2j−4(X ; Q)]⊕ · · ·
in the following way. First, we define the form so that the above summands are
orthogonal to each other. Second, the restriction of our form to the summand
Lk[PH2j−2k] will be induced by the one from Corollary 3.3, with an appropriate
sign thrown in to make it positive definite.

To be more explicit, define the form 〈−,−〉H on H2j(X ; Q) by the following
formula. If a = Lia0 and b = Lkb0 where a0 ∈ PH2j−2i and b0 ∈ PH2j−2k, set

〈a, b〉H = δi,k · (−1)j−iη(Lr−2i+j+ka0 · b0) = δi,k · (−1)j−iη(Lr−2ja · b).
3.4. The Hodge star operator. The above formula for 〈−,−〉H is usually

expressed in terms of the Hodge ∗-operator. This is a homomorphism of graded
groups ∗ : H∗(X ; Q)→ H∗(X ; Q) which is specified uniquely by the following prop-
erties:

(i) ∗2 = id

(ii) If a ∈ PHj(X ; Q) then ∗a = (−1)(
j+1
2 )Lr−ja.

(iii) If a ∈ Hj(X ; Q) and j < r − 1 then L ∗ L(a) = ∗a.
(recall that r = dimX).

One can also write an explicit description of the ∗-operator using the Lef-
schetz decomposition. If a ∈ Hj(X ; Q) and a = Liai + Li+1ai+1 + · · · where
ai ∈ PHj−2i(X ; Q), then

∗a = (−1)(
j−2i+1

2 )Lr−j+iai + (−1)(
j−2i+2

2 )Lr−j+i+1ai+1 + · · ·



4. HODGE THEORY 43

Note that ∗a is almost Lr−j(a), except for lots of signs thrown in at different stages
of the Lefschetz decomposition.

Proposition 3.5. For a, b ∈ Hj(X ; Q) one has

〈a, b〉H = η(a · ∗b).
This is a positive definite symmetric bilinear form on Hj(X ; Q).

Proof. We have already explained why 〈a, b〉H is a positive definite symmet-
ric bilinear form—it was constructed in such a way that forces it to be so, using
Corollary 3.3. So it is just the first statement of the proposition which must be
verified. This is a routine exercise. �

Exercise 3.6 (Castelnuovo’s inequality). Let C and C′ be two projective
curves over C, and let X be the algebraic surface C × C′. Let α = [C] × ∗ and
β = ∗ × [C′], and let ξ = α+ β.

(a) Verify that ξ is a hyperplane section of X .
(b) Let D ∈ H2(X), and let a = 〈D,α〉 and b = 〈D, β〉. Castelnuovo’s inequality

says
〈D,D〉 ≤ 2ab,

with equality only if D = bα+ aβ.
To prove this, let H ′ = α − β and check that H · H ′ = 0. Then let

D′ = −2D+(a+ b)H− (a− b)H ′. Verify that D ·H = 0, so that D ∈ PH2(X).
The Hodge Index Theorem says 〈D′, D′〉 ≤ 0, with equality only when D′ = 0.
Deduce Castelnuovo’s result.

[Note: Castelnuovo’s result is a basic theorem of algebraic geometry which holds in
all characteristics. See [Ha, Ex. V.1.9], and also [G1].]

4. Hodge theory

Let X be a compact Kähler manifold. Write Hp,q(X) = Hq
shf (X,Ωp

X) for the
sheaf cohomology of X with coefficients in the sheaf of holomorphic p-forms. The
direct sum ⊕p,qH

p,q(X) forms a bi-graded ring in a natural way.
Hodge theory shows that there are natural isomorphisms

Hn(X ; C) ∼= ⊕p+q=nH
p,q(X)

which give an isomorphism of graded rings H∗(X ; C) ∼= ⊕p,qH
p,q(X) (where the

latter is graded by total degree).
Hodge further analyzed how Poincaré Duality acts with respect to this decom-

position. He proved that if dimX = r then Hp,q(X) ∼= Hr−p,r−q(X), which in
particular shows that Hp,q(X) = 0 if p > r or q > r. The nonzero groups Hp,q(X)
form the Hodge diamond , which we depict in the case of a dimension 4 Kähler
manifold:

H2,2

H2,1 H1,2

H2,0 H1,1 H0,2

H1,0 H0,1

H0,0
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Duality says that the ‘antipodal’ terms in the Hodge diamond are isomorphic to
each other.

Finally, the action of complex conjugation on H∗(X ; C) maps Hp,q(X) to
Hq,p(X), thereby showing that these groups are isomorphic. In terms of the pic-
ture, this is a reflective symmetry of the Hodge diamond about the central vertical
axis. An immediate corollary is that if j is odd then Hj(X ; C) is even dimensional.

The numbers hp,q(X) = dimHp,q(X) are called the Hodge numbers of X .
We will compute some of these in the examples below.

4.1. Fundamental classes. Let Z →֒ X be an algebraic subvariety of pure
codimension c. It has a fundamental class [Z] ∈ H2c(X), and Hodge theory shows
that its image under H2c(X) → H2c(X ; C) lies purely in the summand Hc,c(X).
The Hodge conjecture is a converse to this statement:

Conjecture 4.2 (Hodge conjecture). Let X be a smooth, projective, complex
variety. If x ∈ H2c(X ; Q) and the image of x under H2c(X ; Q)→ H2c(X ; C) lies
in Hc,c(X), then x =

∑
i ni[Zi] for some ni ∈ Q and some algebraic subvarieties

Zi →֒ X of codimension c.

Remark 4.3. Actually, Hodge’s original conjecture was made for classes x ∈
H2c(X ; Z) instead of H2c(X ; Q); see [Ho]. This would have the consequence that
every torsion class in H2c(X ; Z) was a linear combination of [Zi]’s. But this turned
out to be false—a counterexample was given by Atiyah and Hirzebruch [AH2,
Thm. 6.5], using a construction of Serre’s [Se1].
[This is not needed in what follows, but here is a brief description of the idea from
[AH2]. On a smooth scheme, the cohomology fundamental class of an algebraic
cycle must survive the Atiyah-Hirzebruch spectral sequence from singular coho-
mology to complex K-theory. This is essentially because one can build a finite
complex of vector bundles resolving the structure sheaf of any algebraic subvariety;
the cohomology class of the algebraic cycle survives so that it can ‘become’ the
alternating sum of the vector bundles in the resolution. The differentials in the
Atiyah-Hirzebruch spectral sequence are certain cohomology operations, and these
then given obstructions for a cohomology class to be algebraic. By analyzing the
first k-invariant of BU , one sees that d3 is an integral lift of Sq3. If one can find a
varietyX and a torsion cohomology class on which this operation is nontrivial, then
the cohomology class cannot survive the spectral sequence and therefore cannot be
algebraic. Serre [Se1] proves the remarkable result that for any finite group G and
any integer n > 2, there is a projective algebraic variety over C whose homotopy n-
type is the same as K(Z, 2)×K(G, 1). It is not hard to find a G whose cohomology
has a torsion class killed by d3, and this finishes the counterexample.]

4.4. Compatibility of Hodge and Lefschetz. A hyperplane section of X
is, in particular, an algebraic subvariety of codimension 1. So its fundamental class
ξ lies in H1,1(X). Since the cup product respects the Hodge decomposition, the
Lefschetz operator L : Hj(X ; C) → Hj+1(X ; C) sends Hp,q(X) to Hp+1,q+1(X).
The Hard Lefschetz theorem then gives that Hp,q(X) ∼= Hr−q,r−p(X). This is
another symmetry of the Hodge diamond, this time a reflective symmetry about
the central horizontal axis.

Note that the Lefschetz decomposition of H∗(X ; Q) into primitive pieces in-
duces a similar decomposition for each of the Hodge groups Hp,q, because the
operator L respects the Hodge bi-grading.
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4.5. Sample computations. Now we turn to some examples.

Example 4.6 (Projective space). For CPn one knows that the cohomology is
completely algebraic: the group H2j(CPn) is generated by [CPn−j ], which must
lie in Hj,j(CPn). One therefore has that

hp,q(CPn) =

{
1 if p = q and p ≤ n
0 otherwise.

So the groups in the Hodge diamond for CPn are concentrated along the central
vertical axis.

Example 4.7. (Hodge numbers of complete intersections) For complete inter-
sections the Hodge numbers are completely determined by the degrees of the defin-
ing equations. First of all, the Weak Lefschetz theorem shows that the Hodge dia-
mond is the same as for projective space except in the middle dimension. The ranks
of the groups in this middle dimension can again be computed via the Hirzebruch-
Riemann-Roch theorem. One defines

χp(X) =
∑

q

(−1)q dimHp,q(X ; C) and χy(X) =
∑

p

χp(X)yp.

The χp’s are the Euler characteristics for the rising diagonals in the Hodge diamond.
Once one knows these for a complete intersection, the ranks of the groups in the
middle dimension can easily be computed.

Suppose X →֒ CPn is a complete intersection defined by a regular sequence of
forms having degrees d1, d2, . . . , dk. Hirzebruch’s theorem [H, Thm. 22.1.1] says
that χy(X) is the coefficient of zn in the formal power series

1

(1 + yz)(1− z) ·
∏

i

[
(1 + yz)di − (1− z)di

(1 + yz)di + y(1− z)di

]
.(4.8)

Let’s again consider the hypersurface x3 + y3 + z3 + w3 + u3 = 0 in CP 4.
Mathematica can expand the above series for us. The commands to do this (as well
as Mathematica’s output) are:

In[1]:= f[z ,y ]:=((1+y*z)^3 - (1-z)^3)/((1+y*z)^3+y*(1-z)^3)

In[2]:= g[z ,y ]:=f[z,y]/((1+y*z)(1-z))

In[3]:= Series[g[z,y],{z,0,5},{y,0,5}]

Out[3]:= (3+0[y]^6)z + 0[y]^6 z^2 + (1 - 7y +y^2+0[y]^6)z^3 +

(1 + 4y - 4y^2 - y^3 + 0[y]^6) z^4 +

(1 - 2y + 21y^2 - 2y^3 + y^4 + 0[y] ^6) z^5

For us the relevant information is the coefficient of z4, which is 1+4y−4y2−y3.
From it, we deduce that the Hodge diamond looks as follows:

C

0 0

0 C 0

0 C5 C5 0

0 C 0

0 0

C.



46 2. TOPOLOGICAL INTERLUDE: THE COHOMOLOGY OF ALGEBRAIC VARIETIES

Example 4.9 (More about hypersurfaces). Let X be a hypersurface of dimen-
sion r. The cohomology groups of X (with complex coefficients) consist of C’s in
even dimensions, concentrated along the central diagonal in the Hodge diamond,
together with the groups Hr−i,i (for 0 ≤ i ≤ r) on the middle row. Define the gap
of X to be the number of zeros at the rightmost end of the middle row. That is,

gap(X) = #
{
k ∈

[
0,
r

2

] ∣∣∣Hk,r−k(X) = Hk−1,r−k+1(X) = · · · = H0,r(X) = 0
}
.

The number of groups in the middle row to the right of the central diagonal (in-
cluding the diagonal itself) is equal to 1 + r

2 if r is even and r+1
2 if r is odd. Define

spread(X) =

{
1 + r

2 − gap(X) if r is even,
r+1
2 − gap(X) if r is odd.

Morally, the spread of X is the number of nonzero groups in the middle row which
are right of the central diagonal, including the groups on the diagonal itself.

If X is a degree d hypersurface in CPn, a little work with the power series (4.8)
shows that gap(X) = ⌊n

d ⌋. So hypersurfaces with small degree have small spread,
and the spread increases as the degree increases. Hypersurfaces of degree n+1 and
higher have full spread (or equivalently, zero gap).

5. Correspondences and the cohomology of manifolds

The previous sections dealt with properties of cohomology which are very par-
ticular to compact algebraic varieties over C. The material in this section holds in
more generality; it works for spaces which are oriented compact manifolds.

Let X be an oriented, compact manifold of dimension d. The orientation de-
termines an isomorphism ηX : Hd(X ; Q) → Q, by sending the cohomology funda-
mental class of X to 1. The cup product then gives pairings

Hi(X ; Q)⊗Hd−i(X ; Q)→ Hd(X ; Q) ∼= Q,

and a consequence of Poincaré Duality is that these are perfect pairings.
The reader has perhaps seen, in an introductory course on algebraic topology,

that the algebra of these perfect pairings can be used to prove the Lefschetz fixed
point theorem (see, for example, [GH, Chapter 30]). Most textbooks only touch
upon these methods, however, without systematically developing the ideas. The
goal in this section is precisely to undertake such a systematic development. It will
lead us to a nice generalization of the Lefschetz fixed point theorem, and perhaps
to a better understanding of it.

Note: The definitions in this chapter lead to several unpleasant signs.
It seems like there should be a way to avoid this. These signs are ir-
relevant for things later in the text, as they disappear when the spaces
involved are all even-dimensional (for example, if they are complex alge-
braic varieties). Still, it seems like there should be an approach to this
material which leads to more reasonable signs in the formulas for odd-
dimensional manifolds. Perhaps some reader will be inspired to work
this out.
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5.1. Basic machinery. In this section all cohomology groups have coefficients
in Q (although any field would suffice). Let X be a compact, oriented manifold.
We will abuse notation and also use the symbol “X” to denote the dimension of
X , in formulas like HX−i(X) ∼= Hi(X). Similarly, if α, β ∈ H∗(X) we will also
write formulas such as αβ = (−1)αββα, where clearly the symbols α and β in
the exponent are denoting the dimensions of the corresponding cohomology classes.
This abuse of notation is extremely convenient, and in practice there is usually not
much chance of confusion. (Actually, there is one chance for confusion: the “αβ”
in the exponent might be taken to be the degree of the cohomology class αβ, rather
than the product of the degrees. We will never use this interpretation, instead
writing (−1)|αβ| or (−1)α+β if necessary).

In our subsequent work in this section we will only use the following properties
of singular cohomology.

(1) H∗(−) is a contravariant from spaces to graded-commutative Q-algebras;
(2) H∗(pt) equals Q, concentrated in dimension 0;
(3) Hi(X) = 0 for unless 0 ≤ i ≤ dimX ;
(4) For each X and Y , the map

H∗(X)⊗H∗(Y )→ H∗(X × Y ), α⊗ β 7→ π∗
1(α) · π∗

2(β)

is an isomorphism of rings, where the product on the domain is the graded-
tensor product, given by

(a⊗ b) · (c⊗ d) = (−1)bc(ac⊗ bd)
for homogeneous elements a, c ∈ H∗(X) and b, d ∈ H∗(Y ). For homogeneous
elements α ∈ H∗(X) and β ∈ H∗(Y ) we will often write α⊗β for π∗

1(α) ·π∗
2(β),

implicitly using the above isomorphism.
(5) For each oriented manifold X there is a chosen isomorphism ηX : HX(X)→ Q,

and we write ΘX for the preimage of 1 under this map (this is the cohomological
fundamental class of X). We have that ΘX×Y = ΘX ⊗ΘY for all X and Y .

(6) Finally, for all oriented manifolds X the product maps

Hi(X)⊗HX−i(X)→ HX(X)
ηX−→ Q

are perfect pairings.

In Chapter 3 we will want to say that the arguments below work just as well
for certain cohomology groups in algebraic geometry. The reason this is true is that
our proofs will only use the above properties.

It is useful to extend the map ηX to all of H∗(X) by defining it to be zero on
all Hi(X) for i < X . For α, β ∈ H∗(X), write

〈α, β〉 = η(α · β).

It is useful to also write 〈α〉 for η(α), as this lets us drop some commas in formulas:
e.g., we can write 〈α, β〉 = 〈αβ〉.

Poincaré Duality says that 〈−,−〉 is a perfect pairing Hi(X)⊗HX−i(X)→ Q.
This gives us two canonical isomorphisms

φL, φR : Hi(X)
∼=−→ HomQ(HX−i(X),Q),

given by
(φLα)(β) = 〈α, β〉, (φRα)(β) = 〈β, α〉.

These two maps differ by a sign.
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Given a map f : X → Y , define the cohomology pushforward functor
f! : H

i(X)→ Hi+Y −X(Y ) by the square

Hi(X) //

∼=φR

��

Hi+Y −X(Y )

∼=φR

��
Hom(HX−i(X),Q)

Hom(f∗,Q) // Hom(HX−i(Y ),Q).

Equivalently, f! is the unique morphism satisfying the equation

〈α, f!(β)〉 = 〈f∗(α), β〉
for every β ∈ Hi(X) and α ∈ HX−i(Y ). Intuitively, f! is the Poincaré dual of
the usual pushforward map f∗ on homology. But the above approach allows us to
construct f! without ever having to refer to homology at all.

Exercise 5.2. Verify that 〈xy, z〉 = 〈x, yz〉 for x, y, z ∈ H∗(X) and that
〈f!(p), q〉 = (−1)q(Y −X)〈p, f∗(q)〉 for p ∈ H∗(X) and q ∈ H∗(Y ). [Remark: Note
that the latter formula just doesn’t look right, on any level; that is, it doesn’t con-
form to the Koszul sign conventions. This is what we meant by our warning that
the signs are sometimes unpleasant. If X and Y are even-dimensional then the sign
goes away, and the formula looks more sensible.]

Lemma 5.3 (Projection formula). Let f : X → Y . Then for any α ∈ Hi(Y )
and β ∈ Hj(X), one has f!(f

∗α · β) = α · f!(β).

Proof. This is simply a computation. For any γ ∈ HX−i−j(Y ),

〈γ, f!(f∗α · β)〉Y = 〈f∗γ, f∗α · β〉X = 〈f∗γ · f∗α, β〉X = 〈f∗(γα), β〉X
= 〈γα, f!(β)〉Y
= 〈γ, α · f!(β)〉Y .

�

Lemma 5.4. For α ∈ H∗(X) and β ∈ H∗(Y ) one has

(πX×Y
X )!(α⊗ β) = 〈β〉Y · α and (πX×Y

Y )!(α⊗ β) = (−1)X(Y −β)〈α〉X · β.
Proof. More computations. For example,

〈
γ, (πX×Y

Y )!(α⊗ β)
〉

Y
=
〈
(πX×Y

Y )∗(γ), α⊗ β
〉

X×Y
=
〈
1⊗ γ, α⊗ β

〉
X×Y

= 〈(1 ⊗ γ)(α⊗ β)〉X×Y

= (−1)γαηX×Y (α⊗ γβ)

= (−1)γα〈α〉X · 〈γ, β〉Y
= (−1)(Y −β)X〈α〉X · 〈γ, β〉Y .

In the last equality, we can replace the exponent on the −1 because the rest of the
expression vanishes unless α has degree X and γ has degree Y − β.

The other formula is a very similar computation, but even easier. �

If j : X →֒ Y is the inclusion of a submanifold, write [X ] = j!(1) ∈ HY −X(Y ).
This is the “cohomology fundamental class” of X . Also, given f : X → Y let
∆f : X → Y ×X be the map x 7→ (f(x), x). Define Gr(f) = f!(1) ∈ HY (Y ×X).
This is the fundamental class in Y × X for the graph of f . (This definition of
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the graph of f is backwards from what is typically used, e.g. in freshman calcu-
lus courses. But the present definition is more consistent with the convention of
functions acting on the left, and it will work better with the geometric approach to
function composition we will consider below.)

5.5. Correspondences. A correspondence from X to Y is simply a cohomol-
ogy class u ∈ H∗(Y×X). The importance of this concept is that any correspondence
induces maps u∗ : H∗(Y ) → H∗(X) and u! : H

∗(X) → H∗(Y ), and in the special
case where u = [Gr f ] these coincide with f∗ and f!. The idea is that a correspon-
dence behaves as if it were a generalized function from X to Y . [Some texts define
a correspondence from X to Y to be a cohomology class in H∗(X×Y ) rather than
in H∗(Y ×X). As these groups are isomorphic, this is laregly a semantical issue.]

Continuing the analogy with functions, one can define the composition of two
correspondences. If v ∈ H∗(Z×Y ) and u ∈ H∗(Y ×X), define the correspondence
v ◦ u ∈ Hv+u−Y (X × Z) by the formula

v ◦ u = (−1)uY +XY (π13)!
[
(π12)

∗(v) · (π23)
∗(u)

]
.

Here π12, π13, and π23 are the evident projections with domain Z × Y × X (for
example, π12 : Z × Y ×X → Z × Y .)

The sign in the above formula is annoying, but it is exactly what is needed to
make the composition product associative. For the following result, recall the class
∆X ∈ HX(X ×X) defined by ∆X = ∆!(1), where ∆: X → X ×X is the diagonal
embedding.

Proposition 5.6. Let w ∈ H∗(W ×Z), v ∈ H∗(Z ×Y ), and u ∈ H∗(Y ×X).
Then

w ◦ (v ◦ u) = (w ◦ v) ◦ u.
Moreover, ∆Y ◦ u = u = u ◦∆X .

Proof. In this proof we will use several different projection maps. Let us
adopt the notation πWZX

WX for the projection W × Z ×X →W ×X , and similarly
for other projections. Also, when the domain and range of the projection can be
deduced from context we will just write π∗, to simplify the typography. Note that
this will sometimes result in several different projections all being denoted π∗ in
the same formula.

The idea of the proof is to manipulate the expression

Ω = (πWZY X
WX )![π

∗(w) · π∗(v) · π∗(u)]

in two different ways. One way shows

Ω =
(
πWZX

WZ

)
!

(
π∗w ·

(
πZY X

ZX

)
!
(π∗v · π∗u

))
(5.7)

whereas the other way shows

Ω = (−1)uZ+XZ
(
πWY X

WX

)
!

((
πWZY

ZY

)
!
(π∗w · π∗v

)
· π∗u

)
.(5.8)

Adding signs for the composition products, we see from (5.7) that

w ◦ (v ◦ u) = (−1)uY +XY +(u+v−Y )Z+XZΩ.

Likewise, equation (5.8) gives that

(w ◦ v) ◦ u = (−1)vZ+Y Z+uY +XY · (−1)uZ+XZΩ.

Comparing these, we find at once that w ◦ (v ◦ u) = (w ◦ v) ◦ u.
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So our task is to prove (5.7) and (5.8). Observe that

Ω = (πWZX
WX )!(π

WZY X
WZX )!

[
(πWZY X

WZX )∗(π∗(w)) ·
(
π∗(v)π∗(u)

)]

= (πWZX
WX )!

[
π∗(w) · (πWZY X

WZX )!
(
π∗(v)π∗(u)

)]
(projection formula)

= (πWZX
WX )!

[
π∗(w) · (πWZY X

WZX )!(π
WZY X
ZY X )∗

(
π∗(v)π∗(u)

)]

= (πWZX
WX )!

[
π∗(w) · (πWZX

ZX )∗(πZY X
ZX )!

(
π∗(v)π∗(u)

)]
(push-pull).

The step labelled “push-pull” uses the identity

(πWZY X
WZX )!(π

WZY X
ZY X )∗ = (πWZX

ZX )∗(πZY X
ZX )!

which may be verified by the usual kind of adjointness argument (???).
Likewise, we can start with

Ω = (πWY X
WX )!(π

WZY X
WY X )!

[(
π∗(w)π∗(v)

)
· (πWZY X

WY X )∗(π∗(u))
]

and proceed similarly. This time our use of the projection formula comes with
a sign: we are looking at something of the form π!(α · π∗(β)), and this equals
(−1)βππ!(α) · β (where by convention the dimension of π is the dimension of the
codomain minus the dimension of the domain). This is the (−1)uZ sign appearing
in (5.8). Later we need to use another push-pull formula, this time

????.

Here the sign comes, ultiimately, from the signs in Lemma 5.4. We will leave the
reader to fill in the details here.

IDENTITIES?!!! �

Proposition 5.9. Let α ∈ H∗(X), β, γ ∈ H∗(Y ), and δ ∈ H∗(Z). Then

(δ ⊗ γ) ◦ (β ⊗ α) = (−1)βY 〈γ, β〉 · δ ⊗ α.
Proof. A computation exactly as in Lemma 5.4 shows that

(
πZY X

ZX

)
!

(
p⊗ q ⊗ r

)
= (−1)(X−r)Y 〈q〉 · (p⊗ r).

Using this, we compute that

(δ ⊗ γ) ◦ (β ⊗ α) = (−1)(α+β)Y +XY ·
(
πZY X

ZX

)
!

(
(δ ⊗ γ ⊗ 1) · (1⊗ β ⊗ α)

)

= (−1)(α+β)Y +XY ·
(
πZY X

ZX

)
!

(
δ ⊗ (γβ)⊗ α

)

= (−1)(α+β)Y +XY · (−1)(X−α)Y 〈γ, β〉 · (δ ⊗ α)

= (−1)βY · 〈γ, β〉 · (δ ⊗ α).

�

We now define the functions u∗ and u! induced by a correspondence. Write π1

and π2 for the projections from Y × X to Y and X . Let u ∈ H∗(Y × X). For
α ∈ H∗(Y ) and β ∈ H∗(X), define

u∗(α) = α ◦ u and u!(β) = u ◦ β.
Here α is identified with an element of H∗(pt × Y ) in the first equation, and β is
identified with an element of H∗(X × pt) in the second.
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The above formulas define maps u∗ : H∗(Y )→ H∗+u−Y (X) and u! : H
∗(X)→

H∗+v+Y −X(Y ). If v ∈ H∗(Z × Y ) and u ∈ H∗(Y ×X), note that

(v ◦ u)∗(α) = u∗(v∗(α)) and (v ◦ u)!(β) = u!(v!(β))

for α ∈ H∗(Z) and β ∈ H∗(X). These formulas are direct consequences of the
associativity of the composition product, Proposition 5.6.

Remark 5.10. By using the definition of the composition product, we can
write

u∗(α) = (−1)uY +XY (π2)!((π1)
∗(α) · u) ∈ Hα+u−Y (X)

and
u!(β) = (−1)βX(π1)!(u · (π2)

∗β) ∈ Hβ+u−X(Y )

for u ∈ H∗(Y ×X), α ∈ H∗(Y ), and β ∈ H∗(X). As a consequence, one obtains
the following formulas as well:

〈β, u∗(α)〉 = (−1)uY +XY 〈π∗
2(β) · π∗

1(α) · u〉X×Y

〈α, u!(β)〉 = (−1)βX〈π∗
1(α) · u · π∗

2(β)〉X×Y .

Lemma 5.11. Let f : X → Y . Then for α ∈ H∗(Y ) and β ∈ H∗(X) one has

[Gr f ]∗(α) = (−1)XY +Y f∗(α) and [Gr f ]!(β) = (−1)β(X+Y )f!(β).

Proof. Let α ∈ Hi(Y ), and let β ∈ HX−i(X). Then

(−1)Y 2+XY 〈β, [Gr f ]∗(α)〉 = 〈π∗
2(β) · π∗

1(α) · [Gr f ]〉
= 〈π∗

2(β) · π∗
1(α), f̃!(1)〉

= 〈f̃∗(π∗
2(β) · π∗

1(α)), 1〉
= 〈β · f∗(α), 1〉
= 〈β, f∗(α)〉.

This shows [Gr f ]∗(α) = (−1)Y +XY f∗α (using that Y ≡ Y 2 mod 2), and a similar
argument shows the other identity. �

The signs in the above lemma are annoying, but I don’t know how to avoid
them. Note that they disappear if f is a map X → X , and of course they also
disappear if both X and Y are even-dimensional.

Exercise 5.12. Let u ∈ H∗(Y ×X), a ∈ H∗(X), and b ∈ H∗(Y ). Verify that

〈b, u!(a)〉 = 〈u∗(b), a〉 · (−1)aY +aX+uY +XY .

5.13. Correspondences and cohomology homomorphisms. Let X and
Y be oriented manifolds. A homomorphism of vector spaces h : H∗(Y )→ H∗(X) is
said to be homogeneous of degree c if h(Hi(Y )) ⊆ Hi+c(X) for all i ∈ Z. Write
Homc(H∗(Y ), H∗(X)) for the vector space consisting of all such homomorphisms,
and write

Hom(H∗(Y ), H∗(X)) =
⊕

c∈Z

Homc(H∗(Y ), H∗(X)).

We have Q-linear maps

Hi(Y ×X)→ Homi−Y (H∗(Y ), H∗(X)), u 7→ u∗

which we may regard as a degree −Y map of graded vector spaces

H∗(Y ×X) −→ Hom(H∗(Y ), H∗(X)).
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Lemma 5.14. Let α ∈ H∗(X) and β ∈ H∗(Y ). Then for w ∈ H∗(X) one has

(β ⊗ α)∗(w) = (−1)β〈β,w〉 · α.
In particular, note that (β ⊗ α)∗ is nonzero only on HY −β(Y ), and that its image
equals the subspace of Hα(X) generated by α.

Proof. This is actually a corollary of Lemma 5.9, because

(β ⊗ α)∗(w) = w ◦ (β ⊗ α) = (1⊗ w) ◦ (β ⊗ α) = (−1)βY 〈w, β〉(1 ⊗ α)

= (−1)βY +βw〈β,w〉 · α.
But 〈β,w〉 is nonzero only when |w| = Y − |β|, and so we can write

(−1)βY +βw = (−1)β(Y +w) = (−1)β2

= (−1)β .

�

Corollary 5.15. Suppose u ∈ Hi(Y ) ⊗ Hj(X) ⊆ Hi+j(Y × X). Then the
map u∗ : H∗(Y )→ H∗(X) is nonzero only on HY −i(Y ) and its image is contained
in Hj(X).

Proof. Simply write u =
∑

k βk ⊗ αk and use Lemma 5.14. �

Proposition 5.16. The map Γ: H∗(Y × X) → Hom(H∗(Y ), H∗(X)) is an
isomorphism of graded vector spaces.

Proof. Given a homogeneous map h : H∗(Y )→ H∗(X), we write h =
∑

k hk

where hk is nonzero only on Hk(Y ) (and equals the restriction of h thereon). To
prove that Γ is surjective it will be sufficient to show that each hk is in the image.
So without loss of generality, replace h by hk.

Now h is a map Hk(Y ) → Hj(X). Pick a basis α1, . . . , αp for Hj(X). Then
one obtains unique functionals φ1, . . . , φp on Hk(Y ) such that

h(u) =
∑

s

φs(u)αs.

Using the nondegenerate pairing Hk(Y )⊗HY −k(Y )→ Q, there exist unique βs ∈
HY −k(Y ) such that φs = 〈βs,−〉. It is now clear from Lemma 5.14 that

h = Γ
(
(−1)(Y −k) ·

∑

s

βs ⊗ αs

)
.

This proved the surjectivity of Γ. The injectivity is an immediate consequence
of the two words “unique” appearing in the previous paragraph. �

5.17. The transpose operator. Given spaces X and Y , let tX,Y : X ×Y →
Y ×X be the usual twist map. We will usually abbreviate tX,Y = t.

Lemma 5.18. For β ∈ H∗(Y ) and α ∈ H∗(X) one has t∗(β⊗α) = (−1)αβα⊗β
and t!(α⊗ β) = (−1)αβ+XY β ⊗ α.

Proof. ??? The second identity follows immediately from the first, using
adjointness (i.e., compute 〈p⊗ q, t!(α⊗ β)〉). �

For u ∈ H∗(Y ×X) we define ut = t∗(u) and call this the transpose of u.

Proposition 5.19. Let u ∈ H∗(Y ×X) and v ∈ H∗(Z × Y ). Then

(v ◦ u)t = (−1)uY +vY +uv(ut ◦ vt).
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Proof. Let σ : X×Y ×Z → Z×Y ×X be the evident map. We first observe
that σ!σ

∗ = (−1)XY +Y Z+XZ · id. Next we compute:

(v ◦ u)t = (−1)uY +XY (t∗X,Z)
(
πZY X

ZX

)
!

(
(πZY X

ZY )∗(v) · (πZY X
Y X )∗(u)

)

= (−1)uY +XY +XZ(tX,Z)!
(
πZY X

ZX

)
!

(
(πZY X

ZY )∗(v) · (πZY X
Y X )∗(u)

)

= (−1)uY +Y Z
(
πZY X

XZ

)
!
σ!σ

∗
(
(πZY X

ZY )∗(v) · (πZY X
Y X )∗(u)

)

= (−1)uY +Y Z
(
πXY Z

XZ

)
!

(
(πXY Z

ZY )∗(v) · (πXY Z
Y X )∗(u)

)

= (−1)uY +Y Z
(
πXY Z

XZ

)
!

(
(πXY Z

Y Z )∗(vt) · (πXY Z
XY )∗(ut)

)

= (−1)uY +Y Z+uv
(
πXY Z

XZ

)
!

(
(πXY Z

XY )∗(ut) · (πXY Z
Y Z )∗(vt)

)

= (−1)uY +Y Z+uv · (−1)vY +Y Z · (ut ◦ vt)

= (−1)uY +vY +uv(ut ◦ vt).

�

Exercise 5.20. Verify that (ut)∗(α) = (−1)uX+αX+uα · u!(α) for α ∈ H∗(X)
and u ∈ H∗(Y ×X). Also verify the formula

〈(ut)∗(α), β〉 = 〈a, u∗(β)〉 · (−1)uY +XY +uX+bX+bu.

Lemma 5.21. If X is an oriented manifold then (∆X)t = (−1)X∆X in H∗(X×
X).

Proof. t∗(∆X) = (−1)X2

t!(∆X) = (−1)X · t!(∆!(1)) = (−1)X ·∆!(1). �

5.22. The Lefschetz trace formulas. If w ∈ HX(X×X) then w∗ : H∗(X)→
H∗(X) has degree 0. Let us write Tri(w

∗) for the trace of w∗|Hi(X). More generally,
for any w ∈ H∗(X ×X) let us write Tri(w

∗) for the trace of πi ◦ w∗ ◦ πi, where πi

is the projection of H∗(X) onto Hi(X). Note that with this definition, Tri(w
∗) is

simply the trace of (wX)∗ where wX is the component of w in HX(X ×X).
The following result gives four versions of a generalized Lefschetz trace formula.

This is the main result we have been aiming for in this section.

Theorem 5.23. Let u ∈ H∗(Y × X) and v ∈ H∗(X × Y ), so that v ◦ u ∈
H∗(X ×X). Then one has
∑

k

(−1)k Trk(v ◦ u)∗ = (−1)X+XY +uY · 〈vt, u〉Y ×X = (−1)(X+1)(Y −u)〈u, vt〉Y ×X

and also∑

k

(−1)k Trk(v ◦ u)∗ = (−1)X+u+uX · 〈ut, v〉X×Y = (−1)X+uY 〈v, ut〉X×Y

Before giving the proof, we note a few consequences. First observe that if
u ∈ HX(X ×X) and we take v = ∆X , then the first formula gives

∑

k

(−1)k Trk(u∗) = 〈∆, u〉X×X

(where we have used the fact that ∆t = (−1)X∆). This is the classical Lefschetz
fixed point formula, usually given when u = [Gr f ] for some map f : X → X .



54 2. TOPOLOGICAL INTERLUDE: THE COHOMOLOGY OF ALGEBRAIC VARIETIES

If u ∈ H∗(Y ×X), write u =
∑

i ui where ui ∈ HY −i(Y )⊗Hu+i−Y (X). Note
that u∗i is nonzero only on Hi(Y ), and is just the restriction of u∗ on this subspace.
When u = ∆ ∈ HX(X ×X), then (∆i)

∗ is simply the projection from H∗(X) onto
Hi(X).

Corollary 5.24. Let u ∈ HX(X ×X). Then

Tri(u
∗) = (−1)i · 〈∆X−i, u〉.

Proof. Since ∆t
X = (−1)X∆X , it follows readily that ∆t

i = (−1)X∆X−i. Now
just apply one of the Lefschetz trace formulas:

(−1)i Tri(u
∗) =

∑

k

(−1)k Trk(u ◦∆i)
∗ = (−1)X · 〈∆t

i, u〉 = 〈∆X−i, u〉.

�

Let u ∈ HX(X × X), so that u∗ is a collection of maps Hi(X) → Hi(X).
Suppose that instead of just wanted the trace of u∗ we wanted the characteristic
polynomials. By linear algebra, the coefficients of the characteristic polynomial can
be computed from the traces of the iterates of u∗ (see the proof below for more
details about this). This leads to the following:

Proposition 5.25. Fix i, and let let n = dimQH
i(X). Let u ∈ HX(X ×X),

and let p(t) = det(u∗|Hi(X) − tI) be the characteristic polynomial of u∗ acting on

Hi(X). Then the coefficients of p(t) are obtained as universal rational algebraic
expressions of the numbers

〈∆X−i, u〉, 〈∆X−i, u ◦ u〉, · · · , 〈∆X−i, u
◦(n)〉.

Proof. Let λ1, . . . , λn be the complex eigenvalues of u∗ acting on Hi(X).
Then the coefficients of p(t) are the symmetric functions on the λ’s, and these can
be written in terms of the Newton polynomials in the power sums λk

1 + · · · + λk
n.

Yet this power sum is nothing other than

tr
(
(u∗)◦k|Hi(X)

)
= tr

(
(u◦k)∗|Hi(X)

)
= (−1)i〈∆X−i, u

◦(k)〉.
�

This is as far as we need to go in the present chapter. We close with the proof
of the trace formulas:

Proof of Theorem 5.23. This is yet another computation. We will only
prove the first formula, the others being very similar.

First note that we may assume |u|+ |v| = X + Y , otherwise both sides of the
equation are zero. Next write u =

∑
ui and v =

∑
vj with ui ∈ Hu−i(Y )⊗Hi(X)

and vj ∈ HX−j(X) ⊗ HY +j−u(Y ). Then v ◦ u =
∑

i,j(vj ◦ ui) and 〈vt, u〉 =∑
i,j〈vt

j , ui〉. It is easy to see that vj ◦ ui = 0 unless j = i, and likewise 〈vt
j · ui〉 = 0

unless j = i. So we may reduce to the case u = ui and v = vi; that is, u ∈
Hu−i(Y )⊗Hi(X) and v ∈ HX−i(X)⊗HY +i−u(Y ). Note that in this case v∗ is a
map Hi(X) → HY +i−u(Y ) and u∗ is a map HY −u+i(Y ) → Hi(X), so (v ◦ u)∗ =
u∗ ◦ v∗ is a map Hi(X)→ Hi(X). Thus,

∑
k(−1)k Trk(v ◦ u)∗ = (−1)i Tri(v ◦ u)∗.

Let {βs} be any basis for Hi(X), and let {β̂s} be the dual basis for HX−i(X)

defined by 〈βs, β̂t〉 = δs,t. We may write

u =
∑

αs ⊗ βs and v =
∑

β̂s ⊗ γs
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for unique αs ∈ Hu−i(Y ) and γs ∈ HY −u+i(Y ). Then

v ◦ u =
∑

s,t

(β̂s ⊗ γs) ◦ (αt ⊗ βt) =
∑

s,t

(−1)αY 〈γs, αt〉(β̂s ⊗ βt)

Now

(v ◦ u)∗(βr) = (−1)αY
∑

s,t

〈γs, αt〉 · (β̂s ⊗ βt)
∗(βr)

= (−1)αY +β̂
∑

s,t

〈γs, αt〉 · 〈β̂s, βr〉 · βt

= (−1)αY +β̂+ββ̂
∑

t

〈γr, αt〉 · βt.

Therefore
Tr(v ◦ u)∗ = (−1)αY +β̂+ββ̂

∑

r

〈γr, αr〉.

Likewise, we can also compute

vt · u =
∑

s,t

(−1)β̂γ(γs ⊗ β̂s) · (αt ⊗ βt) =
∑

s,t

(−1)(β̂γ+β̂α)(γsαt ⊗ β̂sβt)

= (−1)β̂Y
∑

s,t

(γsαt ⊗ β̂sβt).

Therefore
〈vt, u〉 = (−1)β̂Y +ββ̂

∑

s

〈γs, αs〉.

Comparing our formulas for Tr(v ◦ u)∗ and 〈vt, u〉, we find they differ by the sign
(−1)S where

S = αY + β̂ + β̂Y = (u− i)Y + (X − i) + (X − i)Y.
Since (−1)S = (−1)X+XY +uY +i, this completes our proof.

�

Looking ahead.

For oriented manifolds, cup product on cohomology is dual to the intersection
product in homology. The former is easier to define, and easier to work with, but
it is the latter which gives us connections to geometry. The results in this section
can be thought of as giving a geometric interpretation of the coefficients of the
characteristic polynomial of u∗ acting on Hi(X): the coefficients can be understood
in terms of the intersection products of the duals of u◦(k) and ∆X−i. Looking ahead
to the next section, where we return to the Weil conjectures, the importance of this
observation is as follows. It in some sense shows that the technology needed to
prove the Weil conjectures, while ostensibly requiring a well-developed cohomology
theory for algebraic varieties, can be pared down further and further until it just
involves producing certain algebraic cycles and studying their intersection numbers.
This is the main idea behind Grothendieck’s so-called “Standard Conjectures”.





CHAPTER 3

A second look at the Weil conjectures

The Standard Conjectures on algebraic cycles were developed independently
by Grothendieck and Bombieri in the mid 1960s, in an effort to better explain the
Weil conjectures (chiefly the Riemann hypothesis). In the literature one finds a
brief expository outline by Grothendieck [G2] as well as two detailed treatments
by Kleiman [Kl1, Kl2].

Before describing the conjectures, let us briefly recall the setting at that time.
For varieties over an algebraically closed field k, Grothendieck and his collaborators
had defined a family of cohomology theories X 7→ H∗(X ; Ql), one for every prime
l different from the characteristic of k. These theories satisfied Poincaré Duality,
a Lefschetz trace formula, as well as many other nice properties. If X was defined
over a finite field Fq, one obtained a rational expression

Z(X, t) =
P1(t)P3(t) · · ·P2d−1(t)

P0(t)P2(t) · · ·P2d(t)

where Pi(t) is the characteristic polynomial of F ∗ acting on Hi(X̄ ; Ql). Here X̄ =
X

Fq
and F : X̄ → X̄ is the geometric Frobenius map. Poincaré Duality yielded

a functional equation for the Z(X, t). Note that the Pi(t)’s are polynomials with
coefficients in Ql. The following two things were at that time conjectured but not
proven:

(1) (Independence of l) The coefficients of the Pi(t)’s are integers, and are inde-
pendent of l.

(2) (Riemann hypothesis) The reciprocal roots of Pi(t) have absolute value qi/2.

The primary goal of the Standard Conjectures was to show how these claims would
follow from more fundamental assertions about algebraic cycles and the behavior
of cohomology theories.

Let X be a smooth, connected, projective variety defined over a field k. Recall
that one has the Chow groups CH∗(X), and that these come equipped with a
multiplication induced by intersection of cycles. Let d = dimX . If U →֒ X and
W →֒ X are subvarieties such that dimU +dimW = dimX , then one can move W
in its rational equivalence class so that U ∩W is a finite set of closed points. For
each point p ∈ U ∩W one has an intersection multiplicity defined by

i(U,W ; p) =

∞∑

i=0

(−1)i dimk Tor
OX,p

i (OU,p,OW,p).

It is known that this number is positive, and of course it is an integer. If U ∩W =
{p1, . . . , ps}, then the product of [U ] and [W ] in CH∗(X) is

[U ] · [W ] =
∑

j

i(U,W ; pj)[pj ] ∈ CHd(X).

57
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But recall that CHd(X) ∼= Z, and the isomorphism sends any [p] to 1. So we can
write

[U ] · [W ] =

(∑

j

i(U,W ; pj)

)
[∗]

for any closed point ∗ ∈ X .
The first point of the Standard Conjectures will be to interpret the coefficients

of the polynomials Pi(t) in terms of intersection products of certain algebraic cycles,
independent of any cohomology theory. This will establish the independence of l.

For the Riemann hypothesis one has to work a bit harder. Essentially the
idea is the following. Consider the map F ∗ : H∗(X̄; Ql) → H∗(X̄ ; Ql), and let
ξ ∈ H2(X̄ ; Ql) be the class of a hyperplane section. It is easy to establish that
F ∗(ξ) = qξ. Define a new map φ : H∗(X̄ ; Ql) → H∗(X̄ ; Ql) by letting it act on
elements x ∈ Hn(X̄ ; Ql) by

φ(x) =
F ∗(x)

qn/2
.

This is still a ring map, and it now satisfies φ(ξ) = ξ. So it commutes with the
Lefschetz operator L(x) = x · ξ. If one postulates that the Hard Lefschetz theorem
is true for H∗(X̄ ; Ql), then there is an associated Lefschetz decomposition into
primitive pieces. The map φ will respect this decomposition. On the primitive
component PH2i(X̄; Ql) one can look at the symmetric bilinear form 〈x, y〉 =
(−1)iη(L?x · y). The map φ preserves this form. If the form is positive-definite in
some sense (note that the term doesn’t quite make sense since our field is Ql), then
it will be unitary after complexification. So the complexified φ will be a unitary
operator and hence its eigenvalues will have norm 1. This is equivalent to the
Riemann hypothesis, that the eigenvalues of F ∗ on Hn(X̄ ; Ql) have norm qn/2.

Now, as we mentioned the above paragraph does not quite make sense because
one cannot talk about a positive-definite form over Ql. So the argument has to be
done a bit differently. Still, the above paragraph gives the general idea.

This line of argument, which ties the Riemann hypothesis to the positivity of a
certain bilinear form, has a history which is worth recounting. Weil proved the Rie-
mann hypothesis for curves by using Castelnuovo’s inequality for the intersection
product of curves on an algebraic surface—and this is exactly a positivity result
about the intersection form. Weil explained in [W6] that Castelnuovo’s inequality
is—for complex varieties—a version of the Hodge Index Theorem for surfaces. Spec-
ulating that the general Riemann Hypothesis might follow from the general Hodge
Index Theorem, Weil asked whether one could prove an analog of the Riemann
Hypothesis for Kähler manifolds. This challenge was taken up by Serre, who an-
swered it in [Se4] by giving the argument from two paragraphs back (except using
singular cohomology rather than étale cohomology, where the argument actually
makes sense because the coefficients are in Q rather than Ql).

1. Weil cohomology theories

We follow [Kl2] in making the following definition. Fix an algebraically closed
field k, and a characteristic zero field E. A Weil cohomology theory with
coefficient field E is a contravariant functor X 7→ H∗(X) from smooth, connected,
projective k-schemes to graded-commutative E-algebras satisfying the following
properties:
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(1) Each Hi(X) is finite-dimensional, and nonzero only in the range 0 ≤ i ≤
2 dimX .

(2) For varieties X of dimension r, there is a functorial isomorphism η : H2r(X)→
E. For each 0 ≤ i ≤ 2r the cup product

Hi(X)⊗H2r−i(X)→ H2r(X)

is a perfect pairing.
(3) For each X and Y , the map

H∗(X)⊗H∗(Y )→ H∗(X × Y )

induced by the projections X × Y → X and X × Y → Y is an isomorphism.
(4) There is a natural map γX : Zi(X)→ H2i(X) satisfying ???
(5) (Weak Lefschetz) If X →֒ W is the inclusion of a smooth hyperplane section,

then Hi(W ) → Hi(X) is an isomorphism for i < dimX and an injection for
i = dimX .

(6) (Hard Lefschetz) Let ξ ∈ H2(X) be the cycle class of a smooth hyperplane
section of X , and let L : H∗(X) → H∗(X) be given by L(x) = x · ξ. Then for
any i ≤ dimX , the map

Lr−i : Hi(X)→ H2r−i(X)

is an isomorphism.

Let Ai(X) ⊆ H2i(X) be the rational vector space spanned by the cycle classes
of codimension i algebraic subvarieties. Note that it is not at all clear that Ai(X) is
finite-dimensional. We will say that a class x ∈ H2i(X) is algebraic (or rationally
algebraic) if it lies in Ai(X). Likewise, x is integrally algebraic if it lies in the
Z-submodule generated by the fundamental classes of algebraic subvarieties.

Using the Künneth isomorphism H∗(X × Y ) ∼= H∗(X) ⊗ H∗(Y ), a class x ∈
Hk(X × Y ) will decompose as

x =

k∑

i=0

x′i ⊗ x′′k−i ∈
⊕

i

Hi(X)⊗Hk−i(Y ).

We will write xi = x′i ⊗ x′′k−i, so that x =
∑

i xi. The class xi is called the ith
Künneth component of x.

If X has dimension r, let ∆ ∈ H2r(X ×X) be the cycle class of the diagonal.
The following is the geometric version of the Lefschetz trace formula:

Theorem 1.1. Let u ∈ H2r(X ×X), and write u∗ : H∗(X)→ H∗(X) for the
resulting map. Then

(a) tr
(
u∗|Hi(X)

)
= (−1)iη(u · π2r−i).

(b)
2r∑

i=0

(−1)i tr
(
u∗|Hi(X)

)
= η(u ·∆).

2. The Künneth conjecture

Consider the following statement:

Ku(X): For each i, the Künneth component πi of the identity is rationally alge-
braic, and comes from an element of Zi(X)⊗ Q which is independent of
the Weil cohomology theory.
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Proposition 2.1. Suppose that Ku(X) holds, for a given variety X over our
ground field k. Then for any map f : X → X, the characteristic polynomial for
f∗ : Hi(X) → Hi(X) has integral coefficients which are independent of the coho-
mology theory H∗.

Before proving this we establish some algebraic lemmas. In the following
lemma, we mostly care about part (b). But we offer part (a) as a special case
which helps understand what is going on in the proof of (b).

Lemma 2.2. Let m ≥ 1 be an integer.

(a) If u ∈ Q satisfies uk ∈ 1
mZ for all k ≥ 1, then u ∈ Z.

(b) Suppose λ1, . . . , λd ∈ C are such that λk
1 + λk

2 + · · · + λk
d ∈ 1

mZ for all k ≥ 1.
Then the λi’s are all algebraic integers. (In fact this holds not just for λi ∈ C
but for elements of any extension field of Q).

Proof. For part (a), consider the subring Z[u] ⊆ Q. The hypothesis is that
Z[u] ⊆ 1

mZ, and hence Z[u] is finitely-genereated as a Z-module (because the same is

true of 1
mZ). It follows that Z →֒ Z[u] is an integral extension of rings, but of course

the only rational numbers which are integral over Z are the integers themselves.
The above proof is a little bit like cracking a walnut with a sledgehammer, so

we also offer the following elementary argument. Write u = k
m , and let d = (k,m).

Write k = dk1 and m = dm1. The only way that one could have u2 ∈ 1
mZ is if

m1|dk2
1 . As m1 and k1 are relatively prime, this means m1|d. Likewise, the only

way that one could have ur ∈ 1
mZ is if mr

1|d. The only way this could hold for all
r is if m1 = ±1, in which case u ∈ Z.

To prove (b) one proceeds as follows. First, because some of the λi’s might be
equal to each other let us instead write µ1, . . . , µe for the list of distinct elements
appearing among the λ’s, with µi appearing ri times. Our assumption is that for
every k ≥ 1 the number

Sk = r1µ
k
1 + r2µ

k
2 + · · ·+ reµ

k
e

lies in 1
mZ. Note the matrix equation




µ1 µ2 · · · µe

µ2
1 µ2

2 · · · µ2
e

...
... · · ·

...
µe

1 µe
2 · · · µe

e


 ·




r1µ
k
1

r2µ
k
2

...
reµ

k
e


 =




Sk+1

Sk+2

...
Sk+e


 .

As the µi are distinct, the Vandermonde matrix is invertible; let B denote its
inverse. We then obtain

riµ
k
i = bi1Sk+1 + · · ·+ bieSk+e ∈ 1

mZ〈bi1, . . . , bie〉,
where we have used the hypothesis that Sj ∈ 1

mZ for all j, and where Z〈bi1, . . .〉
denotes the Z-submodule of C generated by the bij ’s. Therefore

Z[ui] ⊆ 1
rim

Z〈bi1, . . . , bie〉,
hence Z[ui] is finitely-generated as a Z-module; so ui is integral over Z. �

Corollary 2.3. Let E be a field of characteristic zero, let V be a finite-
dimensional vector space over E, and let f : V → V be a linear transformation.
Suppose that m is a positive integer and tr(fn) ∈ 1

mZ for every n ≥ 1. Then the
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eigenvalues of f are algebraic integers, and the characteristic polynomial for f lies
in Z[t].

Proof. Write P (t) for the characteristic polynomial of f . If the eigenvalues of
f are λ1, . . . , λd, then our assumption is that λn

1 + · · ·+ λn
d ∈ 1

mZ for every n ≥ 1.
Applying Lemma 2.2(b), we find that the λi’s are all integral over Z. Since the
coefficients of P (t) are integral polynomial expressions in the λi’s, these coefficients
are therefore also integral over Z.

Solving the Newton identities lets us write the coefficients of P (t) as certain
polynomial expressions (with rational coefficients) in the numbers Sn = λn

1 + · · ·+
λn

d . As these Sn’s are rational numbers by assumption, the same will be true for the
coefficients of P (t). But then the coefficients of P (t) are both rational and integral
over Z, hence they are integers. �

Proof of Proposition 2.1. We can write πi = z
m for some integral algebraic

cycle z and some integer m ≥ 1. For convenience write F = f∗, and note that
Fn = (fn)∗. Then

tr(Fn) = ±〈Γfn · πi〉 = ± 1
m · 〈Γfn · z〉 ∈ 1

mZ.

Since this holds for every n, Corollary 2.3 says that the coefficients of the charac-
teristic polynomial of F are integers.

???? �

One also has the following simple consequence of Ku(X):

Proposition 2.4. Assume that X is a smooth, projective variety over k for
which Ku(X) holds. Then the Betti numbers of X are the same with respect to
every Weil cohomology theory.

Proof. The ith Betti number is the trace of id∗ : Hi(X) → Hi(X), which is
the same as (−1)i〈∆, πi〉. Since πi is assumed to be an algebraic cycle, this is an
intersection number; and if πi is independent of the Weil cohomology theory, so is
this number. �

The fact that conjecture Ku(X) has desirable consequences isn’t necessarily
any reason for believing the conjecture. Is there any reason to believe it? The
conjecture is known to be true for projective space, Grassmannians, and other
flag manifolds—but for a trivial reason; namely, these varieties have algebraic cell
decompositions and as a result all of their cohomology groups (and those of their
products) are algebraic. That is, for these varieties every element of cohomology is
represented by an algebraic cycle.

Perhaps the best evidence for Ku(X) is the following result of Katz and Messing
[KM, Theorem 2]:

Proposition 2.5. Suppose that H∗(−) is a Weil cohomology which has the
property that for any smooth, projective scheme X over a finite field Fq, the charac-
teristic polynomial of Frobenius acting on H∗(X) has rational coefficients. Assume
as well that the Riemann hypothesis is true for this theory. Then Ku(X) holds for
every such X. In fact, the Künneth components of the diagonal are rational linear
combinations of the graphs of powers of the Frobenius map.
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Proof. Let Pi(t) be the characteristic polynomial of the Frobenius acting on
Hi(X). By the Riemann hypothesis, Pi(t) and Pj(t) are relatively prime for i 6= j.
Let

G(t) =
∏

j 6=i

Pj(t),

which is also relatively prime to Pi(t). By the Euclidean algorithm, we can write
1 = A(t)Pi(t) + B(t)G(t) for some polynomials A(t), B(t) ∈ Q[t]. Let f(t) =
1−A(t)Pi(t), so that f(t) is divisible by G(t) and is congruent to 1 mod Pi(t).

Let Γ be the graph of the Frobenius morphism, regarded as an element of the
ring AX(X × X). Consider the algebraic cycle u = f(Γ). For any j, the map
u∗ : Hj(X) → Hj(X) is equal to f(F ∗|Hj(X)). But for j 6= i, Pj(t) divides f(t),
and by the Cayley-Hamilton theorem Pj(F

∗|Hj(X)) = 0. So u∗ acts as zero on all

Hj(X) for j 6= i. Likewise, since f(t) is congruent to 1 mod Pi(t) it follows that
u∗ acts as the identity on Hi(X). In other words, u is exactly the ith Künneth
component of the diagonal.

We needed that the coefficients of the Pi(t)’s were rational so that the same
was true for f(t), which guaranteed that f(Γ) was rationally algebraic. �

Remark 2.6. Because l-adic étale cohomology is a Weil cohomology theory,
and because Deligne has proven that the Riemann hypothesis is true, Proposi-
tion 2.5 shows that conjecture Ku(X) does hold for all smooth, projective varieties
over finite fields.

3. The Lefschetz standard conjecture

Let X be a smooth, projective algebraic variety, and let ξ ∈ H2(X) be the class
of a hyperplane section. Let L : H∗(X) → H∗+2(X) be the map a 7→ a · ξ. Using
the Hard Lefschetz Theorem, we obtain a primitive decomposition for H∗(X) in
the usual way: for 0 ≤ i ≤ X , define

PHi(X) = ker
[
LX−i+1 : Hi(X)→ H2X−2i+2(X)

]
.

Then for all 0 ≤ i ≤ 2X ,

Hi(X) = PHi(X)⊕ L[PHi−2(X)]⊕ · · ·
In other words, for any a ∈ Hi(X) there is a unique representation of a in the form

a = a0 + La1 + L2a2 + · · ·(3.1)

where each aj lies in PHi−2j(X).
Let us now consider the following operators:

(i) πi : H
∗(X) → H∗(X), projection onto Hi(X). That is, if a ∈ Hj(X) then

πi(a) = δi,ja.
(ii) Λ: H∗(X)→ H∗(X), defined by

Λ(a) = a1 + La2 + · · ·
(iii) pj : H∗(X)→ H∗(X), defined to be nonzero only on Hj(X) and to satisfy

pj(a) =

{
a0 if 0 ≤ j ≤ X,
a2X−j if X < j ≤ 2X .

More intuitively, when 0 ≤ j ≤ X the operator pj is simply projection onto
PHj(X). When X < j ≤ 2X there is no primitive component of Hj(X), and
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the operator pj instead projects onto the primitive component of H2X−j(X).
In all cases pj(a) is obtained by taking the component having the least number
of L’s in the primitive decomposition of a, and then removing all of those L’s.

(iv) ∗ : H∗(X) → H∗(X), defined as follows. If b = Lkb0 for b0 ∈ PHi−2k(X),
then

∗(b) = (−1)(
i+1
2 ) · (−1)k · LX−i+kb0 = (−1)(

i−2k+1
2 ) · LX−i+kb0.

Note that if 0 ≤ i ≤ X and a ∈ Hi(X) has primitive decomposition as in
(3.1), then

∗(x) = (−1)(
i+1
2 ) · LX−i[a0 − La1 + L2a2 − · · · ].

In other words, ∗ : Hi(X)→ H2X−i(X) is a “twisted” form of LX−i in which
one alternates the signs on the different pieces of the primitive decomposition.

The operators L,Λ, πi, pj , and ∗ will be called the standard operators of Hodge
theory. Note that each will be represented by a class in H∗(X ×X).

We define the “Lefschetz standard conjecture” to be the following:

Λ(X, ξ) : The standard operators of Hodge theory are all represented by

algebraic cycles in H∗(X ×X).

We will see below that this conjecture has interesting and useful consequences.
Note that it contains the Künneth conjecture, but seems to go much further. Our
phrasing of the conjecture is perhaps a bit too broad; with a little work we can
simplify it to make it seem more approachable:

Lemma 3.2. The operator L is algebraic; indeed, it is represented by the alge-
braic cycle ∆!(ξX) ∈ H2X+2(X ×X), where ∆: X → X ×X is the diagonal.

Proof. We must prove that [∆!(ξ)]
∗(z) = ξ · z, for all z ∈ H∗(X). But

[∆!(ξ)]
∗(z) = z ◦∆!(ξ) = (π2)![(z ⊗ 1) ·∆!(ξ)] = (π2)!∆![∆

∗(z ⊗ 1) · ξ]
= z · ξ
= ξ · z,

where in the second-to-last equality we have used π2◦∆ = id and ∆∗(z⊗1) = z. �

Proposition 3.3. For any smooth, projective variety X the following are equiv-
alent:

(a) The operator Λ is algebraic;
(b) The operator ∗ is algebraic;
(c) The Lefschetz standard conjecture holds for X.

In other words, if either Λ or ∗ is algebraic then so are all the other standard
operators of Hodge theory.

Proof. Consider the following Q-subalgebras of End(H∗(X)):

Q〈L,Λ〉, Q〈L, ∗〉, Q〈L, pX , pX+1, . . . , p2X〉.
We will prove that these subalgebras are equal, and that they all contain πi for
0 ≤ i ≤ 2X and pj for 0 ≤ j ≤ X . Therefore they contain all the standard
operators of Hodge theory. Since we know by Lemma 3.2 that L is algebraic, it
follows that if Λ (or ∗) is algebraic, so are all the other standard operators.
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Let B denote Q〈L, pX , pX+1, . . . , p2X〉. One readily checks the formulas

p0 = pXL
X , p1 = pX−1L

X−1

and in general pi = pX−iL
X−i when 0 ≤ i < X . These formulas show that

p0, p1, . . . , pX−1 ∈ B.
Next verify that Lap2x−bL

X−a−b is the projection fromH∗(X) onto LaPHb(X).
From this one obtains the formulas

π0 = p0, π1 = p1, π2 = p2 + Lp2xL
X−1, π3 = p3 + Lp2X−1L

X−2

π4 = p4 + Lp(2X−2)L
X−1 + L2p(2X)L

X−2

and in general

πi = pi + Lp2X−i+2L
X−i+1 + L2p2X−i+4L

X−i+2 + · · ·
for 0 ≤ i ≤ X . Likewise, when X < i ≤ 2X we can write

πi = Li−Xpi + Li−X+1pi+2L+ · · ·
These identities show that each πi belongs to B.

Similar considerations show that ∗ ∈ B. More precisely, when 0 ≤ i ≤ X we
can write

∗ ◦ πi = ±LX−ipi ± LX−i(Lp2X−i+2L
X−i+1)± · · ·

where the signs can be determined but are of no consequence to us. A similar
formula holds in the case X < i ≤ 2X , and so we have that ∗ ◦ πi ∈ B for all i.
Since ∗ = ∗ ◦ 1 = ∗ ◦ (π0 + π1 + · · ·+ π2X) and each ∗ ◦ πi belongs to B, it follows
that ∗ belongs to B.

The last paragraph proved that ∗ ∈ B. The fact that Λ = ∗L∗ now gives

Q〈L,Λ〉 ⊆ Q〈L, ∗〉 ⊆ B.
To complete our proof it suffices to show that Q〈L,Λ〉 contains pX , pX+1, . . . , p2X .
Note that p2X = ΛX and p2X−1 = ΛX−1 − LΛX − ΛXL. One can find identities
similar to these for each p2X−j , but it becomes unpleasant to do this by brute
force. Instead recall that Lap2X−bL

X−a−b is the projection onto LaPHb(X). So
(id−Lap2X−bL

X−a−b) is the identity on all factors of the primitive decomposition
except LaPHb(X), on which it vanishes. From this it is easy to check that for
0 ≤ j ≤ X one has

p2X−j = ΛX−j ◦
∏

a,b

(
id− Lap2x−bL

X−a−b
)
,

where in the product we require a ≥ X − j and b < j (and the product is the
composition product). It now follows by a reverse induction that pX , pX+1, . . . , p2X

all lie in Q〈L,Λ〉, and this completes our proof. �

We also note the following consequence of the Lefschetz standard conjecture.

Proposition 3.4. Assume Λ(X, ξ). Then for each 0 ≤ i ≤ X, the map

LX−2i : Ai(X)→ AX−i(X)

is an isomorphism.



4. ALGEBRAIC PRELIMINARIES 65

Proof. One simply considers the square

H2i(X)
LX−2i

// H2X−2i(X)

Ai(X) //
OO

OO

AX−i(X),

OO

OO

which exists because L takes algebraic classes to algebraic classes. The upper
horizontal map is an isomorphism because H∗(−) is assumed to satisfy the Hard
Lefschetz Theorem. Therefore the lower horizontal map is injective.

The map ΛX−2i is the inverse of LX−2i, and the conjecture Λ(X, ξ) says that
this operator is algebraic. Therefore ΛX−2i also takes algebraic classes to algebraic
classes, which proves that Ai(X)→ AX−i(X) is surjective. �

4. Algebraic preliminaries

Before proceeding further with our treatment of the standard conjectures, we
pause briefly in this section to develop some purely algebraic results.

Let E be a field, V be a finite-dimensional vector space over E, and h : V → V
a linear transformation. Consider the algebra E[h] ⊆ End(V ). The map h is said
to be semisimple if the algebra E[h] is semisimple; since E[h] is commutative, this
latter condition is equivalent to saying that E[h] is a product of fields.

It turns out that the map h is semisimple precisely when h is diagonalizable
over the algebraic closure Ē of E. This is very classical, but we will recall the
argument here since it is brief. Write E[h] ∼= E[x]/(p(x)) where p(x) is monic,
and recall that p(x) is called the minimum polynomial of h. If P (x) denotes the
characteristic polynomial of h, then by Cayley-Hamilton we know P (h) = 0 and
therefore p(x) divides P (x). So p(x) = (x − λ1)

e1 · · · (x − λn)en where the λi’s
are the eigenvalues of h and each ei is a positive integer less than or equal to the
multiplicity of λi as an eigenvalue. In fact it’s easy to see that the ei’s are the
maximal sizes of the Jordan λi-blocks in the Jordan canonical form for h; so h is
diagonalizable over Ē precisely when all the ei’s are equal to 1. But note that

E[h]⊗E Ē ∼= Ē[x]/(p(x)) ∼= Ē[x]/(x− λ1)
e1 × · · · × Ē[x]/(x− λn)en

∼= Ē[t]/(te1)× · · · × Ē[t]/(ten).

Clearly this is semisimple only when e1 = e2 = · · · = en = 1. To complete the
argument, just observe that a commutative E-algebra (like E[h]) is semisimple if
and only if it becomes semisimple after being tensored with Ē (or any field extension
or E, for that matter).

Note that another phrasing of what we just showed is that a linear transforma-
tion is semisimple precisely when its minimum polynomial has no linear factors of
multiplicity greater than 1 (over an algebraically closed extension field).

The space E[g] ∼= E[x]/(p(x)) is finite-dimensional, and multiplication by g
gives an endomorphism Lg : E[g] → E[g]. The properties of Lg are closely related
to the properties of the original map g:

Proposition 4.1. Let g : V → V be an endomorphism of a finite-dimensional
vector space over E. Let Lg : E[g] → E[g] be the map given by h 7→ gh. Then the
eigenvalues of g (over an algebraically closed extension field) are the same as the
eigenvalues of Lg, and g is semisimple if and only if Lg is semisimple.
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Proof. We replace Lg by the isomorphic map Lx : E[x]/(p(x))→ E[x]/(p(x)),
where p(x) is the minimum polynomial of g. It is immediate that the minimum
polynomial of Lx is p(x). Since Lg and g therefore have the same minimum poly-
nomial, the statements in the proposition follow immediately. �

Finally, we recall the following classical result:

Proposition 4.2. Suppose that E ⊆ R is a subfield, and g : V → V is an
endomorphism of a finite-dimensional vector space over E. Assume there is a sym-
metric, bilinear form (−,−) on V which is positive-definite and which is preserved
by g: that is, where (gx, gy) = (x, y) for all x, y ∈ V . Then g is semisimple and its
eigenvalues (over C) are all of norm 1.

Proof. First, we may assume E = R by extending scalars. Then since the
form is positive-definite, there is a basis for V with respect to which the form is
the usual norm form on Rn. So we might as well assume V = Rn and the form is
standard inner product.

Now tensor with the complex numbers, to obtain g : Cn → Cn which is unitary.
The statement about the eigenvalues is now evident: if g(x) = λx where x ∈ Cn is
nonzero then

(x, x) = (gx, gx) = (λx, λx) = λλ̄(x, x).

Since (x, x) 6= 0 we have |λ| = 1.
To prove that g is diagonalizable, choose an eigenvector x1 of Cn. Let V1 =

〈x1〉⊥. Since g is unitary, g restricts to a map V1 → V1. Now pick an eigenvector
x2 ∈ V1 for g,and let V2 = 〈x1, x2〉⊥ ⊆ Cn. Continuing in this way, one produces a
basis for Cn which diagonalizes g. �

The next result is of a slightly different nature. We include it here because it
will be useful in the next section.

Proposition 4.3. Let E be a field, and let V be a finite-dimensional vector
space over E with a nondegenerate symmetric bilinear form (−,−). Given f : V →
V , there is a unique map f † : V → V with the property that

(f †(a), b) = (a, f(b))

for all a, b ∈ V . The characteristic polynomials of f † and f are identical.

Proof. The bilinear form on V gives an isomorphism φ : V → V ∗ by sending
a to the functional (a,−). One checks readily that f † is equal to the composite
φ−1 ◦ f∗ ◦ φ; that is, there is a commutative diagram

V //

f†

��

V ∗

f∗

��
V // V ∗.

The above square immediately implies that the characteristic polynomials for f † and
f∗ are identical, and the latter is of course the same as the characteristic polynomial
for f (the polynomials for a matrix A and its transpose being equal). �
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5. The Hodge standard conjecture

Let X be a smooth, projective variety over a field k, and let ξ ∈ CH1(X) be the
class of a hyperplane section. We will also write ξ for the corresponding element of
A2(X) ⊆ H2(X). Let L : Hi(X)→ Hi+2(X) be the Lefschetz operator x 7→ x · ξ,
and note that when i is even this restricts to an operator Ai(X)→ Ai+2(X). Define
the primitive component of Ai(X) to be

PAi(X) = {x ∈ Ai(X) |LX−i+i(x) = 0}.
In analogy with our experience in topology (see Chapter 2), one might make the
following conjecture:

IH(X, ξ) : For each even number 0 ≤ i ≤ X , the pairing on PAi(X) given by

a, b 7→ (−1)i〈LX−ia, b〉 is positive-definite.

We will call this the Hodge standard conjecture forX , or the Hodge index
conjecture. The acronym IH is supposed to represent ‘Hodge’ and ‘Index’ (writing
HI(X, ξ) looks a little too much like a homology group!) Note that the conjecture
depends on the class ξ, although we will sometimes tend to suppress this in our
discussion.

5.1. An involution on H∗(X × X). For u ∈ H∗(Y × X), we can define
another class ū ∈ H∗(X × Y ) by the formula

〈
u∗(a), b

〉
H,X

=
〈
a, ū∗(b)

〉
H,Y

(here a ∈ H∗(Y ) and b ∈ H∗(X)). As the Hodge pairing is nondegenerate, this
uniquely determines ū.

Lemma 5.2. If u is even-dimensional then ū∗ = ∗X ◦ (ut)∗ ◦ ∗Y .
Proof. One simply computes:〈

a, (∗X ◦ ut ◦ ∗Y )(b)
〉

H,Y
=
〈
a, ∗Y (ut(∗X(b)))

〉
H,Y

=
〈
a, ut(∗X(b))

〉
Y

=
〈
u∗(a), ∗X(b)

〉
X

= 〈u∗(a), b〉H,X .

�

Lemma 5.3. If u ∈ H∗(Y ×X) and v ∈ H∗(Z × Y ) then v ◦ u = ū ◦ v̄.
Proof. This is an easy exercise using adjointness and (v ◦ u)∗ = u∗ ◦ v∗. �

If V is a graded vector space and h : V → V is a degree zero linear map,
there are two reasonable definitions for Tr(h). One is the usual trace, where one
ignores the grading. The other is the “graded trace”, where the traces on the odd-
dimensional pieces of V are counted with a negative sign. Both definitions have
their uses. For us, we will always use the former definition: so Tr(h) is the classical
trace, which is also the sum (without negative signs) of the classical traces on each
homogeneous component of V .

Define a bilinear form on H∗(Y ×X) by

(u, v) = Tr(ū ◦ v).
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This is clearly bilinear, and it is also symmetric:

(v, u) = Tr(v̄ ◦ u) = Tr
(
(v̄ ◦ u)

)
= Tr(ū ◦ v) = (u, v),

where in the second equality we have used Proposition 4.3.

Theorem 5.4. Let X and Y be smooth, projective algebraic varieties with hy-
perplane sections ξX ∈ H2(X) and ξY ∈ H2(Y ). Assume the following conjectures:

(i) Λ(X, ξX) and Λ(Y, ξY ),
(ii) IH(Y ×X, ξY ⊗ 1 + 1⊗ ξX).

Then for every nonzero u ∈ H∗(Y ×X) which is algebraic, Tr(ū ◦ u) is a positive
rational number. Consequently, the form (u, v) = Tr(ū ◦ v) on the rational vector
space A∗(Y ×X) is positive-definite.

Before proving this let us establish a helpful lemma. Let X and Y be
smooth, projective algebraic varieties with hyperplane sections ξX ∈ H2(X) and
ξY ∈ H2(Y ). Then

ξX×Y = ξX ⊗ 1 + 1⊗ ξY
is a hyperplane section for X × Y .

Lemma 5.5. If u ∈ PHi(Y )⊗ PHj(X) then

∗Y ×X(u) = (−1)ij
(
X+Y −i−j

Y −i

)
· [(∗Y ⊗ ∗X)(u)].

Proof. By the definition of the Hodge ∗-operator,

∗Y ×X(u) = (−1)(
u+1
2 ) · (ξY ×X)Y +X−u · u

= (−1)(
u+1
2 ) ·

∑

k

(
X+Y −u

k

)
(ξk

Y ⊗ ξX+Y −u−k
X )u.

But since u ∈ PHi(Y )⊗PHj(X), the terms inside the sum vanish unless k ≤ Y − i
and X+Y −u−k ≤ X−j. The second equality may be rewritten as k ≥ Y −u+j =
Y − i (using that i+ j = u). So there is only one non-vanishing term in the sum,
namely where k = Y − i. We therefore have

∗Y ×X(u) = (−1)(
u+1
2 ) ·

(
X+Y −u

Y −i

)
· (ξY −i

Y ⊗ ξX−u+i
X ) · u

= (−1)(
u+1
2 )+(i+1

2 )+(j+1
2 ) ·

(
X+Y −u

Y −i

)
· (∗Y ⊗ ∗X)(u).

Using that |u| = i+ j, the only thing left is to see that
(
i+j+1

2

)
+
(
i+1
2

)
+
(
j+1
2

)
≡ ij mod 2.

We leave this to the reader. �

Let qa,b
X be the projection H∗(X) → LaPHb(X) which is zero on all pieces of

the Lefschetz decomposition except for LaPHb(X).

Lemma 5.6. The following are true:

ΛX = LX , qa,b
X = qa,b

X , and (∗X)t = ∗X .
Proof. For the first, compute that

〈a,Λ(b)〉H = 〈Λ(a), b〉H = 〈∗Λ(a), b〉 = 〈L(∗a), b〉 = 〈∗a, L(b)〉 = 〈a, L(b)〉H .
Here we have used that Λ = ∗L∗ and L(x) · y = ξxy = xξy = x · L(y).
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For the second, recall that the different summands of Hb(X) in the Lefschetz
decomposition are orthogonal to each other with respect to 〈−,−〉H . So

〈qa,b(z), w〉H = 〈qa,b(z), qa,b(w)〉H = 〈z, qa,b(w)〉H .
This exactly proves that qa,b = qa,b.

For the final identity, one has 〈a, (∗X)t(b)〉 = 〈∗(a), b〉 = 〈a, ∗b〉 where in the
first equality we have used Exercise 5.20 together with the fact that ∗X is even-
dimensional in H∗(X ×X). �

Proof of Theorem 5.4. First assume that u ∈ PHi(Y )⊗PHj(X), for some
i and j. Note that i+ i will be even, since u is algebraic. We have

(ū)t = (∗X ◦ ut ◦ ∗Y )t = (∗Y )t ◦ u ◦ (∗X)t = ∗Y ◦ u ◦ ∗X = (∗Y ⊗ ∗X)(u)

=
(−1)ij

B
·
[
∗Y ×X(u)

]

where B =
(
X+Y −i−j

X−i

)
.

Now, (ū ◦ u)∗ is a map Hj(X) → Hj(X) (that is, it is zero on all Hk(X) for
k 6= j). So by the Lefschetz Trace Formula,

Tr(ū ◦ u) = (−1)j
〈
(ū)t, u

〉
Y ×X

=
(−1)ij+j

B

〈
(∗Y ×X)(u), u

〉
Y ×X

=
(−1)ij+j

B

〈
u, u

〉
H,Y ×X

.

But IH(Y ×X) implies that 〈−,−〉H is positive definite, so 〈u, u〉H > 0. Finally,

j ≡ j2 (mod 2), so (−1)ij+j = (−1)ij+j2

= (−1)j(i+j) = 1 because i+ j is even. So
Tr(ū ◦ u) > 0, and the proof for this case is complete.

We tackle the general case of u ∈ H∗(Y ×X) by reducing it to the case handled

above. First, we may obviously assume that u is homogeneous. Let qa,b
X : H∗(X)→

H∗(X) be the projection of the Lefschetz decomposition onto LaPHb(X). Then
we may write

u =
∑

a,b,c,d

qc,d
Y ◦ u ◦ qa,b

X .

We then have
ū =

∑

a,b,c,d

qa,b
X ◦ ū ◦ qc,d

Y

and
ū ◦ u =

∑

a,b,c,d,a′,b′,c′,d′

qa,b
X ◦ ū ◦ qc,d

Y ◦ qc′,d′

Y ◦ u ◦ qa′,b′

X .

The composite of the two q operators in the middle is zero unless c = c′ and d = d′,
and the entire composite has zero trace unless a = a′ and b = b′. So

Tr(ū ◦ u) =
∑

a,b,c,d

Tr(ua,b,c,d ◦ ua,b,c,d)

where ua,b,c,d = (qc,d
Y ◦ u ◦ qa,b

X ). By conjectures Λ(X) and Λ(Y ), all of the q
operators are algebraic; therefore each ua,b,c,d is algebraic. Hence, it suffices to
prove the theorem for all of the ua,b,c,d classes. That is, we may assume that u
itself is of this form, i.e. that u∗ factors as

H∗(Y )
q−→ LcPHd(Y ) −→ LaPHb(X) →֒ Hb(X).
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For the final reduction, let v = ΛY −d−c
Y ◦ u ◦ Λa

X . One should think of this in
terms of the following picture:

LY −dPHd(Y )
ΛY −d−c

Y //
LcPHd(Y )

LY −d−c

oo

u∗

��

PHd(Y )
Lc

oo

LaPHb(X)
Λa

X // PHb(X).

So v∗ is a map LY −dPHd(Y )→ PHb(X). Its codomain is as primitive as possible,
and its domain is as “non-primitive” as possible (that is, the domain is Hodge dual
to the primitives). We calculate that

v̄ = (ΛX)a ◦ ū ◦ (ΛY )Y −d−c = La
X ◦ ū ◦ LY −d−c

Y

and so

v̄ ◦ v = La
X ◦ ū ◦ LY −d−c

Y ◦ ΛY −d−c
Y ◦ u ◦ Λa

X = La
X ◦ (ū ◦ u) ◦ Λa

X .

Therefore
Tr(v̄ ◦ v) = Tr(ū ◦ u).

Again, the conjectures Λ(X) and Λ(Y ) imply that the operators L and Λ are
algebraic, hence v is algebraic. We claim that v ∈ PHY −d(Y )⊗PHb(X), and this
will complete the proof because this case has already been handled.

To justify the claim about v, let β1, . . . , βk be a basis for PHb(X) and ex-
tend this to a basis β1, . . . , βr for Hb(X). Likewise, let γ1, . . . , γl be a basis
for LY −dPH2Y −d(Y ) and extend it to a basis γ1, . . . , γs of H2Y −d(Y ). Finally,
let {γ̂p} be the dual basis for Hd(Y ), defined by 〈γ̂p, γq〉 = δp,q. Note that
γ̂1, . . . , γ̂l ∈ PHd(Y ).

As v∗ is a map H2Y −d(Y ) → Hb(X), write v∗(γq) =
∑

i cqiβi for cq,i ∈ Q.
Then by Lemma 5.14 one has

v = (−1)d
∑

q,i

cq,i(γ̂q ⊗ βi).

Our construction of v∗ gives that v∗(γq) = 0 for q > l and that the image of v∗ is
contained in PHb(X). So cq,i = 0 for i > k or q > l, which gives immediately that
v ∈ PHd(Y )⊗ PHb(X). �

5.7. The standard conjectures and their consequences. By the “Stan-
dard Conjectures” we mean:

• The Künneth conjecture Ku(X);
• The Lefschetz conjecture Λ(X);
• The Hodge standard conjecture IH(X, ξ).

Of course we have seen that the first of these is a consequence of the second,
and so technically doesn’t have to be listed separately.

Proposition 5.8. Let X be a smooth, projective algebraic variety over k of
even dimension. Let u ∈ HX(X×X) be an algebraic cycle such that u∗(ξ) = qξ for
some hyperplane section ξ ∈ H2(X) and some positive rational number q. Assuming
the Standard Conjectures hold, then for each i the induced map u∗ : Hi(X) →
Hi(X) is semisimple and the eigenvalues are algebraic numbers which have absolute
norm qi/2.
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Proof. First consider the algebra A = AX(X ×X) ⊆ HX(X ×X) consisting
of the algebraic degree 0 correspondences. This is a finite-dimensional Q-algebra.
Define a symmetric bilinear form on this algebra by

(a, b) = Tr(āb).

We know by Proposition 5.4 that this form takes values in Q and is positive-definite.
Let g : H∗(X)→ H∗(X) be the map which on Hi(X) sends

a 7→ u∗(a)

qi/2
.

This only makes sense if q1/2 belongs to the coefficient field E, but if necessary we
can extend E so that this is true. Note that g is a ring map, and that g(ξ) = ξ.
Let F = Q(q1/2).

Write AF = A ⊗Q F ⊆ HX(X ×X), and note that the algebraic cycle repre-
senting g lies in AF . This is true because ????

Our goal is to show that g is semisimple, and that its eigenvalues are algebraic
integers having absolute norm 1. By Proposition 4.1 it will be enough to prove the
same for the action of g on the subalgebra F [g] ⊆ AF .

We claim that ḡg = 1. Granting this for the moment, it implies that

(ga, gb) = Tr(ga · gb) = Tr(āḡ · gb) = Tr(āb) = (a, b).

So g preserves the positive-definite form (−,−) on F [g], and therefore by Proposi-
tion 4.2 g is semisimple and its eigenvalues have absolute norm 1.

Our final task is to verify that ḡg = 1. Let d = dimX . Since g(ξ) = ξ and
g is a ring map, g∗(ξd) = ξd. So the map g∗ : H2d(X) → H2d(X) is the identity.
If a ∈ Hi(X), then by duality there is a b ∈ H2d−i(X) such that ab 6= 0. Then
g∗(a)g∗(b) = g∗(ab) = ab 6= 0, so g∗(a) 6= 0. Hence g∗ is injective, and since H∗(X)
is finite-dimensional it follows that g∗ is an automorphism.

For any a ∈ Hi(X) and b ∈ H2d−i(X),

〈(g∗)−1a, b〉 = ηX

(
(g∗)−1(a) · b

)
= ηX

(
g∗
(
(g∗)−1(a) · b

))

= ηX(a · g∗(b))
= 〈a, g∗(b)〉.

This shows that g−1 = gt in A.
Finally, since g∗(ξ) = ξ it follows that g∗ preserves the primitive decomposi-

tion of H∗(X). Therefore (g∗)−1 likewise preserves the decomposition, so (g∗)−1

commutes with the Hodge ∗ operator:

∗X ◦ (g∗)−1 ◦ ∗X = (g∗)−1.

Note that we then have the same identity involving gt. So we finally compute that

ḡ = ∗X ◦ gt ◦ ∗X = gt = g−1

and we are done. �

Corollary 5.9. Assume the Standard Conjectures hold for smooth, projective
varieties over Fq. Then the Riemann Hypothesis also holds for such varieties.



72 3. A SECOND LOOK AT THE WEIL CONJECTURES

Proof. If a variety X gave a counterexample to the Riemann hypothesis,
then X × P1 would also be a counterexample (using the Künneth Theorem). So
it is enough to prove that the Riemann hypothesis holds for all even-dimensional
varieties.

If X is smooth, projective, and even-dimensional, then the graph of Frobenius
gives an algebraic cycle Γf ∈ H2X(X×X). Moreover, we know that Γ∗

f (ξ) = qξ for
any hyperplane section ξ. Proposition 5.8 immediately gives the desired result. �

We also record the following interesting consequence, for later use.

Proposition 5.10. Let X be a smooth, projective algebraic variety over k and
assume the Standard Conjectures hold. Let B be any subalgebra of AX(X × X)
which is closed under the operation u 7→ ū. Then B is a semisimple algebra. In
particular, this holds when B = AX(X ×X).

Proof. To say that B is semisimple is to say that its Jacobson radical is zero.
So let u belong to the Jacobson radical of B, and assume u 6= 0. Since ū ∈ B, the
element ū◦u also belongs to the Jacobson radical. But B is finite-dimensional over
Q, therefore artinian, and so the Jacobson radical is nilpotent. In particular, ū ◦ u
is nilpotent. Note that Tr(ū ◦u) > 0, and so ū ◦u 6= 0. Choose the smallest m such

that (ū ◦ u)2m

= 0 and let v = (ū ◦ u)2m−1

. Then v is nonzero and

v̄ ◦ v = (ū ◦ u)2m

= 0,

and so Tr(v̄ ◦ v) = 0. This is a contradiction, because v is rationally algebraic. �

6. Hodge decompositions in characteristic p

???? In our discussion of the Weil conjectures from Chapter 1, we progressed
from trying to explain formulas for counting points to speculating about the exis-
tence of a cohomology theory for algebraic varieties. As part of this business, it
has been natural to ask ourselves what properties of singular cohomology could be
expected to hold for our algebraic cohomology theory. At this point we have seen
that Poincaré duality is a reasonable expectation, and that Lefschetz theorems and
the Hodge Index Theorem would be highly desirable properties. We have also seen
that the geometry of characteristic p varieties forces certain differences between our
algebraic theory and the singular theory: namely, we saw that the coefficient field
for our algebraic theory could not be any subfield of R.

Now we would like to turn the discussion to the question of Hodge decomposi-
tions. Is it reasonable to expect that our sought-after algebraic cohomology groups
would admit some kind of Hodge decompositions? It seems to be Weil who first
observed that this cannot happen—at least not in the form one would expect—
again because of some peculiarities in characteristic p geometry. We will now try
to explain this. (For the attribution to Weil, see [Kl1, p. 360]).

Let C be a supersingular elliptic curve over an algebraically closed field k of
characteristic p. We know that our expected algebraic cohomology groups must
be H0(C) = H2(C) = E and H1(C) = E2, where E is the coefficient field of the
theory. Consider the algebraic surface S = C × C. By the Künneth theorem we
would then have:

i 0 1 2 3 4

Hi(S) E E4 E6 E4 E
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If we speculate about possible Hodge decompositions, it seems clear that for
H∗(C) the decomposition would need to be:

H2 : E

H1 : E E

H0 : E.

That is, we would need to have H0,1(C) = H1,0(C) = E, and likewise H0,0(C) =
H1,1(C) = E. By Künneth this would then give the following decomposition for
H∗(S):

H4 : E

H3 : E2 E2

H2 : E E4 E

H1 : E2 E2

H0 : E.

In particular, note that H1,1(S) = E4. This is what will lead to our contradiction.
Recall the cycle class map Zi(S) → H2i(S). In analogy with classical Hodge

theory, we would expect the image of this map to lie entirely in the Hi,i(S) sum-
mand. In our example we will only look at the case of divisors on S, which is
Z1(S) → H1,1(S). What is special about our choice of S is that we can construct
six explicit algebraic cycles of codimension 1, and show by intersection theory that
their images in H1,1(S) must be independent. This will be in opposition to our
claim that H1,1(S) must have rank 4, and so will rule out the possibility of a Hodge
decomposition that behaves just like the singular case.

So our next goal is to examine the codimension 1 algebraic cycles on S. What
is special about supersingular elliptic curves is that their endomorphism algebra is
rank 4 over Z, and after tensoring with Q it becomes a quaternion algebra. Let 1,
α, β, and γ denote abelian group generators for the endomorphism algebra (with
1 being the identity morphism).

For any morphism f : C → C let Γf denote its graph, which is a codimension
one algebraic cycle on C × C. We therefore have four elements of Z1(S), namely
Γ1, Γα, Γβ, and Γγ . Add to this list the two elements Ch = C × ∗ and Cv =
∗ × C (and note that Ch = Γ0, the graph of the zero homomorphism). We will
calculate the matrix of intersection products of these elements, and see that it is
nondegenerate. Recall that given two classes in H∗(S) which come from algebraic
cycles of complementary dimension, their product in H∗(S) is assumed to be the
intersection product. It follows that our six cycles have linearly independent images
in H1,1(S), as was desired.

To calculate the intersection matrix we need to recall the notion of degree. For
an endomorphism f : C → C, the number of elements in the kernel is finite unless
f is the zero homomorphism. One sets deg(f) = #ker(f) when f is nonzero, and
defines deg(0) = 0. One can check that deg(−) is a quadratic form on End(C),
and it is clearly positive-definite. Note also that deg(fg) = deg(f) deg(g) for all
f, g ∈ End(C), which shows that End(C) does not contain any zero divisors. So
End(C)Q is a division algebra. Let (f, g) = 1

2 [deg(f + g)− deg(f)− deg(g)] be the
symmetric bilinear form corresponding to the quadratic form deg(−).
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The following identities follow from elementary geometric considerations:

Cv · Cv = Ch · Ch = 0, Cv · Ch = 1,

Γf · Cv = 1, Γf · Ch = deg(f), Γf · Γg = deg(f − g).
In the last of these, for instance, one observes that Γf and Γg meet in points
(x, f(x)) where f(x) = g(x), these are in one-to-one correspondence with values of
x for which (f − g)(x) = 0. The other identities involve similar considerations.

Let us define Γ′
f = Γf −Ch− (deg f)Cv, and observe that Γ′

f ·Ch = Γ′
f ·Cv = 0.

Then compute that

Γ′
f · Γ′

g = deg(f − g)− deg(f)− deg(g) = −2(f, g).

With respect to the basis Γ′
1, Γ′

α, Γ′
β, Γ′

γ , Ch, Cv the intersection matrix then has
the block form 


−2A O

O
0 1
1 0


 ,(6.1)

where A is the 4×4 matrix for the form (−,−) on End(C)Q with respect to the basis
1, α, β, γ. Since A is nonsingular (because the form (−,−) is positive-definite), our
6× 6 intersection matrix is nonsingular as well. This completes our story.

Exercise 6.2. It is possible to calculate the matrix A more explicitly. The
form (−,−) is the norm form on the quaternion algebra End(C)Q, and here is
where we get a bit lucky. The key is that there are not many quaternion algebras
over Q, and they have been completely classified. This exercise reviews this theory.

Quaternion algebras over a given field F are central simple algebras, and as
such are matrices over a central division algebra D ⊆ F . Because a quaternion
algebra has dimension 4, the only possibilities are that it is itself a division algebra
or that it M2(F ); in the latter case we say the quaternion algebra is split over F .

As a central simple F -algebra, a quaternion algebra A represents an element
[A] in the Brauer group Br(F ). The inverse is [Aop], but for a quaternion algebra
the involution gives an isomorphism A ∼= Aop. It follows that [A] has order 2 in
Br(F ).

Class field theory provides a classification of division algebras over Q in terms
of those over the completions Qp (where we include the infinite prime via the
convention Q∞ = R). This is succinctly encoded via a short exact sequence

0 −→ Br(Q) −→
⊕

p≤∞
Br(Qp)

Inv−→ Q/Z −→ 0.(6.3)

Here the first map is just extension of scalars along each completion Q→ Qp, and
is well-defined as a map into the direct sum because a central simple algebra will
become split over all but finitely many Qp’s. The second map is the sum of maps
Invp : Br(Qp) →֒ Q/Z which associate to each division algebra over Qp an invariant
in Q/Z. The complete description of these maps is part of class field theory, but
it’s easier to describe on the level of 2-torsion because the only 2-torsion elements
in Q/Z are 0 and 1

2 . Given a quaternion algebra A over Qp, one has Invp(A) = 0

if A is split over Qp, and Invp(A) = 1
2 otherwise. Note that since the composition

of the two maps in (6.3) is zero, it follows that if A is a quaternion algebra over Q
then the set of primes p over which A becomes non-split must be even.
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Now consider an elliptic curve E defined over a field k of characteristic p. An
endomorphism f : E → E will send the n-torsion points E[n] into itself, and the
subgroups E[n] →֒ E tend to be simple to understand. For any prime l, the Tate
module Tl(E) is defined to be the inverse limit of the tower

· · · ×l−→ E[l3]
×l−→ E[l2]

×l−→ E[l].

The map f induces a map f∗ : Tl(E) → Tl(E), and in this way one obtains a map
of algebras

End(E)→ End(Tl(E)).

It is not hard to argue that this is an injection.
It is known that when l 6= p one has an isomorphism E[le] ∼= Z/(le) × Z/(le).

It follows that Tl(E) ∼= Zl × Zl, and we obtain an injection of Ql-algebras

End(E)⊗Ql →֒ EndQl
(Ql ×Ql) = M2(Ql).

From this it is apparent that the endomorphism algebra End(E) always has rank
at most 4.

When the elliptic curve E is supersingular the rank of this endomorphism al-
gebra is equal to 4 (this is sometimes even taken to be the definition of supersin-
gular), and so the above map is an isomorphism: End(E)⊗Ql

∼= M2(Ql). In other
words, End(E) is split over every prime except possibly p and ∞. It is easy to see
that End(E) is not split over R, as the degree form is clearly nonsingular and so
End(E)⊗R is a division algebra. It follows that End(E)Q is the unique quaternion
algebra over Q which is non-split only at the primes p and ∞. To actually identify
this algebra one must do a little legwork, and this is where we will leave things to
the reader (but with the guide below given for structure).

Recall that a quadratic form q is said to be isotropic if the equation q(x) = 0
has nonzero solutions, and anisotropic otherwise. If k is a field and a1, . . . , an ∈ k,
write 〈a1, . . . , an〉 for the quadratic form

q(x1, . . . , xn) = a1x
2
1 + · · ·+ anx

2
n.

Over a field not of characteristic 2, every quadratic form is isomorphic to such a
diagonal form. In the exercises below, let p always be an odd prime. Readers who
get stuck on some parts can consult [S1, Chapters 2.11 and 5.6] for an excellent
reference.

(a) Prove that Q×
p /(Q

×
p )2 consists of four elements, represented by 1, ǫ, p, ǫp where

ǫ is any integer giving a generator for the group F×
p /(F

×
p )2 ∼= Z/2.

(b) Note that 〈a〉 = 〈ad2〉 for any a, d ∈ Q×
p . Conclude that every 4-dimensional

form over Qp is isomorphic to a form 〈s1, s2, s3, s4 where each si ∈ {1, ǫ, p, ǫp}.
(c) Prove that if p ≡ 1 (mod 4), then over Fp the form 〈1, 1〉 is isotropic. Use

Hensel’s Lemms to conclude the same for Qp, and deduce that 〈x, x〉 is isotropic
for any x ∈ Qp − {0}.

(d) When p ≡ 1 (mod 4), prove that every 4-dimensional form over Qp is either
isotropic or isomorphic to 〈1, ǫ, p, ǫp〉. Verify that the latter form is anisotropic.

(e) When p ≡ 3 (mod 4), prove that 〈1, ǫ〉 is isotropic and that 〈1, 1〉 ∼= 〈ǫ, ǫ〉. Note
that then 〈x, ǫx〉 is isotropic for each x ∈ Q×

p , and 〈x, x〉 ∼= 〈ǫx, ǫx〉. Using these
facts, prove that every 4-dimensional quadratic form over Qp is either isotropic
or isomorphic to 〈1, 1, p, p〉. Verify that the latter form is anisotropic.
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(f) For a, b ∈ k×, with k a ground field, let (a, b) denote the quaternion algebra
with k-basis 1, i, j, k defined by

i2 = a, j2 = b, ij = −ji, ij = k.

This algebra has a conjugation x 7→ x̄ defined as usual, and the associated
norm form is N(x) = xx̄. Verify that the norm form for (a, b) is isomorphic to
〈1,−a,−b, ab〉.

(g) Prove that when p ≡ 1 (mod 4), the quaternion algebra (−ǫ,−p) is non-split
at p and ∞ but splits at every other prime (the algebra splits if and only if its
norm form is isotropic).

(h) Prove that when p ≡ 3 (mod 4), the algebra (1, p) is non-split at p and ∞ but
splits at every other prime.

(i) Deduce the form of the matrix A in (6.1).

6.4. Newton polygons and a conjecture of Katz. Although a Hodge
decomposition cannot exist for varieties in characteristic p, that doesn’t mean that
Hodge-like phenomena are not present. A complete survey of Hodge theory in
characteristic p would take us quite a long time, and would be very technical. For
now we will be content to point out some fundamental examples.

Let X be a smooth, projective variety of dimension d over a finite field Fq,
where q = pe. We have talked at length about the formulas

#X(Fqm) = 1− [αm
1,1 + · · ·+ αm

1,b1 ] + [αm
2,1 + · · ·+ αm

2,b2 ] + · · ·
where the αk,1, . . . , αk,bk

are the eigenvalues of the Frobenius map F acting on

a conjectural cohomology group Hk(X). The αk,j ’s are expected to be algebraic

integers, and the Riemann hypothesis says that their norm should be qk/2.
Rather than study the complex norm, we can also study the l-adic valuations

of the αk,j ’s for different primes l. It turns out that only l = p gives something
interesting, though. Indeed, by Poincaré Duality we expect that the set of eigen-
values {αk,j}j is equal to the set {qd/α2d−k,j}. That is to say, for each value of j
there is a j′ such that αk,j ·α2d−k,j′ = qd. But if l 6= p then q is a unit in Zl, which
means that αk,j is also a unit in Zl; hence its l-adic valuation is zero.

We aim to study the p-adic valuations of the αk,j ’s. To this end, start by
ordering the αk,j ’s so that

ordq(αk,1) ≤ ordq(αk,2) ≤ · · · ≤ ordq(αk,bk
),

and also set
aj = ordq(αk,j).

The surprising claim is that if X is the reduction of a smooth variety X̃ defined over
a field of characteristic zero, then the numbers aj seem to have some connection

to the dimensions of the groups in the Hodge decomposition for X̃ . The precise
relationship is a bit hard to describe; the clearest approach is through the geometry
of Newton polygons.

Given a smooth, projective variety Y over C, recall that each group Hk(Y ; C)
has a Hodge decomposition

Hk(Y ; C) = H0,k(Y )⊕H1,k−1(Y )⊕ · · · ⊕Hk−1,1(Y )⊕Hk,0(Y ).

The dimensions hi,j = dimC H
i,j(Y ) are called the Hodge numbers of Y . For a

fixed k, these numbers can be represented geometrically by the following picture.
Start at (0, 0) and draw a line of slope 0 for h0,k steps along the x-axis. Picking
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up from the ending point, now draw a line of slope 1 for h1,k−1 steps along the
x-axis, then a line of slope 2 for h2,k−2 steps, and so on. One gets a picture as in
the following example, which shows an imagined H3(Y ) where h0,3 = 2 = h3,0 and
h1,2 = 3 = h2,1:

h0,3
h1,2 h2,1

h3,0

(10,15)

(8,9)

(5,3)

This picture is called the Hodge polygon for Hk(Y ). Different varieties can
give rise to quite different-looking polygons, but note that the ending point of the
Hodge polygon is always (βk, k · βk/2), where βk = dimHk(Y ). This follows from
the symmetry of the Hodge numbers hi,k−i = hk−i,i: the total vertical rise in the
ith section of the Hodge polygon is i ·hi,k−i, but summing this with the vertical rise
in the (k − i)th section gives ihi,k−i + (k − i)hk−i,i = khi,k−i. So the total vertical
rise of the Hodge polygon is

k∑

i=0

i · hi,k−i =
1

2
·
[

k∑

i=0

ihi,k−i +

k∑

i=0

(k − i)hk−i,i

]

=
1

2
·

k∑

i=0

khi,k−i =
1

2
k ·

k∑

i=0

hi,k−i =
kβk

2
.

Recall that we defined ai = ordq(αi). The numbers a1, . . . , aβk
can also be used

to construct a certain polygon, this time called the Newton polygon for Hk(X).
Here one starts at (0, 0) and draws a line segment of slope a1 for one step along
the x-axis, then a connecting line segment of slope a2 along one more step, then a
line segment of slope a3 for yet one more step, and so on. By the time this is done
one has moved exactly βk steps along the x-axis. In fact, if the Hard Lefschetz
Theorem holds then the last point of the Newton polygon will be (βk, k · βk/2),
just as for the Hodge polygon. For as we have seen previously, if {α1, . . . , αk} are
the eigenvalues of Frobenius on Hk(Y ) (recorded with multiplicity), then the Hard
Lefschetz Theorem implies that the two sets

{αi} and
{qk

αi

}

are equal. Adding up ordq(α) as α ranges over each of these sets, one finds that

k∑

i=0

ordq(αi) = kβk −
k∑

i=0

ordq(αi),
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or
∑k

i=0 ordq(αi) = kβk

2 . But recall ai = ordq(αi), so this sum is also the total
height of the Newton polygon.

We can now state a very interesting conjecture:

Conjecture 6.5. Let X be a smooth, projective variety over a finite field Fq

Then

(a) The vertices of the Newton polygons for each cohomology group of X occur only
at integral lattice points, and

(b) [Katz] If X lifts to a smooth variety X̃ in characteristic 0, then the Hodge
polygons always lie underneath the Newton polygons. That is, if N(x) and
H(x) are the functions whose graphs are the Newton and Hodge polygons for a
cohomology group Hk(X), then one has N(x) ≥ H(x) for all 0 ≤ x ≤ βk(X).

Following Mazur [M1], it is nice to point out some specific consequences of the
conjecture. For instance, it says that at most h0,k of the αk,j eigenvalues must be
p-adic units. If exactly h0,k of them are p-adic units, then the rest of the eigenvalues
are divisible by q; and of these, at most h1,k−1 have the property that αk,j/q is a
p-adic unit.

The conjecture of Katz can also be written algebraically, in terms of a certain
inequality. It says that for any integer in the range 0 ≤ t ≤ βk one has

a1 + · · ·+ at ≥ 0 · h0,k + 1 · h1,k−1 + · · ·+ j · hj,k−j + (j + 1) · (t− βj)(6.6)

where j is the unique integer such that

h0,k + h1,k−1 + · · ·+ hj,k−j ≤ t < h0,k + h1,k−1 + · · ·+ hj,k−j + hj+1,k−j−1.

The left side of (6.6) is simply the height of the Newton polygon above the point t,
whereas the right side is the height of the Hodge polygon at this same point.

Example 6.7. Let us return to our example of X = C × C, where C is a
supersingular elliptic curve over Fq. Assume that q is large enough so that all the

endomorphisms of C over Fq are already defined over Fq. For a lift to characteristic
zero, the Hodge decomposition of H2(X) has h2,0 = h0,2 = 1 and h1,1 = 4, whereas
we saw at the beginning of this section that the étale cohomology group H2(X) has
a basis consisting of six algebraic cycles. Therefore the eigenvalues of Frobenius
are q with multiplicity 6! One gets the following picture for the Newton and Hodge
polygons (the Newton polygon is dashed):

Observe that this example conforms to the Katz conjecture.

Example 6.8. Let X be an algebraic curve of genus 3. Then dimH1(X) = 6,
and in the case of complex varieties the Hodge decomposition would necessarily
have h1,0 = h0,1 = 3. The Katz conjecture from above gives five possibilities for
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the Newton polygon of such a curve in characterisitic p, depicted in the diagrams
below. One obtains these simply by considering all the possibilities for the break-
points (vertices) of the polygon. Below each Newton polygon we have listed the
tuple (a1, . . . , a6) giving the values ai = ordq(αi).

( 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 12 ) ( 1

3 , 1
3 , 1

3 , 2
3 , 2

3 , 2
3 ) (0, 12 , 12 , 1

2 ,1)

(0,0. 1
2 , 1

2 ,1,1) (0,0,0,1,1,1)

Example 6.9. Now consider the example of K3 surfaces X . For complex
varieties we would have H2(X) = Z22, and the Hodge decomposition is h2,0 =
h0,2 = 1 and h1,1 = 20. In this case there is a very narrow range between the
Hodge polygon and the line y = x (which connects the origin to the endpoint
(22, 22) of the Hodge polygon), and the Katz conjecture says that the possible
Newton polygons in characteristic p must lie in this range. The possibilities for the
Newton polygon, keeping in mind Poincaré Duality and that the breakpoints occur
on the integral lattice, are then

(i) There are no break points, so the polygon is simply the line segment connect-
ing (0, 0) to (22, 22), or

(ii) The break points are (0, 0), (h, h− 1), (20− h, 19− h), and (22, 22), for some
h in the range 1 ≤ h ≤ 11.

In case (ii) having h = 11 is actually impossible: it is known that a K3 surface must
have at least one algebraic cycle of codimension one on it, which means at least
one of the numbers ai is equal to 1. So there must be some section of the Newton
polygon having slope 1, and this does not occur when h = 11.

If we set h = 0 for case (i), then the number h with 0 ≤ h ≤ 10 becomes a
new invariant for K3 surfaces over characteristic p fields. This invariant was first
investigated by Artin and Mazur.

Conjecture 6.5 has been proven, using the theory of crystalline cohomology. The
story can be explained as follows. For varieties over a field of characteristic p, étale
cohomology with Qp coefficients turns out not to be very well behaved. Perhaps
taking some hints from ealier work of Dwork, Manin, and Monsky-Washnitzer,
Grothendieck envisioned a new theory with Qp coefficients constructed by adapting
de Rham theory into characteristic p. This theory was developed by Berthelot in
his thesis. The first part of Conjecture 6.5, the fact that the vertices of the Newton
polygon occur at integral lattice points, becomes a triviality: it comes about as a
general property of the types of objects that arise in the crystalline theory. The
second part of Conjecture 6.5, the Katz conjecture, is more subtle. It was first
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proved by Mazur [M1, M2] under some mild assumptions on the varieties X , and
later in complete generality by Ogus [BO].

We will not say more about crystalline cohomology at the moment. The inter-
ested reader can look ahead to Chapter ????.

7. The Tate conjecture

Recall, once again, the formulas

#X(Fqm) = 1− [αm
1,1 + · · ·+ αm

1,b1 ] + [αm
2,1 + · · ·+ αm

2,b2 ] + · · ·(7.1)

We saw in Chapter 1 that if X is projective space or a Grassmannian then the
αi,j ’s in this formula are very simple: they are all powers of q. Cohomologically,
the reason is that if u ∈ H2k(X) is an algebraic cycle then u is an eigenvector
of Frobenius with eigenvalue qk. For projective spaces and Grassmannians every
cohomology class is algebraic, so every eigenvalue of Frobenius is an integral power
of q.

The Tate conjecture is a kind of converse to the above: loosely phrased, it says
that all of the integral powers of q among the αi,j ’s come from algebraic cycles.

To state the conjecture more carefully, recall that Ai(X) ⊆ H2i(X) denotes
the Q-vector space spanned by the fundamental classes of algebraic cycles. This is
not even known to be finite-dimensional, although conjecturally it should be. The
Tate conjecture can be stated in either of the following equivalent ways:

(1) The dimension of Ak(X) is equal to the number of qk’s appearing among the
αi,j ’s in the formula (7.1);

(2) The dimension of Ak(X) is equal to the order of the pole of ζX(s) at the point
s = qi.

Example 7.2. Let C be a supersingular elliptic curve over Fp. Then the
eigenvalues of F on H1(C) must be i

√
p and −i√p. On H0(C) and H2(C) the

eigenvalues are of course 1 and p, respectively. By the Künneth Theorem the
eigenvalues of F on Hi(C × C) are

H0 H1 H2 H3 H4

1 i
√
p (2), −i√p (2) p (4), −p (2) ip3/2 (2), −ip3/2 (2) p2

where the numbers in the parentheses represent the multiplicity of the eigenvalue.
According to the Tate conjecture, the subspace of H2(C × C) spanned by the al-
gebraic cycles of C × C should be 4-dimensional.

This might be slightly confusing, since we have previously seen that all the
elements of H2(C × C) should be algebraic! While this is true, it only means that
each class can be represented as an algebraic cycle over some extension of C × C
from the base field Fp to some larger field. That is to say, not all the algebraic

cycles giving elements of H2(C × C) will be defined over Fp. Indeed, only four of
them will be.

If we base extend C to the field Fp2 and consider the corresponding Frobe-
nius map (which will be the square of the Frobenius considered above), then the
eigenvalues on H2(C × C) are now

H0 H1 H2 H3 H4

1 −p(4) p2 (6) −p3(4) p4
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The Tate conjecture now predicts that all the cohomology classes of H2(C × C)
are spanned by algebraic cycles defined over Fp2 . ????

8. The Weil conjectures for abelian varieties

Theorem 8.1. Let A be an abelian variety of dimension d. Then dimH1(A) ≤
2d, and if dimH1(A) = 2d then there is an isomorphism of rings H∗(A) ∼=∧∗[

H1(A)
]
.

Proof. Write

∇ : H∗(A)→ H∗(A2d) ∼=
2d⊗

i=1

H∗(A)

for the map on cohomology induced by the (iterated) multiplication map A2d → A.
Note that this is a ring map. For x ∈ H∗(A), let x(i) denote 1⊗· · ·⊗1⊗x⊗1⊗· · ·⊗1,
with the x appearing in the ith factor. It follows easily that for any x ∈ H∗(A) one
has

∇(x) = [x(1) + x(2) + · · ·+ x(2d)] +
∑

yi1 ⊗ · · · ⊗ yi2d

where the terms inside the sum have each yi homogeneous and at least two of
the yi’s of positive degree. In particular, note that if x ∈ H1(A) then ∇(x) =
x(1) + · · ·+ x(2d).

Let x1, . . . , xm ∈ H1(A). Then ∇(x1 · · ·xm) = ∇(x1) · · · ∇(xm). In multide-
gree (1, 1, . . . , 1) the right hand side is

∑

σ

xσ(1) ⊗ · · · ⊗ xσ(2d),(8.2)

where σ ranges over all the permutations of 2d letters. If x1, . . . , xm are linearly
independent then the terms in the sum (8.2) are also linearly independent, and so
this sum is nonzero. Hence ∇(x1 · · ·xm) 6= 0, and therefore x1 · · ·xm 6= 0 as well.
But since Hi(A) = 0 for i > 2d, it must be that m ≤ 2d. So we have shown that
dimH1(A) ≤ 2d.

Now suppose that dimH1(A) = 2d, and let x1, . . . , x2d be a basis. Since H∗(A)
is graded commutative, we have the evident algebra map

f :
∧∗

[H1(A)]→ H∗(A).

By the previous paragraph we know that x1x2 · · ·x2d is nonzero, hence f is an
isomorphism in degree 2d.

Suppose that α is a nonzero homogeneous element of the domain of f . There
exists a β in

∧∗
[H1(A)] such that α ∧ β = x1 ∧ · · · ∧ x2d, therefore f(α)f(β) =

f(α ∧ β) 6= 0. In particular, this implies f(α) 6= 0, and so f is injective.
By construction f is surjective in dimension 1. Let z ∈ Hk(A) and assume by

induction that f has been proven to be surjective in all dimensions smaller than k.
Start with the very silly equation x1 · · ·x2dz = 0 and apply µ∗, where µ : A×A→ A
is the multiplication:

0 = µ∗(x1)µ
∗(x2) · · ·µ∗(x2d)µ∗(z)

= [x1 ⊗ 1 + 1⊗ x1] · · · [x2d ⊗ 1 + 1⊗ x2d] ·
[
z ⊗ 1 + 1⊗ z +

∑

i

y′i ⊗ y′′i
]

where the degrees of y′i and y′′i are positive and strictly less than k.
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Multiply out the above product and group together all terms having bidegree
(2d, k). Such terms can appear in the above product in three ways: as

(1) (x1x2 · · ·x2d)⊗ z,
(2) (xj1xj2 · · ·xj2d−k

z)⊗ (xm1xm2 · · ·xmk
), or as

(3) (xj1xj2 · · ·xjr
y′i)⊗ (xm1xm2 · · ·xms

y′′i ),

where in each of the last two lines the j’s and the m’s are disjoint sets of indices
whose union is {1, . . . , 2d}. Our equation tells us that the sum of all these terms is
zero.

But note that H2d(A) is one-dimensional, so all elements of this vector space
are multiples of x1x2 · · ·x2d (which we have already proven is nonzero). This ap-
plies to the terms on the left of the above tensor symbols. The terms xm1 · · ·xmk

and xm1 · · ·xms
y′′i are all in the image of f , in the latter case by our induction

hypothesis because |y′′i | < k. So each of the tensors of types (2) and (3) has the
form uq(x1 . . . x2d) ⊗ f(vq) for some uq ∈ E and some vq in the domain of f . We
therefore obtain

0 =
[
(x1 . . . x2d)⊗ z

]
+
∑

q

uq(x1 . . . x2d)⊗ f(vq) = (x1 . . . x2d)⊗
[
z+

∑

q

f(uqvq)
]
.

It follows at once that z = −∑q f(uqvq), and hence z is in the image of f . �

Summary.

???
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CHAPTER 4

Introduction to étale cohomology

This chapter is still in progress!
In this chapter our goal is to give an intuitive look at étale cohomology and

étale homotopy theory. This is a subject which is hard to explain all at once, as
there is more than one important idea lurking behind the scenes. Our discussion
will be divided into roughly the following areas:

• The basic idea: homotopy approximations
• Étale maps and coverings
• Systems of spaces
• Hypercovers
• Rigid hypercovers and the étale homotopy type
• Sheaf cohomology.

Now, we should remark that this is not quite the historical approach taken
by Grothendieck. Grothendieck’s technical skill allowed him to begin with sheaf
cohomology, and to sweep most of the other topics under the rug. In some sense
this was a necessity at the time, because the machinery of abstact homotopy theory
was not developed enough to handle some of these other topics. But even though
one can start the story with sheaf cohomology, and in that way package lots of the
technicalities into one bundle, I think this results in a loss of intuition about what’s
really happening. So in our development we are going to be the turtle rather than
the hare. Our discussion in this chapter owes quite a bit to [Su1], which we highly
recommend.

1. Overview of some key points

Before jumping into our main discussion we will give a brief overview. This
overview, however, will probably not make much sense until one has read the rest
of the chapter! Still, it seems best to begin with a broad outline, where we call
attention to certain key ideas which will be important. Everything we say here will
be discussed in more detail in the coming sections.

1.1. The étale topological type. The main idea in étale homotopy theory
is that to every scheme X one attaches a small category I (which depends on X)
and a diagram

EtX : I → sSet.

The simplicial sets in this diagram are thought of as ‘approximations’ to the ho-
motopy type of X , and the diagram itself will often be referred to as a ‘system
of approximations’. In the case where X is a scheme over C these really are ap-
proximations to the classical homotopy type of X(C), in a way that can be made
precise. In the case where X is defined over another field, perhaps of characteristic

85
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p, there is no “classical homotopy type” for us to compare things to—instead all we
have are these ‘approximations’, and étale homotopy theory is really about learning
what one can do with them.

The diagram EtX is sometimes called the “étale topological type” of X , or the
“étale realization of X”. There are a few things we should say about it up front.
First of all, the category I will be cofiltered. This means that for any two objects
i and j in I, there is a third object k together with maps k → i and k → j; also,
if i ⇉ j are two maps in I then there is an object k and a map k → i such that
the two composites k ⇉ j are equal. Such indexing categories are good for taking
inverse limits, for reasons we will not describe right now. But one should think of
diagrams indexed by I as special kinds of inverse limit systems.

Each space in the diagram EtX , by itself, is not a very good approximation to
X—it does not have much useful information about X in it. But taken altogether,
as a system, there is some very useful information about X ; it is essentially encoded
in the “limit” of the system, although one has to be very careful how one interprets
that. If one were to actually take the limit, or even the homotopy limit, it turns out
that lots of important information is thrown away. One of the arts of this subject
is learning how to extract that important information.

This idea of having a system of approximations, where the useful information
is somehow “in the limit”, is probably a bit strange. In Section 2 we will discuss a
familiar topological context where such things occur naturally, and hopefully that
will make the situation clearer.

1.2. Homotopy invariants of systems. Once we have defined EtX , our goal
will be to extract useful information from it. We will need to talk about cohomology
theories for systems, for example. Let us introduce a bit more language. A pro-
space is a diagram I → sSet in which the indexing category I is cofiltered. One
can make a sensible category out of such objects (where the indexing categories are
allowed to vary), and this category is denoted pro-sSet.

The singular cohomology of a pro-space W : I → sSet, with coefficients in an
abelian group A, is defined simply as

Hn(W ;A) = colim
i∈Iop

Hn(Wi;A).

This seems simple enough, but already note that it is different from Hn(limI W ;A)
or Hn(holimI W ;A)—an indication that taking a limit or homotopy limit of W
would have been the wrong thing to do.

Adapting other cohomology theories to give invariants of systems turns out to
be more complicated. If E is a cohomology theory where only finitely many of the
coefficient groups E∗(pt) are nonzero, then one can use the same definition:

En(W ) = colim
i∈Iop

En(W ).

But for K-theory, for example, we have to define

K−n(W ) = πn

[
holim

k∈N
hocolim

i∈Iop
Map(Wi, Pk(Z×BU))

]
(1.3)

for n > 0. Here Pk(−) is the nth Posntikov sections functor. The complexity of (1.3)
is daunting, particularly the presence of two limits (which cannot be commuted).
We will see later why this formula is “well-behaved”, whereas simpler formulas like
colimi K

n(Wi) are not.
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The étale cohomology of a scheme X will be defined to be the singular coho-
mology of the pro-space EtX . Likewise, the étale K-theory of X will be defined to
be the K-theory of EtX . We are skipping some complications, in that one needs
to be able to treat cohomology not only with constant coefficients but with twisted
coefficients as well—and for that one needs a little extra work. But the basic picture
we’ve presented is valid.

1.4. Homotopy invariants and model categories. In some sense the right
way to look at the above invariants is via model category theory. It is possible to
set up a model category structure on pro-sSet where the above invariants arise as
homotopy classes of maps. Note that any space Z can be regarded as a pro-space
by having the indexing category I be the trivial category with one object and an
identity map. Write cZ for Z regarded as a pro-space. We will ultimately see that

[W, cK(A, n)] ∼= Hn(W ;A)

and that
[ΣnW, c(Z×BU)] ∼= K−n(W ).

So we find that studying homotopical invariants of pro-spaces is really the same as
studying Ho (pro-sSet). The image of EtX under the canonical map

pro-sSet→ Ho (pro-sSet)

is called the étale homotopy type of X .
We note that there is a map Ho (pro-sSet)→ pro−Ho (sSet). The image of EtX

in pro−Ho (sSet) is sometimes called the classical étale homotopy type of X . This
was what was originally defined by Artin and Mazur [AM], at the very beginnings
of the subject. But in modern timees it is acknowledged that it is better to work in
Ho (pro-sSet), or even in the model category pro-sSet itself—the theory is tighter
and more robust when developed in those settings.

2. Topological perspectives

Let X be a topological space and let U = {Uα} be an open cover of X indexed
by a set A. The Čech complex of this open cover is the simplicial space Č(U)
depicted below:

∐
Uα0

∐
Uα0α1

oooo
∐
Uα0α1α2 · · ·oo oooo

Here Uα0···αn
= Uα0 ∩ · · · ∩ Uαn

, and the face maps are obtained by omitting
indices—we have chosen not to draw the degeneracies for typographical reasons.
The coproduct in level n is indexed by all (n+ 1)-tuples (a0, . . . , an) ∈ An+1.

Note that Č(U) is an augmented simplicial space, via the map
∐

α Uα → X .

This augmentation can also be regarded as a map of simplicial spaces Č(U)→ cX ,
where cX is the constant simplicial space with X in every dimension. We will
usually write just “X” rather than “cX”, by abuse.

Given a simplicial space Z∗, we can form its geometric realization |Z|. We
can also regard Z as a functor ∆op → Top and construct its homotopy colimit
hocolimZ. Under reasonable hypotheses on Z∗ these two objects will be weakly
equivalent. In this chapter we will usually phrase results in terms of the homotopy
colimit, but readers should note that the geometric realization gives a smaller model
for what is basically the same thing.
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Our map of simplicial spaces Č(U)→ cX gives rise to a map hocolim Č(U)→
hocolim(cX), and there is a canonical map hocolim(cX) → colim(cX) ∼= X . We
therefore have a natural map of spaces

hocolim Č(U)→ X.

Theorem 2.1. Let {Uα} be an open cover of a topological space X. Then
hocolim Č(U) → X is a weak equivalence. If the Uα’s and their iterated intersec-
tions are all cofibrant, then |Č(U)| → X is a weak equivalence.

The above result was essentially proven by Segal [S1] in the case where there
exists a partition of unity subordinate to the cover U. For a modern proof that
doesn’t require this condition, see [DI].

Remark 2.2. If a well-ordering of the set A is chosen, then one can form the
ordered Čech complex Čo(U). This is the simplicial space

[n] 7→
∐

α0≤···≤αn

Uα0···αn

There is a map of simplicial spaces Čo(U)→ Č(U), and this always induces a weak
equivalence of homotopy colimits. See [DI, Proposition 2.6].

The advantage of the ordered Čech complex is that it is quite a bit smaller;
for instance, when the open cover is finite then the ordered Čech complex has
only finitely many non-degenerate pieces. The regular Čech complex tends to have
infinitely many such pieces, even for a simple two-fold cover {U0, U1}. In this case,
the iterated intersections U0 ∩ U1 ∩ U0 ∩ · · · ∩ U0 ∩ U1 are all nondegenerate.

We now consider several examples of Theorem 2.1. The examples deal with the
ordered Čech complex, as it is easier to handle.

Example 2.3. Let X = S1, thought of as the unit complex numbers. Let

U =
{
eiθ
∣∣∣− 1

10
< θ <

2π

3
+

1

10

}
, V =

{
eiθ
∣∣∣ 2π

3
− 1

10
< θ <

4π

3
+

1

10

}
,

W =
{
eiθ
∣∣∣ 4π

3
− 1

10
< θ < 2π +

1

10

}
.

Then {U, V,W} is an open cover of X . The nondegenerate terms in the Čech
complex can be drawn as

U ∩ V
d1

�� d0

%%KKKKKKKKKK U ∩W

d1
yyssssssssss

d0
%%LLLLLLLLLL V ∩W

d1

yyrrrrrrrrrr

d0

��
U V W.

Using the fact that all of U , V , W , U ∩V , U ∩W , and V ∩W are contractible, the
realization of Č(U) is weakly equivalent to the realization of

∗
d1

��
d0
%%K

KKKKKKKKK ∗

d1
yyssssssssss

d0
%%KKKKKKKKKK ∗

d1

yysssssssssss

d0

��∗ ∗ ∗.
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But this realization is just the space

•

~~
~~

~~
~

@@
@@

@@
@

• •
which of course is homotopy equivalent to our original X .

Example 2.4. Now assume X is the disk {z ∈ C
∣∣ 1 ≥ |z| }. Let {U, V,W} be

the open cover obtained by dividing the disk into three sectors of 2π
3 radians and

then ‘fattenting up’ the sectors a tiny bit to give open sets. (So upon intersecting
with S1, this becomes an open cover like the one considered in the last example).

For this case the nondegenerate terms in the (ordered) Čech complex look like

U ∩ V ∩W
d2

''NNNNNNNNNN

d1

��

d0

xxpppppppppp

U ∩ V
d1

�� d0
&&NNNNNNNNNNN U ∩W

d1
xxppppppppppp

d0
''NNNNNNNNNNN V ∩W

d1

wwpppppppppppp

d0

��
U V W.

Once again, all the spaces appearing in the diagram are contractible, so up to
weak equivalence the realization is the same as the realization of the corresponding
diagram where all the spaces have been replaced with points. The realization is
therefore the space

which again is homotopy equivalent to our original X .

Example 2.5. Generalizing the previous example, suppose a space X has an
open cover U consisting of n open sets such that each iterated intersection is con-
tractible. Then the simplicial space Č(U) is weakly equivalent to the simplicial
set ∆n (regarded as a simplicial space which is discrete in every dimension), and
therefore the geometric realization is contractible.

Example 2.6. What happens when the iterated intersections Uα1...αk
are not

necessarily contractible? Consider again X = S1, this time with the open cover
{U, V } where

U =
{
eiθ
∣∣∣− 1

10
< θ < π +

1

10

}
, V =

{
eiθ
∣∣∣ π − 1

10
< θ < 2π +

1

10

}
.

Then U and V are contractible, but U ∩ V is homotopy equivalent to S0. The
nondegenerate pieces of the ordered Čech complex now look like

S0

  @
@@

@@
@@

~~~~
~~

~~
~

∗ ∗
and the geometric realization gives the space
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.
Note again that this is homotopy equivalent to our original X .

2.7. Čech approximations. Given a space X with open cover U, the Čech
complex represents a kind of ‘fattening up’ of X . Its realization is a space which is
weakly equivalent to X , but which is generally much bigger. However, we have seen
in the above examples that if all the iterated intersections Uα0···αn

are empty or
contractible then we can replace the Čech complex by a smaller model—a simplicial
set—whose realization still has the correct homotopy type. One can think of this
as distilling the information in the Čech complex.

We will describe two slightly different approaches to this distilling process. Let
DČ(U) denote the simplicial set obtained from Č(U) by replacing each nonempty
intersection Uα0···αn

with a single point. So

DČ(U)n = {(α0, α1, . . . , αn) |Uα0···αn
6= ∅}

and the face and degeneracy maps come from deleting or repeating indices. Note
that there is a map Č(U) → DČ(U), and if all the iterated intersections of U are
empty or contractible then this is a levelwise weak equivalence.

The simplicial set DČ(U) is sometimes called the Čech nerve of the cover U.

Remark 2.8. There is another construction which one might be tempted to
call the “Čech nerve”. Consider the subcategory cat(U) of Top consisting of all the
iterated intersections Uα0···αn

and the inclusion maps between them. The nerve
of this category is related to DČ(U), although they are not identical. The reason
is that DČ(U) really depends on the indexing set A, whereas the nerve of cat(U)
does not. Some information about how these two constructions are related may be
obtained from [DI, Cor. 3.3].

Now we describe a second way of obtaining a simplicial set from the Čech
complex. For any space W , let π0(W ) be the usual set of path components but
given the quotient topology with respect to the map W → π0(W ). Note that for
any ‘reasonable’ space this topology will be discrete.

Let π0Č(U) denote the simplicial space obtained by applying π0(−) to every
level of Č(U). That is, π0Č(U) is the simplicial space

[n] 7→
∐

α0,...,αn

π0(Uα0 ∩ · · · ∩ Uαn
).

Then once again we have a map Č(U)→ π0Č(U). Note that if each of the iterated
intersections is both ‘reasonable’ and homotopy discrete (i.e., weakly equivalent to
a discrete space) then π0Č(U) is actually a simplicial set and our map Č(U) →
π0Č(U) is an objectwise weak equivalence.

Finally, we need a brief remark on what happens when one has two open covers
and wants to compare their Čech complexes. Recall that our open covers are all
really indexed open covers—that is, there is an indexing set A and for each α ∈ A
we are given an open set Uα ⊆ X . If {Vβ}β∈B is another open cover of X , then by
a map of open covers U→ V we mean a function f : A→ B together with maps
Uα → Vf(α) for every α ∈ A. In this situation one also says that U is a refinement
of V.
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Given a map of covers U → V, there is a naturally associated map of simpli-
cial spaces Č(U) → Č(V). One then obtains an induced map of simplicial sets
π0Č(U)→ π0Č(V).

If U and V are any two open covers of X , note that we may form a new open
cover U ∩ V by considering the set {Uα ∩ Vβ}(α∈A,β∈B). There are evident maps

U ∩ V→ U and U ∩ V→ V giving rise to comparison maps of Čech complexes

Č(U)← Č(U ∩ V)→ Č(V).

2.9. Systems of Čech approximations. At the expense of a few white lies,
we can now give the main idea behind étale homotopy types.

If X is a topological space, let IX be the category of open covers of X , where
the maps are refinements. Consider the functor

π0Č : IX → sSet

sending an open cover U to π0Č(U). We will think of each simplicial set π0Č(U)
as a ‘combinatorial approximation’ to the homotopy type of X , and the functor
π0Č should be thought of as a system of combinatorial approximations. For an
arbitrary open cover U, the homotopy type of π0Č(U) is probably not very close
to the homotopy type of X—but our intuition suggests that by refining U we may
obtain better and better approximations. In particular, it follows from Theorem 2.1
that if we can refine U to an open cover U′ in which the k-fold intersections are all
homotopy discrete for 0 ≤ k ≤ N , then π0Č(U′) has the same N -type as X . If we
can produce such a refinement for every N (which is not at all clear), this suggests
that the system of combinatorial approximations in some sense “converges” to the
homotopy type of X .

The goal of étale homotopy theory is to repeat this kind of construction but
starting with an algebraic variety rather than a topological space. To each alge-
braic variety X—not necessarily defined over the complex numbers, or even over a
characteristic zero field—we will associated a category IX and a functor

EtX : IX → sSet.

This will play the role of a ‘system of combinatorial approximations’, from which
we can extract homotopy invariants. This extraction will involve some kind of
“limiting” process. The rest of this chapter will essentially be spent showing how
to define IX , how to define this functor, and precisely what this limiting process is.

It has perhaps already occured to the reader that there is in fact an obvious way
to define such a system, using Zariski open covers; so perhaps we should explain
right away why this obvious method doesn’t work.

Let X be a scheme. For each Zariski open cover {Uα} of X , indexed by a set
A, we can again form the associated Čech complex Č(U); this is now a simplicial
scheme. If π0(W ) denotes the set of connected components of W , for any scheme
W , then we can also form the simplicial set π0Č(U). So an obvious thing to do
is to take IX to be the category of Zariski open covers of X , and to consider the
functor π0Č : IX → sSet just as we did for topological spaces.

For this to be a sensible thing to look at, we have to hope that as one takes
covers by smaller and smaller Zariski open sets, the simplicial set π0Č(U) becomes
a better and better approximation to an interesting homotopy type. Unfortunately,
this is not the case. The problem is that Zariski open sets are all very big (compared
to the open sets one has in the classical topology for a variety over C). In particular,
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if X is irreducible then any finite collection of Zariski open sets have a nontrivial
intersection. This means that when forming the space π0Č(U) one is in a situation
like Example 2.4 or Example 2.5: the fact that each possible iterated intersection
is nontrivial forces |π0Č(U)| to be contractible. In particular, this is true no matter
how much we refine the cover U.

The conclusion is that this particular method for attaching homotopy invariants
to a scheme X is hopeless.

Luckily, this method can in some ways be saved. The most important idea is to
replace our open covers by a more general kind of ‘cover’, and we will start to explore
this in the next section. On top of this, there are some delicate technical problems
involved in choosing a nice enough category IX , and even more problems associated
with whether Čech complexes can be used to give ‘good enough’ approximations.
All of this will be explained in more detail later.

3. Rigid open covers and generalized Čech complexes

In the last section we saw how to attach to any topological space X a system
of Čech approximations to X , indexed by the category of open covers of X . In this
section our goal is to modify this construction in two ways. First, we will tweak
the indexing category just a little in order to make it cofiltered (see below for the
definition). The reasons for making this modification are technical, and in the end
probably unsatisfying—but things seem to work best if we can get ourselves into
the cofiltered setting. The notion of a “rigid” open cover is what does this for us.

The second goal is to replace open covers with a much more general notion.
This point is much more important, and is in some sense the one main insight that
makes the whole étale machinery work.

3.1. Filtered and cofiltered categories. We begin with the basic defini-
tions.

Definition 3.2. A filtered category is a small category I satisfying the fol-
lowing two conditions:

(a) For all objects i,j in I, there exists an object k in I and maps i→ k and j → k.
(b) For all objects i, j in I and all maps f, g : i → j, there is an object k in I and

a map u : j → k such that uf = ug.

The following proposition brings together most of the things we will routinely
use about diagrams indexed by filtered categories.

Proposition 3.3. Let I be a filtered category.

(a) Suppose A : I → Ab is a diagram of abelian groups. Then an element x ∈ Ai

maps to zero under Ai → colimI A if and only if there exists an object j in I
and a map i→ j such that x maps to zero under Ai → Aj.

(b) Suppose A : I → Ch(Z) is a diagram of chain complexes. Then for all n ∈ Z
the natural map colimiHn(Ai)→ Hn(colimI A) is an isomorphism.

(c) Suppose A : I → sSet∗ is a diagram of pointed simplicial sets. Then for all
n ≥ 0, the natural map colimi πn(Ai, ∗) → πn(colimAi, ∗) is an isomorphism.
In addition, the map hocolimAi → colimAi is a weak equivalence.

(d) Suppose A : I → Top is a diagram of pointed spaces. Then the natural map
colimi πk(Ai, ∗)→ πk(hocolimiAi, ∗) is an isomorphism, for all k ≥ 0.
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Sketch of proof. Part (a) is routine, and part (b) is an easy consequence
of (a).

To prove (c) one needs two observations. First, the result is easy when all the
Ai’s are fibrant (in which case colimI A is also fibrant). Second, the functor Ex1

preserves filtered colimits, and hence Ex∞ does as well.
Finally, (d) is deduced from (c) using the Quillen equivalence between Top and

sSet. �

Example 3.4. Both the conditions for being filtered are necessary for the
above properties to hold. For example, let C be the co-equalizer category 0 ⇉ 1
consisting of two objects and two non-identity maps, as shown. Then C satisfies
the first condition for being filtered, but not the second. Consider the diagram of
abelian groups Z ⇉ Z where the top map is multiplication by 2 and the bottom is
multiplication by 3. Then the colimit of this diagram is zero, but it is not true that
every element in the diagram maps to zero somewhere else in the diagram. Thus,
part (a) of the proposition does not hold for diagrams indexed by C.

A category I is said to be co-filtered if Iop is filtered. If C is any category, a
diagram I → C in which I is a co-filtered category is called a pro-object over C.
When C = Top, we will call such an object simply a pro-space.

3.5. Rigid covers. Let X be a topological space, and recall the category
OpCov(X) of indexed open coverings of X . Also recall that we constructed a
functor π0Č : OpCov(X)→ sSet.

Unfortunately the category OpCov(X) is not co-filtered. It satisfies the dual
condition to Definition 3.2(a), since if {Uα : α ∈ A} and {Vβ : β ∈ B} are two
indexed open covers then {Uα ∩Vβ : (α, β) ∈ A×B} is an open cover which refines
both of them. But OpCov(X) does not satisfy the dual condition to 3.2(b):

Exercise 3.6. Let X = [0, 1], and consider the open cover U1 = [0, 2
3 ) and

U2 = (1
3 , 1]. Let V be the open cover with V1 = X and V2 = [0, 4

5 ). We can produce
one refinement f : U → V by mapping both U1 and U2 to V1. We can produce
another refinment g : U→ V by mapping U1 to V2 and U1 to V1. Check that there
is no cover W refining U such that the two maps f, g : W→ V are the same.

There is a modification of OpCov(X), suggested originally by Lubkin, which is
cofiltered. This brings us to the notion of a rigid open cover: this is an ordinary
open cover such that for each point x ∈ X we have chosen a distinguished open set
of the cover containing it. We can describe things more formally as follows:

Definition 3.7. A rigid open cover of a topological space X is an indexed
open cover {Uα : α ∈ A} together with a choice, for every point x ∈ X, of an index
αx such that x ∈ Uαx

.
Alternatively, we can say that a rigid open cover of X is an indexed open cover

together with a non-continuous section of the map
∐

α∈A Uα → X (that is, a section
in the category of sets rather than topological spaces).

Let {Uα : α ∈ A} and {Vβ : β ∈ B} be two rigid covers of X . A map of rigid
open covers U → V is a map of spaces

∐
Uα →

∐
Vβ which makes the following
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two diagrams commute:
∐
Uα

""E
EE

EE
EE

E
// ∐ Vβ

||zz
zz

zz
zz

∐
Uα

// ∐Vβ

X X

bbEEEEEEEE

<<zzzzzzzz

(the first should be considered as a diagram of topological spaces, the second only
as a diagram of sets). More concretely, to give a map of rigid open covers U → V

means to give a function f : A → B such that for each α ∈ A the open set Uα is
contained in Vf(α), and such that for each x ∈ X one has f(αx) = βx.

Definition 3.8. Let {Uα : α ∈ A} be a rigid open cover. We will say that this
is ultra rigid if every α ∈ A is equal to αx for some x ∈ X.

Exercise 3.9. Every rigid open cover can be refined by an ultra-rigid open
cover. If U is ultra-rigid and V is any rigid open cover, then there is at most one
map U→ V.

Proposition 3.10. Let X be a topological space. The category RgdOpCov(X)
of rigid open covers of X is cofiltered.

Proof. Left as an exercise. �

Remark 3.11. This business with rigid open covers is sort of a “cheap trick” for
getting us a cofiltered indexing category. Rather than consider π0Č : OpCov(X)→
sSet, we can work with π0Č : RgdOpCov(X) → sSet. But why do we need to do
this?

As alluded to in Section 1, one thing we will do with systems D : I → sSet is
to define their cohomology. For instance, we will define Hn(D) = colimiH

n(Di).
Colimits like this behave best, and are most easily computed, when the indexing
category Iop is filtered—or equivalently, when I is cofiltered. This is perhaps only
a minor convenience when dealing with singular cohomology, but we will see in
Section 6 that when one starts to work with generalized cohomology theories the
cofiltered hypothesis is absolutely necessary for things to work nicely.

There is another way to get a cofiltered indexing category out of OpCov(X).
Observe that if one has two different refinements of open covers α, β : U→ V, then
the two induced maps on Čech nerves Č(U) → Č(V) are simplicially homotopic.
So the two maps π0Č(U) → π0Č(V) are also simplicially homotopic, and hence
they induce the same map on singular cohomology. This says that the diagram
Hn(π0Č) : OpCov(X) → Ab factors through the category OpCovh(X) in which
we have identified all maps with the same domain and codomain. The category
OpCovh(X) is easily seen to be cofiltered. If D : OpCov(X) → sSet is a system
having the property that any two refinements induce simplicially homotopic maps,
we could define

Hn(D) = colim
i∈OpCovh(X)op

Hn(Di).

This is another way of getting ourselves a filtered colimit to work with. But this
approach does not work for generalized cohomology theories, for reasons we will
discuss more in Section 6.
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3.12. Generalized Čech complexes. It is very useful to realize that the
Čech complex of an open cover can be generalized, so that one gets a Čech complex
for any map. Specifically, for any map f : E → X the associated Čech complex
Č(f) is the simplicial space

[n] 7→ E ×X E ×X · · · ×X E (n+ 1 factors).

So the nth level is the space of all tuples (e0, . . . , en+1) such that all the ei’s map
to the same point in X . The face and degeneracy operators correspond to omitting
and repeating entries, as usual.

The map f : E → X gives an augmentation Č(f)→ X , and so we again get a
map hocolim Č(f)→ X .

If {Uα} is an open cover of X , then the Čech complex for the map
∐

α∈A

Uα → X

is precisely the simplicial space Č(U) defined in Section 2.

Theorem 3.13. Let f : E → X be locally split, in the sense that each point
x ∈ X has an open neighborhood U such that f |f−1(U) : f

−1(U)→ U has a splitting.

Then hocolim Č(f)→ X is a weak equivalence.

The above result is a special case of [DI, Prop. 4.10].

Example 3.14. Let G be a discrete topological group, and suppose that we
have a free G-space E which is contractible. Let B = E/G, and let π : E → B
be the quotient map. This is a covering space, and so is certainly locally split. A
point in E ×B E ×B · · · ×B E is a tuple (e0, . . . , en) such that π(e0) = π(ej) for all
j. But since E has a free G-action and π is just the quotient map E → E/G, there
exist unique elements gi ∈ G such that ei = giei+1. Then we have

(e0, . . . , en) = (g0g1 . . . gn−1en , g1g2 . . . gn−1en , . . . , gn−1en , en).

Using this isomorphism E ×B E ×B · · · ×B E ∼= Gn × E, i.e. the one given by

(e0, . . . , en) 7→ (g0, . . . , gn−1, en),

we find that Č(π) is isomorphic as a simplicial space to the usual two-sided bar
construction B(∗, G,E). Theorem 3.13 therefore tells us that |B(∗, G,E)| ≃ B.

Now, the projection E → ∗ gives us a map of simplicial spaces B(∗, G,E) →
B(∗, G, ∗) which is an objectwise weak equivalence since E is contractible. So
|B(∗, G, ∗)| ≃ B, and in this way we recover the usual bar construction for the
space BG.

Example 3.15. Just as in the previous example, if G is a discrete group and
p : E → B is a principalG-bundle then the simplicial space Č(p) is isomorphic to the
two-sided bar construction B(∗, G,E). So Theorem 3.13 shows that |B(∗, G,E)| ≃
B. If EG denotes the groupoid with one object and endomorphism group G, then
the G-action on E map be interpreted as giving a functor EG→ Top (sending the
unique object to E). The simplicial replacement of this diagram is just B(∗, G,E),
and so |B(∗, G,E)| is a model for the homotopy orbit space EhG. Thus we find
that EhG ≃ B.
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Remark 3.16. Theorem 3.13 is certainly not the most general result one can
prove along these lines. In fact, it is almost true that hocolim Č(f) → X is a
weak equivalence whenever f is surjective. There are counterexamples, but they
are somewhat exotic. I do not know a nice description of all the maps for which the
result holds, and the locally split case will suffice for our purposes in this chapter.
In fact, we mostly care about the case where f is a covering space, although we do
need something slightly more general:

Definition 3.17. An étale cover of a topological space X consists of an open
cover {Ui} together with a covering space fi : Ei → Ui for each i.

Often we will consider the associated map f :
∐

i Ei → X. An étale covering

map is any map of this form. Note that such maps are locally split.

One can define a map of étale covers in an analagous way to how we defined
maps of open covers. It is perhaps easier to phrase things in terms of étale covering
maps, in which case a map from E1 → X to E2 → X is simply a map E1 → E2

making the evident triangle commute.
Let us introduce the following categories. OpCov(X) is the category whose

objects are the (indexed) open covers of X , where the maps are refinements.
CovSp(X) is the category of covering spaces of X , where maps are just maps
of covering spaces. And finally, EtCov(X) is the category of étale covering maps,
where the morphisms are as defined above. Note that there are inclusions

OpCov(X) →֒ EtCov(X) ←֓ CovSp(X)

and that these are inclusions of full subcategories.
Consider the functor π0Č : EtCov(X) → sSet, sending p : E → X to π0Č(p).

We think of this diagram as another system of combinatorial approximations to X .
It generalizes the previous system obtained from Čech complexes of open covers,
in the sense that the latter can be obtained by restricting our étale system to the
subcategory OpCov(X) →֒ EtCov(X).

3.18. Exercises. We close this section with some exercises, the results of
which will be needed later.

Exercise 3.19. Define a rigid étale cover of a topological space X to be an
ordinary étale cover E → X together with a non-continuous section X → E (that
is, a section in the category of sets). A map of rigid étale covers is just a map of
étale covers which is compatible with the sections.

Prove that the category RgdEtCov(X) of rigid étale covers of X is cofiltered.
[First define the notion of an ultra-rigid étale cover. Prove that every rigid étale
cover can be refined by an ultra-rigid cover, and that if U is an ultra-rigid cover
and V is a rigid étale cover then there is at most one map U→ V.]

Exercise 3.20 (Cofinality).

(a) A functor α : I → J between filtered categories is called cofinal if the following
two conditions are satisfied:
(1) For every j ∈ J , there exists an i ∈ I and a map α(i)→ j.
(2) For every j ∈ J , i ∈ I, and two maps j ⇉ α(i), there exists a map i → i′

such that the two composites j ⇉ α(a)→ α(i′) are equal.
Under these hypotheses, prove that if D : J → Ab is a functor then the natural
map colimI(Dα)→ colimJ D is an isomorphism.
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(b) A functor α : I → J between cofiltered categories is called final if the func-
tor αop : Iop → Jop is cofinal. Prove that the functor RgdOpCov(X) →
RgdEtCov(X) is final.

Remark 3.21. If X : J → sSet is a pro-space and α : I → J is final, then the
pro-spaces X and Xα behave the same “in the limit”. So the point of the above
exercise is that the information in the pro-spaces π0Č : RgdOpCov(X)→ sSet and
π0Č : RgdOpCov(X)→ sSet is really the same.

The following exercises concern manipulations with Čech complexes.

Exercise 3.22. Let p : E → Y and f : X → Y be any maps. Let E′ = X×Y E,
and p′ : E′ → X be the evident projection. There is a map of simplicial spaces
Č(p′)→ Č(p).

(a) Prove that Č(p′) is isomorphic to the simplicial space obtained by applying the
functor X ×Y (−) to Č(p).

(b) Now assume that E → Y is a fibration, X and Y are path connected, and that
X → Y is surjective on π1. Prove that π0Č(p′) → π0Č(p) is an isomorphism
of simplicial sets.

Exercise 3.23. Let G be a group andH ⊆ G a normal subgroup. The covering
space EG ×G (G/H) → BG is a principal G/H-bundle, and is therefore classified
by a map BG→ B(G/H). Use the previous exercise to show that

Č
(
EG×G (G/H)→ BG

)
∼= B(∗, G/H, ∗).

Exercise 3.24. Let G be a discrete group. For any left G-set S, let πG
0 (S)

denote the set of G-orbits G/S (the notation comes from thinking of the elements of
an orbit as being ’connected’). If S is a left G-set then the Čech complex Č(S → ∗)
is a simplicial G-set; we’ll denote this just by Č(S), as usual.

(a) Prove that π0(E) ∼= πG
0 (S), and then use this to show that the two simplicial

sets π0Č(EG×G S → BG) and πG
0 (Č(S)) are isomorphic.

(b) Let Z[Č(S)] be the associated chain complex of Z[G]-modules obtained by
taking the alternating sum of the face maps. Prove that Z[Č(S)] is acyclic,
and H0(Z[Č(S)]) ∼= Z as a Z[G]-module.

(c) Show that Hn(Č(EG ×G S → BG)) is the nth cohomology of the cochain
complex HomZ[G](Z[Č(S)],Z).

(d) If S = G/H where H is a normal subgroup, prove that S × S (regarded as a
left G-set) is a disjoint union of copies of G/H . Conclude that Z[Č(S)] is a free
resolution of Z by free Z[G/H ]-modules, and deduce that H∗(Č(EG×G S)) ∼=
H∗(G/H ; Z). Compare with the result of Exercise 3.23.
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4. Cohomology via étale coverings

In this section we return to algebraic geometry and continue our attempt to
attach homotopy invariants to algebraic varieties.

4.1. A motivating example. We begin with a basic example which demon-
strates most of the important points. We will treat this example in some detail.

Let our ground field be k = C and let X = A1 − 0. For any n ≥ 0, the map
ρn : A1− 0→ A1− 0 given by z 7→ zn is a covering space. Let En = A1− 0, so that
we can write ρn as a map En → X .

Consider the simplicial scheme Č(ρn) given by [k] 7→ En ×X · · · ×X En (k + 1
factors). Let π0Č(ρn) denote the simplicial set obtained by replacing the scheme
in each dimension by the set of connected components of its underlying topological
space. Our aim is to investigate these simplicial sets and see whether they give
reasonable approximations to the homotopy type of X (which is a circle).

First, we claim that En×XEn is a disjoint union of n copies of En. To see this,
note that En → X is spec of the map of rings k[z, z−1] → k[z1/n, z−1/n]. That is,
if we let R = k[z, z−1] then we are looking at R→ R[x]/(xn − z). Then En ×X En

is spec of the ring

R[x]/(xn − z)⊗R R[x]/(xn − z) ∼= k[z1/n, z−1/n, x]/(xn − z).
Let ζ be a primitive nth root of unity in k. Then in k[z1/n, z−1/n, x], the polynomial
xn − z splits as

xn − z = (x− z1/n)(x− ζz1/n)(x− ζ2z1/n) · · · (x− ζn−1z1/n).

So the coordinate ring of En ×X En splits as

k[z1/n, z−1/n]× k[z1/n, z−1/n]× · · · × k[z1/n, z−1/n]

(n factors). This says precisely that En ×X En is isomorphic to a disjoint union
of n copies of En. One then finds that En ×X En ×X En is a disjoint union of n2

copies of En, and so on.
So in dimension k, the simplicial scheme Č(ρn) contains a disjoint union of nk

copies of En. Either by brute force inspection or by comparison with Exercise 3.23
(in the case G = Z and H = (n)), one now sees that

π0Č(ρn) ∼= BZ/n.

Is this a space a reasonable ‘approximation’ to S1? The homotopy groups are
somewhat similar, but the cohomology groups are very different. Let’s recall how
to compute the latter.

Let A be an abelian group. The cohomology groups H∗(BZ/n;A) are isomor-
phic to the groups Ext∗Z[Z/n](Z, A) where Z[Z/n] is the group ring and both Z and

A have the trivial module structure. Let G = Z/n and write g for some choice
of generator. Then the group ring Z[G] is the ring Z[g]/(gn − 1). The module
Z = Z[G]/(g − 1) has free resolution given by

· · · // Z[G]
N // Z[G]

1−g // Z[G]
N // Z[G]

1−g // Z[G] // Z

where N = 1 + g + g2 + · · ·+ gn−1. It follows that the Ext groups we want are the
cohomology of the complex

· · · 0←− A n←− A 0←− A.
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So in particular,

H∗(BZ/n; Z) ∼=





Z if ∗ = 0

0 if ∗ > 0 is odd

Z/n if ∗ > 0 is even,

and

H∗(BZ/n; Z/k) ∼=
{

Z/k if ∗ = 0

Z/(n, k) otherwise.

So in some sense, this is bad news. The cohomology groups of Č(ρn) don’t
look anything like the cohomology groups of S1. The way out of this is to not look
at Č(ρn) just on its own like this. We need to look at these spaces for all possible
values of n, and look at them all together.

Consider the two covering spaces En → X and Ek → X . We know that there
will be a map En → Ek making the evident triangle commute if and only if k divides
n, in which case there are k such maps. If we require in addition that En → Ek

send 1 to 1, then there is only one such map: the map A1 − 0 → A1 − 0 given by
z 7→ zn/k.

Let I be the poset of non-negative integers, where n is less than k if and only
if n divides k. Regard I as a category in the usual way. The we have a functor
I → Sch/X sending n to En → X , and if n divides k then the map n → k is sent
to the unique map of covering spaces En → Ek sending 1 to 1. By applying the
Čech construction to each En → X , we obtain a functor πČE : I → sSet given by
n 7→ π0Č(ρn).

We would like to think of π0ČE as a ‘system of approximations’ to the homo-
topy type of X . Any individual object πČEn is not a particularly good approxima-
tion, but maybe things are better if we take them altogether. Returning to the issue
of cohomology, we now need to compute the maps H∗(πČEk;A)→ H∗(πČEn;A)
when k divides n. Note that this is the map H∗(BZ/k;A)→ H∗(BZ/n;A).

Exercise 4.2. Let Z/nr→ Z/n be the usual projection. We need to compute
the map H∗(BZ/n;A) → H∗(BZ/nr;A). Write G = Z/nr and H = Z/n. So we
are interested in the map of Ext-groups

φ : Ext∗Z[H](Z, A)→ Ext∗Z[G](Z, A)

induced by the map of rings π : Z[G] → Z[H ]. Note that this is a quotient map,
and Z[H ] may be identified with Z[G]/(gn − 1).

To compute the map φ we construct free resolutions for Z over Z[G] and Z[H ]
and then get a comparison map of resolutions:

· · · // Z[G]
Nnr //

φ4

��

Z[G]
1−g //

φ3

��

Z[G]
Nnr //

φ2

��

Z[G]
1−g //

φ1

��

Z[G] //

φ0

��

Z

· · · // Z[H ]
Nn // Z[H ]

1−g // Z[H ]
Nn // Z[H ]

1−g // Z[H ] // Z

Here Nnr = 1 + g + g2 + · · ·+ gnr−1, Nn = 1 + g+ g2 + · · ·+ gn−1, and everything
in the diagram is a map of Z[G]-modules.

It is easy to see that we may take φ0 = φ1 = π. The map φ2 must sent 1 to
1 + gn + g2n + · · ·+ g(r−1)n, and we may take φ3 to be the same map. Proceeding
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inductively, we find

φ4 = φ5 =
[
1 + gn + g2n + · · ·+ g(r−1)n

]2
,

and so on.
Finally, we have that for each k ≥ 0 the induced maps φ2k : Ext2k

Z[G](Z, A) →
Ext2k

Z[H](Z, A) and φ2k+1 : Ext2k+1
Z[G] (Z, A) → Ext2k+1

Z[H] (Z, A) are both multiplication

by rk. The exercise is to check all the details here.

Finally, consider the groups colimIop H∗(πČEn;A) for various abelian groups
A. Here are some things we can conclude, based on the computations from the
above exercise:

colim
Iop

H∗(πČEn; Z/le) ∼=
{

Z/le if ∗ ∈ {0, 1}
0 otherwise.

Also,

colim
Iop

H∗(πČEn; Z) ∼=





Z if ∗ ∈ {0, 1},
Q/Z if ∗ = 2,

0 otherwise.

With integral coefficients, these colimit groups still do not look very much like
the cohomology of S1. But with finite coefficients things look right!

Exercise 4.3. Prove that if A is any abelian group then

colim
Iop

H∗(πČEn;A) ∼=





A if ∗ = 0

tors(A) ∼= Tor1(A,Q/Z) if ∗ = 1

A⊗Q/Z if ∗ = 2

0 otherwise.

Conclude that colimIop H∗(πČEn;A) is isomorphic to H∗(S1;A) whenever A is a
torsion group.

4.4. First attempts at generalizations. Start with a variety X over C.
Choose a point x ∈ X(C), and consider the category I(X,x) whose objects are pairs
(E → X, e) where E → X is a map of varieties which is topologically a covering
space, and e ∈ E(C) is in the preimage of x. A map (E → X, e) → (E′ → X, e′)
is a map of varieties over X sending e to e′. It is easy to see that there is at most
one map between any two objects.

We obtain a functor πČE : I(X,x) → sSet sending E → X to π0Č(E), and we
consider the groups

colim
Iop

(X,x)

H∗(πČ(Ei);A)(4.5)

for various abelian groups A. In the case X = A1 − 0, we found that these agreed
with the groups H∗(X ;A) when A is a torsion group. Does this work for other
varieties?

A moment’s thought shows that it cannot possibly work for most varieties. For
instance, take X = CP 1. Then because X is simply connected, it does not have any
nontrivial covering spaces at all! The groups in (4.5) are therefore zero, whereas
X ≃ S2 and has a non-vanishing H2. In fact, it is not hard to convince oneself
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that this naive procedure cannot work for any variety which is not topologically a
K(G, 1).

To get a better procedure what we must do is mix Zariski covers with the
covering space approach. For instance, consider X = CP 1. Take the standard
Zariski cover {U0, U1} where U0

∼= U1
∼= A1 and U0 ∩U1

∼= A1 − 0. Each of U0, U1,
and U0∩U1 is topologically a K(G, 1) (for the first two G is even trivial), and so we
can hope to reconstruct their cohomology groups by looking at algebraic covering
spaces. At the same time, we know that topologically X is the homotopy colimit
of

U0 ← U0 ∩ U1 → U1

and so we can reconstruct the cohomology groups of X from those of U0, U1, and
U0 ∩ U1 via the Mayer-Vietoris sequence.

The above procedure is a bit clunky at the moment, but eventually we’ll develop
a slick way of organizing everything into one package. But to summarize, here are
the main points we have discussed so far:

(1) Given an algebraic variety X over C, choose (if we can) a Zariski cover {Uα} so
that all the iterated intersections are ‘good’, in the sense that our construction
from (4.5) gives their correct cohomology groups with torsion coefficients. This
will at least require that the iterated intersections are topologically K(G, 1)’s.

(2) For each Uσ = Uσ1 ∩ · · · ∩ Uσk
, consider the Čech nerves for all the algebraic

covering spaces of Uσ and take the colimit of their cohomology groups.
(3) Use the cohomology groups in (2) to reconstruct—or approximate—the coho-

mology of X via the Čech complex of the {Uα} cover.

Čech complexes appear twice in the above procedure, first for the covering
spaces of the Uσ’s and then for the Zariski cover {Uα}. Some of the clunkiness
of the above description will be removed by putting Zariski covers and covering
spaces together into one notion—the so-called étale covers . Then the procedure
will only have one set of Čech complexes, and one colimit. This is only a matter of
bookeeping.

A more serious matter is the question of whether we can really choose ‘small
enough’ Zariski open sets Uα so that the construction from (4.5) gives the correct
cohomology groups. We will investigate this next.

4.6. Artin neighborhoods. We start by observing that varieties X which
have the homotopy type of a K(G, 1) are quite plentiful. Every smooth, projective
algebraic curve is topologically a genus g torus, and such things are all K(G, 1)’s.
If the curve is smooth and non-projective then it came from a smooth projective
curve by removing finitely-many points—and such things have the homotopy type
of a wedge of circles. So every smooth algebraic curve is a K(G, 1). In fact, below
we will prove the following result:

Theorem 4.7. Let X be a complex algebraic variety, x ∈ X be a smooth point,
and let U be a Zariski open set containing x. Then there is another Zariski open
set V satisfying x ∈ V ⊆ U and such that V is topologically a K(G, 1). Moreover,
by choosing V appropriately one can arrange that G is freely constructible in the
sense of the following definition.

Definition 4.8. A group will be called freely constructible if it belongs to
the smallest class of groups S satisfying the following two properties:
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(i) S contains the trivial group;
(ii) If 1→ F → G→ Q→ 1 is an exact sequence where Q belongs to S and F is

a finitely-generated free group, then G belongs to S.

A complete proof of the above theorem will be given later in the exercises. For
now we will be content with a vague sketch, to demonstrate the basic ideas:

Sketch of proof of Theorem 4.7. The proof is by induction on the di-
mension of X . The dimension zero case is trivial. For the dimension one case, U
is topologically a genus g torus minus a finite set of points, and therefore it is a
K(G, 1). By removing at least one point from the g-torus, we can ensure that G is
free (and hence freely constructible).

Now suppose that the dimension of X is n, where n ≥ 2. By replacing X with
a Zariski neighborhood of x, we can assume X is affine. We can then embed X in
some CPN and take the closure, so we may in fact assume X is a closed subvariety
of CPN .

A linear map f : CN+1 → Cn induces a map F : CPN − P(ker f) → CPn by
sending [x] to [f(x)]. A generically chosen f will be a surjection, and each fiber of
F will be a copy of CPN−n+1.

Let π denote the composite

X − (X ∩ P(ker f)) →֒ CPN − P(ker f)→ CPn.

Again for generically chosen f , P(ker f) will be a copy of CPN−n. A generic CPN−n

in CPN will meet X in exactly d points, where d is the degree of X . By choosing
the linear map generically we can assume that x is not one of these d points, and
that x is not a critical point of π.

Let Xsm be the open subvariety of X consisting of the smooth points. Let
X ′ = Xsm − (Xsm ∩ P(ker f)), and U ′ = U ∩X ′. The fibers of π|X′ : X ′ → CPn

are generically one-dimensional (they are obtained by intersecting X ′ with the
CPN−n+1’s forming the fibers of F ). So locally around π(x) the fibers look like
a genus g torus minus a finite number of points. We can then choose a Zariski
neighborhood π(x) ∈ J ⊆ CPn such that the number of points being removed from
the torus is the same in all fibers. By induction, there exists a Zariski neighborhood
J ′ ⊆ J of π(x) that is topologically a K(G, 1), with G freely constructible. Let
U ′′ = π−1(J ′).

We have arranged things so that π : U ′′ → J ′ is a fibration where the fibers
are K(H, 1)’s, with H free. As J ′ is a K(G, 1), it follows from the long exact
homotopy sequence that U ′′ is a K(G′, 1) where G′ sits in the short exact sequence
1→ H → G′ → G→ 1. Since G is freely constructible, so is G′, and this completes
the proof. �

The first moral of the theorem is that varieties which are K(G, 1)’s are very
common, which is good news. Assuming X is such a variety, we will now investigate
whether the cohomology groups can be reconstructed by the method of (4.5). We
need to understand how the algebraic coverings spaces of X compare to the topo-
logical covering spaces. The case A1 − 0 turns out to be somewhat typical. There
we found that every finite covering space of X could be realized as an algebraic
variety, but that the infinite covering space could not. Here is the general theorem:

Theorem 4.9 (Riemann existence theorem). Let X be a complex algebraic
variety. If E → X is a map of algebraic varieties which is topologically a covering



4. COHOMOLOGY VIA ÉTALE COVERINGS 103

space, then the fibers are finite. Conversely, any finite covering space of X can be
realized by a map of algebraic varieties.

This was proven by Riemann in the case where X is a smooth projective curve.
The general case follows from results by Grauert and Remmert [GR], with the aid
of Serre’s GAGA [Se5]. We will not recount the proof here, as it is very technical;
but see [SGA4, XI,Theorem 4.3].

Here is a slightly better version of the theorem, also from [SGA4]:

Theorem 4.10 (Riemann existence theorem, improved version). Let X be a
complex algebraic variety. Let Covalg(X) be the category whose objects are maps of
varieties E → X which topologically are covering spaces; the morphisms are maps of
varieties over X. Let Covfinite(X) be the category of all topological covering spaces
of X with finite fibers. Then there is an evident functor Covalg(X)→ Covfinite(X),
and this is an equivalence of categories.

Sketch of proof. The previous result is the statement that the functor is
surjective on isomorphism classes. It remains to show that the functor induces
bijections on hom-sets.

It is clear that the induced maps of hom-sets are injective, because a map
of complex varieties Z → W is determined by the induced map Z(C) → W (C).
Ref????

The proof of surjectivity hinges on the following topological fact. Suppose that
E → B and F → B are two covering spaces of a connected space B. Then maps
of covering spaces E → F are in bijective correspondence with components of the
pullback E×B F , with each map corresponding to its graph. Keeping this in mind,
uppose E1 → X and E2 → X are maps of varieties which topologically are covering
spaces, and suppose f : E1(C) → E2(C) is a covering map. Then f determines a
component of the pullback E1(C) ×X(C) E2(C). Let Y denote the corresponding
component of the scheme E1 ×X E2. The projection Y → E1 is an isomorphism,
so by composing the inverse with the projection Y → E2 one obtains an algebraic
map E1 → E2 which is readily checked to induce the map f . �

So our category I(X,x) may be identified with the category of pointed topological
covers of finite degree. It will be useful to recall the fundamental theorems of
covering space theory.

Exercise 4.11. Let Z be a space which is semi-locally simply connected (e.g.
a CW-complex). Let z ∈ Z and let G = π1(Z, z). Then there is an equivalence
of categories between the category of covering spaces of Z and the category of left
G-sets. The equivalence sends a covering space p : E → Z to the fiber p−1(z),

equipped with the monodromy action of G. If Z̃ is the universal covering space of
Z then it has an evident right G-action, and the equivalence sends a left G-set S
to the covering space Z̃ ×G S.

The equivalence of categories restricts to an equivalence between the full sub-
category of connected covering spaces and the full subcategory of transitive G-sets.

Finally, if we consider the category of pointed , connected covering spaces (a
connected covering space equipped with a choice of point in the pre-image of z)
then this is equivalent to the category of pointed, transitive G-sets. This latter
category is equivalent to the opposite of the category of subgroups of G, with maps
the inclusions, by sending a pointed G-set (S, s) to the stabilizer of s. The functor
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in the other direction sends the subgroup H to the transitive G-set G/H , pointed
by the coset eH (where e is the identity of G).

So when X is a K(G, 1), the category of pointed, connected covering spaces
is equivalent to the opposite of the category of subgroups of G. The subgroup H
corresponds to the covering space EG ×G (G/H) → BG, and the finite covering
spaces correspond to the subgroups of finite index.

Let Sf (G) be the category of subgroups of G of finite index. Let Snf (G) be the
category of normal subgroups of finite index. We first remark that Snf (G) is final in
Sf (G). This is because if H is any subgroup of finite index then Hn =

⋂
g∈G gHg

−1

is a finite intersection of subgroups of finite index, and hence also has finite index.
But Hn is clearly normal, and so every subgroup of finite index contains a normal
subgroup of finite index.

When G is normal, the covering space EG×G(G/H)→ BG is a principal G/H-
bundle. So by Exercise 3.23 we have that π0Č(EG ×G G/H) is the simplicial set
B(∗, G/H, ∗) (the usual bar construction for G/H). We are therefore now reduced
to considering the following question. If A is a torsion abelian group, will the map

colim
H∈Snf (G)

H∗(G/H ;A)→ H∗(G;A)(4.12)

necessarily be an isomorphism?
It is not hard to find examples where this doesn’t hold. For instance, take

G = Q/Z. Every map from Q/Z into a finite group is the zero map, and so
Q/Z does not have any nontrivial subgroups of finite index. Thus, the colimit in
(4.12) is the zero group. However, the Serre spectral sequence for the fibration
BZ → BQ → B(Q/Z) shows immediately that H2(Q/Z; Z/p) ∼= Z/p (using that
the cohomology of BQ with finite coefficients all vanishes).

Another example is the infinite alternating group A∞. This is a simple group,
and so has no nontrivial normal subgroups at all. The colimit group in (4.12) is
again zero. But with some trouble one can see that H∗(A∞; Z/p) is nonzero for
all primes p (it is related to the cohomology of the infinite symmetric group Σ∞,
which was computed by Nakaoka).

So (4.12) is not always an isomorphism. But it is an isomorphism in some
important examples, as we now explain.

Definition 4.13. A group G will be called good for profinite completion

if (4.12) is an isomorphism for all torsion abelian groups A.

Theorem 4.14. The following groups are good for profinite completion:

(a) Finitely-generated free groups.
(b) The fundamental group of a genus g-torus, for any g.
(c) Any group which is freely constructible in the sense of Definition 4.8.

The proof of this result will be sketched in the exercises below.

Exercise 4.15. Let G be a group and J ⊆ G be a subgroup. For each (left)

J-module M , define a G-module IndJ
G(M) in the following way. As a set, IndJ

G(M)
consists of all J-equivariant maps G→M ; the abelian group structure is given by
pointwise addition. Finally, if g ∈ G and f ∈ IndJ

G(M), let gf be the map G→M
given by (gf)(u) = f(ug).

(a) Check that IndJ
G(M) is indeed a left G-module.
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(b) Verify that one has adjoint functors

U : G−Mod ⇄ J −Mod : IndJ
G

where U is the forgetful functor and is the left adjont in the pair.
(c) Deduce natural isomorphisms ExtpG−Mod(Z, IndJ

G(M)) ∼= ExtpJ−Mod(Z,M) for
all J-modules M and all p ≥ 0. That is, deduce the existence of isomorphisms

Hp(G, IndJ
G(M)) ∼= Hp(J,M).

(d) Prove the following statements:

(i) If J has finite index in G and M is a finite J-module, then IndJ
G(M) is a

finite G-module.
(ii) If M is a G-module then the unit of the adjunction M → IndH

G (UM) is
an injection.

(iii) If H ⊆ G is a normal subgroup and M is a G-module on which H acts

trivially, then IndH
G (UM) = Inde

G/H(M).

(iv) Inde
G(A) is an injective G-module, for any abelian group A.

The following two exercises are based on [Se3, Section 2.6 exercises].

Exercise 4.16. Let G be a group.

(a) IfM is a finiteG-module, the group action may be regarded as a homomorphism
G → Aut(M). Deduce that M is the restriction of a finite G/K-module for
some normal subgroup K ⊆ G of finite index.

(b) Consider the induced map

ψn : colim
J⊆G

Hn(G/J ;M)→ Hn(G;M)

where the subgroups J range over all normal subgroups of G which are con-
tained in K. (Note that the exact choice of K does not matter, as a different
choice will lead to a colimit which is canonically isomorphic to the one above.)
Consider the following properties of G:
(An) For every finite module M , ψp is bijective for all 0 ≤ p ≤ n and injective

for p = n+ 1.
(Bn) For every finite module M and all 0 ≤ p ≤ n, ψp is surjective.
(Cn) For every finite module M and every x ∈ Hp(G;M), 1 ≤ p ≤ n, there

exists a finite module M ⊆ M ′ such that the image of x in Hp(G;M ′)
vanishes.

(Dn) For every finite module M and every x ∈ Hp(G;M), 1 ≤ p ≤ n, there
exists a subgroup J ⊆ G of finite index such that the image of x in
Hp(J ;M) vanishes.

Prove that properties An, . . . , Dn are equivalent as follows.
First, argue that An ⇒ Bn ⇒ Dn ⇒ Cn ⇒ Bn (the latter by induction on p).
Now prove that Cn ⇒ An by the following method. First, the surjectivity of the
ψp has already been argued as part of Cn ⇒ Bn. So assume x ∈ Hp(G/J ;M)
is such that the image of x in Hp(G;M) is zero. Consider the exact sequence

0 → M → IndJ
G(M) → M ′ → 0. Argue that x is the image of an element

x1 ∈ Hp−1(G/J ;M ′). Let x2 be the image of x1 in Hp−1(G;M ′), and argue

that x2 is the image of an x3 ∈ Hp−1(G, IndJ
G(M)). Now use property Cn and

induction.
(c) Note that C0 (and D0) are trivially true. Prove that A1, . . . , D1 are also true.
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(d) If G satisfies An, . . . , Dn and J ⊆ G has finite index, prove that J also satisfies
An, . . . , Dn.

Exercise 4.17. In this exercise we prove Theorem 4.14. Let us say that a
group satisfies A∞ if it satisfies An for all n.

(a) First observe if F is a free group then Hp(F ;M) = 0 for all F -modules M and
all p > 1. So free groups satisfy A∞ by Exercise 4.16(c).

(b) Let C be the genus g torus. Prove that for any n ∈ N there exists a finite
covering space C′ → C such that the induced map H2(C) → H2(C′) sends a
generator to n times a generator. Deduce that for any finite abelian groupA and
x ∈ H2(C;A), there exists a finite covering space C′ → C with the property
that x maps to zero in H2(C′;A). Using that C = BG, where G = π1(C),
deduce that G is good for profinite completion (this might involve rehashing
some of the arguments from Exercise 4.16).

(c) Finally, we tackle the main case of interest and show that any freely con-
structible group satisfies A∞. The case of free groups was dealt with in (a),
so assume 1 → N → E → G → 1 is a short exact sequence where N is a
finitely-generated free group and G satisfies A∞. We will prove that E satisfies
Dn, for all n.

For any E-module M there is a spectral sequence of the form

Ep,q
2 = Hp(G;Hq(F ;M))⇒ Hp+q(E;M),

and since F is free this spectral sequence is concentrated along the lines q = 0
and q = 1. Write Hp(E;M) = F0 ⊇ F1 ⊇ F2 ⊇ · · · for the filtration that
the spectral sequence is converging to. Then the form of the spectral sequence
shows that Fk = 0 for k ≥ 2, and we have natural isomorphisms

α : Hp(G;H0(F ;M))/ im d2

∼=−→ F0/F1

and
β : kerd2|Hp−1(G;H1(F ;M))

∼=−→ F1.

Let x ∈ Hp(E;M) where p ≥ 2. Choose a class y1 ∈ Hp(G;H0(F ;M)) which
maps to (the coset of) x under α. Since G satisfies A∞, there is a finite index
subgroup G0 ⊆ G such that the image of y1 in Hp(G0;H

0(F ;M)) vanishes. Let
E0 be the preimage of G0 under E → G, and consider the sequence 1→ F →
E0 → G0 → 1. Using the naturality of the spectral sequence, we find that the
image of x in Hp(E0;M) lives in F1. Let y2 ∈ Hp−1(G0;H

1(F ;M)) be a class
which maps, under β, to this image of x. Since G0 satisfies A∞, there is a finite
index subgroup G1 ⊆ G0 such that y2 maps to zero in Hp−1(G0;H

1(F ;M)).
A little work completes the argument.
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5. Étale maps in algebraic geometry

There are several different ways of saying what an étale map is, all of which
are equivalent. We start with the ones which are most easily checked in practice.

Let k be a field and let R be a k-algebra. A standard étale map is a map of
k-algebras of the form R→ R[x1, . . . , xn]/(f1, . . . , fn) where ????

Definition 5.1. A map of k-schemes f : X → Y is étale if it is locally of
finite type and if the following condition is satisfied. For every point y ∈ Y and
every x ∈ X such that f(x) = y, there exist affine open sets x ∈ U and y ∈ V such
that f(V ) ⊆ U and the map f |V : V → U is isomorphic to spec of a standard étale
map of rings.

5.2. Rigid covers in algebraic geometry. The idea behind the definition
of rigid covers in algebraic geometry is very similar to what we did in topology: a
rigid étale cover is an étale cover E → X together with a choice, for every point
in X , of a lifting into E. The only subtlety lies in our interpretation of the word
“point”.

Definition 5.3. Let X be a scheme. A rigid étale cover of X is an étale
cover E → X together with, for every point x ∈ X, a map χx : Spec k(x) → E
making the following diagram commute:

E

��
Spec k(x) //

χx

44iiiiiiiiiiiiiiiiiiii

Spec k(x) // X.

A map of rigid étale covers E → F is a map of étale covers such that for each
x ∈ X the diagram

E // F

Spec k(x).

ddIIIIIIIII

::uuuuuuuuu

is commutative.

Theorem 5.4. Let X be a scheme. The category of rigid étale covers of X is
cofiltered.
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6. Systems of approximations

In the past few sections we have dealt with various diagrams I → sSet, for
different indexing categories I. We have been regarding such things as systems of
combinatorial approximations to a homotopy type. So far, however, we have not
formally addressed the issue of how to manipulate such systems. That is our goal
in the present section.

6.1. Recovering topological invariants. Let X be a space. Suppose one
has a pro-space Z : I → Top together with a collection of compatible maps Zi → X .
Assume that for each i in I and each n ≥ 0, there is a j in I and a map j → i such
that the map Zj → X is an n-equivalence. Intuitively, this says that as one moves
“outward” in the pro-space the spaces Zi become better and better approximations
to X . Under these conditions, what topological invariants of X can be recovered
from the system Z?

The first thing to notice is that we can certainly recover the cohomology of
X . Indeed, since an (n+1)-equivalence induces isomorphisms on Hn(−), it follows
readily that the canonical maps

Hn(X ;A)→ colim
i

Hn(Zi;A)

are isomorphisms for any abelian group A. The situation is different for other
cohomology theories, however. The group K0(X) can usually not be recovered
from just knowing the n-type of X , no matter how large we take n to be. So the
map

K0(X)→ colim
i

K0(Zi)

will generally not be an isomorphism. It is still possible to recover K-theoretic
information about X from the pro-space Z, but it requires a more complicated
technique. We describe this next.

Suppose W is a space which sits inside a homotopy fiber sequence

E1 →W → E2

where E1 and E2 are two Eilenberg-MacLane spaces. For any space Y there is an
induced homotopy fiber sequence F (Y,E1) → F (Y,W ) → F (Y,E2) and therefore
a long exact sequence of homotopy groups. Consider the following diagram:

· · · // πkF (X,E1) //

��

πkF (X,W ) //

��

πkF (X,E2)

��

// · · ·

· · · // colim
i

πkF (Zi, E1) // colim
i

πkF (Zi,W ) // colim
i

πkF (Zi, E2) // · · ·

Both the horizontal rows are exact, where for the bottom row we are using the
fact that our indexing category is filtered. By what we have already remarked, the
vertical maps where the codomain is either E1 or E2 are isomorphisms. So by the
five-lemma, we find that

πkF (X,W )→ colim
i

πkF (Zi,W )

is an isomorphism as well. By the evident induction, we see that this works when-
ever W has a finite Postnikov tower—or said differently, whenever W has only
finitely many nonzero homotopy groups.
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The conclusion of the above paragraph can be improved. If W has a finite
Postnikov tower, we saw that the homotopy groups πkF (X,W ) can be recovered
from the groups πkF (Zi,W ). Even more is true, though: the homotopy type of
F (X,W ) can be recovered from the homotopy types of F (Zi,W ): the map

F (X,W )→ hocolim
i

F (Zi,W )

is a weak equivalence.
Now let W be an arbitrary space (for example, Z×BU), and let

· · · → P2W → P1W → P0W

be the Postnikov tower. By what has just been said, the maps

F (X,PnW )→ hocolim
i

F (Zi, PnW )

are weak equivalences for all n. But the groups in the domain and codomain both
form towers, and taking the homotopy limit of both sides therefore gives a weak
equivalence

holim
n

F (X,PnW )
∼−→ holim

n
[hocolim

i
F (Zi, PnW )].

Finally, we recall that holimn F (X,PnW ) ≃ F (X, holimn PnW ) ≃ F (X,W ). So
we have the formula

F (X,W ) ≃ holim
n

[hocolim
i

F (Zi, PnW )],

which holds for arbitrary spaces W .
So the conclusion is that when p ≥ 0 we can recover the groups K−p(X) from

the information in the pro-space Z, but it has to be done by a slightly complicated
formula:

K−p(X) = πpF (X,Z×BU) ∼= πp

(
holim

n

[
hocolim

i
F (Zi, Pn(Z×BU))

])
.

By using function spaces in the category of spectra, we can do something similar
for any connective cohomology theory E: for all p ∈ Z,

Ep(X) ∼= π−p

(
holim

n

[
hocolim

i
F (Zi, PnE)

])
.

The assumption that E is connective is needed to ensure that the Postnikov sections
are finite extensions of Eilenberg-MacLane spectra.

6.2. Invariants of systems. We now adopt the following point of view. If
E is a connective cohomology theory and Z : I → sSet is a functor where I is
cofiltered, then we define the E-cohomology of Z by the formula

Ep(Z) = π−p

(
holim

n

[
hocolim

i
F (Zi, PnE)

])
.

This is obviously inspired by the considerations of the previous section.
Likewise, we can define a mapping space Map(Z,E) by

Map(Z,E) = holim
n

[
hocolim

i
F (Zi, PnE)

]
.

So Ep(Z) is just the −pth cohomology group of Map(Z,E).
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6.3. Comparing two systems. Let X : I → sSet be a functor, where I is
cofiltered. Let J be another cofiltered category, and let γ : J → I be a functor. We
wish to compare X to the composite functor Xγ.

6.4. The model category structure on pro-spaces.

7. Hypercovers and étale homotopy types

In this section we are finally able to define the étale realization of a scheme X .
This requires that we introduce one last piece of machinery, however.

7.1. Hypercovers. Let E → X be an étale cover, and consider the associated
Čech complex Č(E). Refining the cover to E′ → X also gives us a refinement
Č(E′)k → Č(E)k of the k-fold pullbacks (for any k)—however, it does not give us
an arbitrary refinement of Č(E)k. In other words, if U → Č(E)k is a cover then it
is not clear that there is a refinement E′ → E such that Č(E′)k → Č(E)k factors
through U . This is a slight obstacle in our overall plan, since our hope is for a
system of approximations in which the schemes at each level in some sense become
smaller and smaller.

The idea for fixing this problem leads at once to hypercovers . Essentially, these
are simplicial schemes which are similar to Čech complexes but where in each level
n one is allowed to further refine the n-fold pullbacks. To rigorously describe this
we need a little machinery.

Recall that the cosimplicial indexing category ∆ is the category whose objects
are the sets [n] and whose morphisms are the monotone increasing maps. Let ∆+

be the augmented simplicial category, obtained by adding the empytset as an
inital object. A functor X : ∆op

+ → C is called an augmented simplcial object in C,
and X(∅) is called the augmentation. It is useful to also use the notation [−1] for
the initial object of ∆+.

For any simplicial set K, regardK as an augmented simplicial object by setting
the augmentation to be a single point.

Let C be a category with limits. If X ∈ C and S is a set, then let XS denote
a product of copies of X indexed by the set S. For U : ∆op

+ → C be an augmented
simplicial object. For any K ∈ sSet, define

hom+(K,U) = eq

[
∏

n≥−1

UKn
n ⇉

∏

[k] 7→[m]

UKk
m

]
.

It is easy to check that there are natural isomorphisms hom+(∆n, U) ∼= Un.
The object hom+(∂∆n, U) is denoted MnU and called the nth (augmented)
mathching object of U . The map

Un = hom+(∆n, U)→ hom+(∂∆n, U) = MnU

is called the nth matching map of U .

Exercise 7.2. Let E → X be a map of schemes, and consider the simplicial
scheme Č(E) which we regard as augmented by X . Then the maps Č(E)n →
MnČ(E) are isomorphisms, for all n. Conversely, if U → X is an augmented
simplicial scheme such that Un → MnU is an isomorphism for every n, then U is
isomorphic to the Čech complex of U0 → X .
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Definition 7.3. Let X be a scheme. A hypercover of X is an augmented
simplicial scheme U• → X such that for each n the augmented matching map
Un →MnU is an étale cover.

This, then, is the difference between hypercovers and Čech complexes. In the
latter, each level n is precisely equal to the nth matching object (which intuitively
consists of the n-fold intersections, or n-fold pullbacks, of the previous levels). In
a hypercover one starts with this nth matching object but then is allowed to take
a cover of it, and this may be done at each level.

Let EtHyp(X) denote the category of étale hypercovers of X . A map of hyper-
covers is simply a map of augmented simplicial schemes which is the identity on the
augmentation. Just like the category of étale covers of X , the category EtHyp(X)
is not cofiltered. To obtain a cofiltered category we need to use rigid covers.

Definition 7.4. A rigid hypercover of a scheme X is a hypercover U → X
together with the structure of rigid cover on every matching map Un → MnU . A
map of rigid hypercovers is a map of hypercovers which is compatible with the rigid
structure in the evident way.

Exercise 7.5.

(a) An ultra-rigid hypercover is a rigid hypercover U → X such that each matching
map Un →MnU are ultra-rigid. If U → X is ultra-rigid and V → X is any rigid
hypercover, check that there is at most one map of rigid hypercovers U → X .

(b) Prove that the category RgdEtHyp(X) is cofiltered, and that the forgetful
functor RgdEtHyp(X)→ EtHyp(X) is final.

7.6. Étale homotopy types (finally). We can finally define the étale ho-
motopy type of a scheme X . The phrase “étale homotopy type” is somewhat
misleading, though, as it suggests an object in a homotopy category. As always, it
is more convenient to work with a corresponding object in some underlying model
category—we will call this object the “étale realization” of X .

Recall the following categories:

• The category EtCov(X) of étale covers of X .
• The category RgdEtCov(X) of rigid étale covers of X .
• The category EtHyp(X) of étale hypercovers of X .
• The category RgdEtHyp(X) of rigid étale hypercovers of X .

The second and fourth of these categories are cofiltered.

Definition 7.7. The étale realization of a scheme X is the functor

EtX : RgdEtHyp(X)→ sSet

which sends a rigid étale hypercover U∗ → X to the simplicial set π0(U∗). We
regard EtX as an object in the category pro-sSet.

Recall that pro-sSet has a model category structure defined by Isaksen. The
image of EtX in Ho (pro-sSet) is the étale homotopy type of X .

Remark 7.8. In early work on this subject, the correct model category struc-
ture on pro-sSet was not available. Instead of using Ho (pro-sSet), sources such as
[AM] defined the étale homotopy type to be an object in pro −Ho (sSet). This is
the image of our étale homotopy type under a canonical functor forgetful functor
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Ho (pro-sSet)→ pro−Ho (sSet). In modern times it seems to be much more advan-
tageous to work with Ho (pro-sSet), as here one has the underlying model structure
on pro-sSet available as a useful tool.

8. Étale cohomology and étale K-theory



CHAPTER 5

Sheaves and homotopy theory

113





CHAPTER 6

Topological interlude: Lefschetz pencils

The theory of Lefschetz pencils—and the closely related concept of Lefschetz
fibrations—is based on a simple idea. Let f : E → B be a smooth map between
real manifolds, and assume that the fibers are compact. As b varies inside of B,
the fibers f−1(b) mostly have the same homotopy type: the homotopy type only
changes when b is a critical value of f . Compactness of the fibers is important
here; just consider the map (S1 × I)\{(1, 1

2 )} → I which projects onto the second
coordinate! Now let us assume that f has only finitely many critical points, and
that we understand the local behavior of f around each of these points: for instance,
let us say that within a neighborhood of each critical point we can understand how
the homotopy type of the fibers is changing. Then by local-to-global principles in
homotopy theory (like the Mayer-Vietoris sequence) we can understand how the
homotopy type of E is built from that of B.

In modern times the main application of these ideas is in Morse theory. There
one studies maps f : E → R having isolated and non-degenerate critical points—
the so-called Morse functions. This means that in local coordinates around each
critical point the function looks quadratic. Over the real numbers one precisely
knows the different isomorphism classes of quadratic forms, and this reduces the
local behavior to a discrete collection of possibilities. In Morse theory one learns
that each critical point of f results in a change to the topology of E equivalent to
attaching a cell, and the dimension of this cell is equal to the index of f near this
critical point.

Lefschetz theory is very similar to Morse theory, and was developed around
the same time. But here one looks at holomorphic maps of complex manifolds
f : E → C (or maps E → CP 1, which is almost the same), again with isolated
and non-degenerate critical points. Over the complex numbers there is only one
isomorphism class of nondegenerate quadratic form, namely the sum-of-squares
mapping (z1, . . . , zn) 7→ z2

1 + · · · + z2
n. This map has a single critical point at the

origin, and it is not hard to analyze how the homotopy type of the fibers changes
here—in fact it again amounts to adding a cell, this time always of dimension n.
One can then use this information to understand the homotopy type of E.

The map f in the above paragraph is called a “Lefschetz fibration”. What we
have described so far amounts to a fairly simple idea. There is something subtle
in the theory of Lefschetz fibrations that does not surface for Morse functions,
however. A punctured disk in C has fundamental group Z, and so there is a
potential “twisting” in the fibers of f as they move around a critical point. This is
called monodromy, and it influences the topology of E. The most difficult material
in this chapter centers around such monodromy calculations. For Morse functions
f : E → R there is no analog to this, as one cannot move around the critical values.
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Now suppose given an algebraic variety X →֒ CPn. Lefschetz’s idea was to
study hyperplane sections X ∩H for various hyperplanes H in CPn. One readily
sees that for most hyperplanes the intersections X ∩H are homeomorphic to each
other, but when H becomes tangent to X the homotopy type of X ∩ H changes.
This information can be organized so that the intersections X ∩H are the fibers of
a map E → CP 1, with the base space CP 1 parameterizing the hyperplanes being
used. By carefully chosing these hyperplanes one can ensure that E → CP 1 has
isolated and non-degenerate critical points, and then one is in the domain of ideas
discussed above.

These methods allowed Lefschetz to develop a surprising amount of knowledge
about the homology and cohomology groups of smooth, projective algebraic vari-
eties. In Chapter 2 we met the Weak Lefschetz Theorem and the Hard Lefschetz
Theorem, and in the present chapter we will describe how these tie in to the study
of Lefschetz pencils. We will see that the proof of the Weak Lefschetz theorem
is fairly easy and geometric. It seems that Lefschetz thought he had a geometric
proof of the Hard Lefschetz Theorem, but in modern times no one has been able to
understand this. The only known proofs of Hard Lefschetz are via Hodge theory
or via Deligne’s proof of the Riemann Hypothesis over finite fields! Obtaining a
purely geometric proof of this theorem remains a tantalizing problem.

The best modern source for learning about Lefschetz’s methods is a wonderful
paper by Lamotke [La]. Our treatment follows this paper very closely. Lamotke’s
paper is itself much influenced by the work in [SGA7b].

1. Background

Before jumping into the full theory of Lefschetz pencils, it is useful to look
carefully at some examples in the lowest dimension. This will serve to establish
some intuition, and will also set the context of what was known before Lefschetz’s
work.

Let X be a projective algebraic curve over C (or equivalently, a compact Rie-
mann surface). There is an old technique for understanding the homotopy type
of X by examining a branched cover p : X → CP 1; this is a map that is almost a
covering space, except that at certain “ramified points” the sheets of the cover come
together. Said differently, the fibers of the map p mostly have the same cardinal-
ity, but there are certain points in CP 1 where the cardinality drops (as the sheets
meet). By examining the branching points in the cover, one can determine the Euler
characteristic—and hence the genus—of X . In this section we review this classical
technique and explain how it can be approached using pencils of hyperplanes.

1.1. A motivating example. Let X →֒ CP 2 be the projective variety de-
fined by the equation x3 + y3 + z3 = 0. One readily checks that this is smooth,
so topologically it is a compact 2-manifold. Which one is it? It will certainly be
orientable, as X has a complex structure. So X is either S2 or a genus g torus, and
we can decide which by computing the Euler characteristic.

To do this, consider the map p : X → CP 1 defined by p([x : y : z]) = [x : y].
Note that this is well-defined, as X does not contain the point [0 : 0 : 1]. The reader
will note that p is almost a covering space, but not quite: most fibers of p have
exactly three points, but some have fewer. Without making any formal definitions,
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let us say that p is an example of a branched cover of degree 3. The set

B = {q ∈ CP 1 | p−1(q) has fewer than 3 points}
is called the branch locus of p. A point x ∈ X is an unramified point if p is a
local homeomorphism near x, and otherwise x is called a ramified point. Finally,
the ramification set R of the branched cover is the set of ramified points in X .
Note that R is not necessarily equal to p−1(B), although in most cases we consider
this will be true.

Example 1.2. A main example to consider here is that of P : C→ C given by
P (z) = zn. This is a branched cover of degree n, the branch locus is {0}, and the
ramification set is also {0}.

In our example of p : X → CP 1, the branch locus is

B =
{
[x : y] |x3 + y3 = 0

}
=
{

[1 : −1], [1 : −ζ], [1 : −ζ̄]
}

where ζ is a primitive cube root of 1. The fiber over each of these points is a
singleton, and so the ramification set also consists of three points.

Let U1, U2, and U3 be small Euclidean neighborhoods around each of the
ramification points r1, r2, and r3. Let U be their (disjoint) union. Then

χ(X) = χ(X −R) + χ(X,X −R) = χ(X −R) + χ(U,U −R) (excision)

= χ(X −R) +
∑

i

χ(Ui, Ui − {ri})

= χ(X −R) +
∑

i

[
χ(Ui)− χ(Ui − {ri})

]

= χ(X −R) +
∑

i

[
1− χ(Ui − {ri})

]
.

But the restriction of p to X −R→ CP 1−B is a covering space of degree 3, so we
have that

χ(X −R) = 3 · χ(CP 1 −B) = 3 · χ(S2 − {3 points}) = 3 · −1 = −3.

Write bi = p(ri). Then the restriction of p to Ui − {ri} → p(Ui) − bi is likewise a
covering space, so we have

χ(Ui − {ri}) = 3 · χ(p(Ui)− bi) = 3 · 0 = 0.

Substituting into the formula for χ(X), we find that

χ(X) = −3 + 3 = 0.

Hence, topologically X is a torus.
The reader might wonder exactly how a torus can map to S2 as a degree 3

branched cover. At first this is hard to picture! The following diagram demonstrates
such a mapping, where the torus is modelled by a square with opposite edges
identified as usual (although these identification are not indicated in the picture):
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−→
x

y

z

x

z

xy

yx

z

x

12

2

3 3

To understand what is being shown here, first imagine making two adjoining
incisions in S2, with cut points x, y, and z as shown. If you unfold S2 along these
incisions you get a quadrilateral, and we imagine marking the edges to indicate how
they should be glued back together. We now draw lines on the torus to break it
up into three regions, marked 1, 2, and 3 in the diagram, and we label the edges of
these regions to match the labelling on our quadrilateral. Choose orientations on
the torus and the sphere, and map each region of the torus into our sphere in such
a way that the arrows match up and the orientations match up (this is easiest to
see in the case of region 1, whereas for the other regions one has to mentally remove
their pieces from the picture and rearrange them to look like quadrilaterals). This
gives us a mapping from T → S2 which is a 3-fold cover over all points except for
x, y, and z, and the preimage of each of these points is a singleton (shown in the
diagram of the torus as labelled by the same letter).

1.3. The homotopy type of curves in CP 2. Now, with a little modification
one can apply the above method to determine the homotopy type of every smooth
hypersurface in CP 2. First let us generalize the Euler characteristic argument for
branched covers.

Theorem 1.4 (Riemann–Hurwitz Formula). Let p : X → Y be a d-fold
branched cover, where Y is an n-manifold and the branch locus B is finite. Then

χ(X) = d[χ(Y )−#B] + #p−1(B).

Proof. For each point x ∈ p−1(B) we can associate a “local degree” ex by
looking at small neighborhoods V around x and taking the degree of the covering
space V − {x} → p(V ) − p(x). In fact this definition works for any x ∈ X . It is
clear that ∑

x∈p−1(y)

ex = d

for each y ∈ Y .
Now let x1, . . . , xt be the points in p−1(B), and choose small disjoint Euclidean

neighborhoods Ui around the xi’s such that p|Ui−{xi} is a covering space. Let ei be
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the local degree of the cover near xi. Arguing as before, we find that

χ(X) = χ(X − p−1(B)) + χ(X,X − p−1(B))

= d · χ(Y −B) +
∑

i

χ(Ui, Ui − {xi})

= d · [χ(Y ) + (−1)n−1#B] +
∑

i

[χ(Ui)− χ(Ui − {xi})]

= d · [χ(Y ) + (−1)n−1#B] + #p−1(B)−
∑

i

ei · χ(p(Ui)− p(xi))

= d · [χ(Y ) + (−1)n−1#B] + #p−1(B)−
∑

i

ei · χ(Sn−1)

= d · [χ(Y ) + (−1)n−1#B] + #p−1(B)−
∑

i

ei[1 + (−1)n−1]

= d · [χ(Y ) + (−1)n−1#B] + #p−1(B)− d ·#B · [1 + (−1)n−1]

= d[χ(Y )−#B] + #p−1(B).

�

Suppose X →֒ CP 2 is a smooth subvariety defined by the homogeneous degree
d equation f(x, y, z) = 0. We can assume that f has a term of the form azd where
a ∈ C− {0}, since if not we could perform a linear change of variables in x, y, and
z to assure that this is the case. The presence of the azd term guarantees that X
does not contain the point [0 : 0 : 1], and so we can once again consider the map
p : X → CP 1 given by [x : y : z] 7→ [x : y]. This is a degree d branched cover.

To use the Riemann-Hurwitz formula to compute χ(X), we need an under-
standing of the branch locus. That is, for what values of [x : y] will there be fewer
than d roots of the equation f(x, y, z) = 0? Said differently, for fixed values of x
and y the equation f(x, y, z) = 0 becomes a polynomial equation of degree d in the
single variable z. The presence of repeated roots for this polynomial is governed by
an algebraic expression in the coefficients called the discriminant . We pause here
to review this piece of algebra.

1.5. Review of the discriminant. A quadratic polynomial p(x) = ax2 +
bx + c has a repeated root if and only if b2 − 4ac = 0. In other words, there is a
polynomial expression in the coefficents—called the discriminant—whose vanishing
is equivalent to p(x) having a repeated root. It turns out that this is true for poly-
nomials of arbitrary degree, although the actual form of the discriminant becomes
quite complicated.

Let p(x) = (x − r1)(x − r2) · · · (x − rd) where both x and the ri’s are indeter-
minants. That is, think of p(x) as an element of k[x, r1, . . . , rd]. Then

p(x) = xd + σ1(r)x
d−1 + · · ·+ σd−1(r)x + σd(r)

where the σi’s are the elementary symmetric functions in d variables. Consider the
expression

D =
∏

i<j

(ri − rj)2 ∈ k[r1, . . . , rd],

and note that it is homogeneous in the ri’s of degree 2 ·
(
d
2

)
= d(d − 1). This

expression is invariant under permutation of the ri’s, hence there exists a unique
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polynomial ∆d(w1, . . . , wd) such that

D = ∆d(σ1(r), . . . , σd(r)).

The polynomial ∆d(w1, . . . , wd) is called the universal discriminant polynomial
for degree d. If wi is regarded as having degree i, then ∆d is homogeneous of degree
d(d− 1).

Suppose given a polynomial p(x) = a(xd + b1x
d−1 + · · · + bd−1x + bd), where

a, bi ∈ k. We define it’s discriminant to be a2d−2∆d(b1, b2, . . . , bd). It is evident
that p(x) has a repeated root if and only if the discriminant is zero.

Example 1.6. When d = 2 then we have D = [r1− r2]2 = (r1 + r2)
2− 4r1r2 =

σ2
1 − 4σ2. So ∆2(w1, w2) = w2

1 − 4w2. Given a polynomial p(x) = ax2 + bx+ c, we
write it as p(x) = a[x2 + b

ax+ c
a ] and then it’s discriminant is

a2∆
( b
a
,
c

a

)
= a2

[ b2
a2
− 4

c

a

]
= b2 − 4ac.

Example 1.7. For a cubic polynomial p(x) = ax3+bx2+cx+d, the discriminant
is b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd. For quartic polynomials the discriminant
is too unpleasant to write down!

1.8. Back to the main argument. Recall our basic setup. We are consid-
ering a smooth subvariety X →֒ CP 2 defined by a homogeneous degree d equation
f(x, y, z) = 0. We can assume that f has a term of the form azd where a ∈ C−{0},
and so we have the map p : X → CP 1 given by [x : y : z] 7→ [x : y]. This is a degree
d branched cover.

Now write f(x, y, z) = azd + f1(x, y)z
d−1 + f2(x, y)z

d−2 + · · ·+ fd(x, y) where
each fi(x, y) is homogeneous of degree 1. Then the branch locus of p is the vanishing
set of the polynomial

∆d(f1(x, y), . . . , fd(x, y))(1.9)

which is a degree d(d − 1) homogeneous polynomial in x and y. Generically (i.e.,
for all choices of f outside a set of measure zero), the vanishing set will be exactly
d(d− 1) points in CP 1.

To understand the set p−1(B), we again think generically. Given a point [x : y]
in B, the fiber of p over [x : y] will be in bijective correspondence with the roots z
of the equation

azd + f1(x, y)z
d−1 + f2(x, y)z

d−2 + · · ·+ fd(x, y) = 0.

There are at most d of these roots, and the fact that [x : y] lies in B is equivalent to
saying that there are fewer then d roots. For generic choices of f we can guarantee
that there will be exactly d− 1 roots for each [x : y], and so p−1(B) will consist of
#B · (d − 1) = d(d − 1)2 elements. The Riemann–Hurwitz formula then gives us
that

χ(X) = d · [χ(CP 1)− d(d− 1)] + d(d− 1)2 = 2d− d2(d− 1) + d(d − 1)2

= 2d− d(d− 1)

= 3d− d2.

If we want the genus of X , it is

g =
2− χ(X)

2
=
d2 − 3d+ 2

2
=

(
d− 1

2

)
.
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To analyze the non-generic case we need more sophisticated algebra, and we
only sketch this. If (1.9) has fewer than d(d− 1) roots, this coincides exactly with
the case where the fibers over some points in the branch locus have fewer than d−1
points. A double root of (1.9) means the corresponding fiber has d − 2 points, a
triple root means d − 3 points, and so on. This says that if the branch locus has
d(d− 1)− r elements, then the number of elements in p−1(B) is

[d(d− 1)− r] · (d− 1)− r.
This number comes about by thinking of each branch point as generically having
d− 1 points in its fiber, and then reducing the number by 1 for each repeated root
of (1.9). By the Riemann–Hurwitz formula we find that

χ(X) = d[2− [d(d− 1)− r]] + [d(d− 1)− r](d − 1)− r = 3d− d2,

which is the same result as before. This coincidence may seem surprising, as it has
come out almost accidentally from our work. Later we will see how we could have
guessed this in the first place. In any case, we have proven the following:

Theorem 1.10. A smooth hypersurface of degree d in CP 2 is homeomorphic
to a torus of genus

(
d−1
2

)
.

1.11. Another perspective. For each x, y ∈ C except x = y = 0, let
fx,y : CP 1 →֒ CP 2 be the linear embedding

[u : v] 7→ [xu : yu : v]

and let Hx,y be its image. Note that Hx,y only depends on the point [x : y] in
CP 1, and it can also be described as the hyperplane defined by the linear equation
yz1 − xz2 = 0 (where CP 2 has homogeneous coordinates z1, z2, z3). It is easy to
check that:

• Each Hx,y contains the point [0 : 0 : 1];
• For [x : y] 6= [u : v] one has Hx,y ∩Hu,v = {[0 : 0 : 1]}.
• Except for [0 : 0 : 1], each point of CP 2 lies on a unique Ht for some
t = [x : y] ∈ CP 1.

The collection of all the Hx,y’s is called a pencil of hyperplanes, and the point
A = [0 : 0 : 1] is called its axis. One should imagine the following schematic
picture:

CP 2

X

Hr
Hs

HtA

Provided that X does not contain [0 : 0 : 1], we can define a map p : X → CP 1

by sending each point x to the unique t such that x lies in Ht. In terms of a formula,
this is exactly [x : y : z] 7→ [x : y]. The fibers of this map are just the intersections
X ∩Ht, for different values of t ∈ CP 1. For most values of t the set X ∩Ht consists
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of exactly d points—these are the t where X intersects Ht transversally. For some
values of t the projective line Ht is tangent to X , and when this happens there will
be fewer than d points of intersection, depending on the degree of tangency.

Of course there is nothing special about the point [0 : 0 : 1] here. If X did
happen to contain this point, we could choose another point (not on X) to be the
axis of our pencil. This would result in a different formula for the map p, but the
geometry is exactly the same. In fact we could even perform a linear change of
coordinates in CP 2 so that our axis became [0 : 0 : 1] again. Recall that this is
precisely what we did back in Section 1.3, when we arranged for the polynomial f
to have a zd term.

The following fact is not really necessary for the arguments we have done in
this section, but we state it here because it will be important later and because it is
easy to understand at this simple stage. We have quite a bit of freedom in chosing
our pencil of hyperplanes, and by moving it around we can make the “degenerate”
intersections X ∩Ht as nice as possible. We cannot remove tangencies altogether,
but it turns out that we can eliminate degree 3 tangencies and higher by moving
the pencil slightly. That is to say,

Fact: One can always find a pencil of hyperplanes such that each Ht intersects X
at points with multiplicity at most 2—in other words, at points where either
the intersection is transverse or where there is a simple tangency.

Pencils with the above property are called “Lefschetz pencils,” as we will learn
in subsequent sections. The above fact is certainly not obvious, but hopefully it
seems believable. The following picture suggests the basic idea (despite depicting
the situation over R, and in the affine plane rather than projective space). On
the left, X is the graph of the curve y = x3 and we are looking at the pencil of
horizontal hyperplanes, which are just lines in this case. The line y = 0 intersects
X in a triple tangency. But by moving the pencil slightly—in this case, by rotating
the lines of the pencil—one obtains a new pencil where the tangencies are now
ordinary double points. In fact almost all pencils are Lefschetz pencils; tangencies
of order higher than 2 only occur on a set of measure zero.

Summary: In this section we have described a method for understanding the ho-
motopy type of smooth algebraic curves in CP 2 which involves mapping them to
CP 1 and counting the points in the various fibers of this map. One can think of
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the map to CP 1 as arising from slicing the curve by the hyperplanes in a chosen
pencil for CP 2. This technique is probably as old as topology itself, going back at
least to Poincaré.

Lefschetz had the idea of extending this technique to higher dimensional va-
rieties. If a smooth variety maps to CP 1, the fibers are algebraic varieties of one
dimension less. Most of the fibers are homeomorphic to each other, but there are
some degenerate fibers where the topology changes. Lefschetz’s program was to use
these ideas to inductively study the topology of algebraic varieties. We will develop
this program over the course of the next few sections.

2. The topology of the sum-of-squares mapping

Let Sn be the set of points x = (x0, . . . , xn) ∈ Rn+1 such that x2
0 + · · ·+x2

n = 1.
This is the usual topological n-sphere. But now consider the space

Sn
C = {(z0, . . . , zn) ∈ Cn+1 | z2

0 + · · ·+ z2
n = 1}.

Note that Sn
C contains Sn as its real-valued points, but also that Sn

C is not compact:
in fact, for any complex numbers z0, . . . , zn−1 there exists at least one (and usually
two) points of Sn

C having these numbers as its first n components. The first result
we need is:

Proposition 2.1. The inclusion Sn →֒ Sn
C admits a deformation retraction.

Proof. If we write zj = xj + iyj, then the equation
∑
z2

j = 1 is equivalent to

the two equations
∑
x2

j −
∑
y2

j = 1 and
∑
xjyj = 0. That is, a point of Sn

C may

be thought of as a pair of vectors (x,y) ∈ Rn × Rn such that |x|2 = |y|2 + 1 and
x · y = 0. Under this model, Sn →֒ Sn

C is simply the subpace of pairs where y = 0.
The retraction Sn

C → Sn is given by (x,y) 7→ x

||x|| (note that x is nonzero, as

its norm is at least 1). The deformation is given by linearly shrinking y to zero
while at the same time scaling x appropriately—we leave it to the reader to write
down appropriate formulas. �

Corollary 2.2. For any nonzero complex number w, the affine variety
{(z0, . . . , zn) ∈ Cn | ∑ z2

j = w} is homotopy equivalent to Sn.

Proof. Choose a λ such that λ2 = w. Then (z0, . . . , zn) 7→ (z0/λ, . . . , zn/λ)
gives a homeomorphism betwen our variety and Sn

C . �

Next consider the map f : Cn → C given by f(z1, . . . , zn) = z2
1 + · · ·+ z2

n. For
each w ∈ C let Fw denote the fiber f−1(w). By Corollary 2.2 we have that when w
is nonzero the fiber Fw has the homotopy type of Sn−1. In fact it is easy to show
that the restriction f−1(C − 0) → C − 0 is a fiber bundle. The fiber F0 certainly
does not have the homotopy type of Sn−1, though—in fact this fiber is readily seen
to be contractible using the homotopy (z, t) 7→ tz.

The map f is the archetype for what will be called a Lefschetz fibration, and
we can already see the main point about them. As the generic fiber degenerates
into the special fiber, the (n − 2)-homotopy type is not changing. That is to say,
the homotopy groups of the generic and special fibers agree in dimensions less than
n − 1. Moreover, in dimension n − 1 we can also say exactly what is happening:
a certain homotopy element of the generic fiber vanishes inside the special fiber.
Readers who know some Morse Theory should see the parallels here: the special
fiber is obtained from the nearby fibers by attaching an n-cell.
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2.3. Vanishing cycles. For w ∈ C − 0 the fiber Fw has the homotopy type
of an (n− 1)-sphere. A generator of Hn−1(Fw) is called a vanishing cycle for f .
The terminology comes from the fact that as Fw approaches the singular fiber (that
is, as w approaches 0) the cycle shrinks and then ultimately vanishes. We can see
this very precisely as follows. For w ∈ C, let

√
w denote a chosen square root of w.

Let jw : Sn−1 → Fw be the map

(r1, . . . , rn) 7→ (r1
√
w, . . . , rn

√
w).

We have seen that this is a homotopy equivalence, so applying (jw)∗ to a chosen
generator for Hn−1(S

n−1) yields a vanishing cycle. If we let w approach 0 along
some path, choosing

√
w continuously as we go, we see that the image of jw shrinks

in radius until we get to w = 0 where the radius vanishes and the image is just a
point.

Let E = Cn and B = C, so that our sum-of-squares map is f : E → B. Another
way to express the “vanishing” aspect of the vanishing cycles is to say that if
i : Fw →֒ E is the inclusion then the map i∗ : H∗(Fw)→ H∗(E) takes the vanishing
cycles to zero. Now, in the present example this is a silly statement because E
is contractible—but later we will see contexts where this phrasing takes on more
significance. We mention it here only to tie it in with the previous paragraph. If
we let w approach zero by the straight-line path then we can write down a map
Dn → E via the formula

t(r1, . . . , rn) 7→ (r1
√
tw, . . . , rn

√
tw)

for (r1, . . . , rn) ∈ Sn−1. This is called the thimble associated to the vanishing
cycle jw. If one draws a picture then the image of Dn looks like a cone, or a (very
pointy) thimble. The thimble gives an explicit null-homotopy for the composition
Sn−1 → Fw →֒ E, or an explicit way of seeing that the vanishing cycle becomes a
boundary inside of E.

The vanishing cycle and thimble together give maps

Sn−1 δ //
��

��

Fw
��

��
Dn ∆ // E

and therefore a map Hn(Dn, Sn−1) → Hn(E,Fw). One readily checks that this is
an isomorphism. The domain is Z, and a choice of orientation for Dn determines a
generator.

2.4. The bounded sum-of-square mapping. Fix a real number r > 0. Let
Sn(r) be the usual sphere of radius r in Rn+1, i.e., the set of points (x0, . . . , xn) ∈
Rn+1 such that

∑
x2

j = r2.

Now fix ρ > 0 and ǫ > 0 such that ρ < ǫ2. Let

E =
{
(z1, . . . , zn) ∈ Cn

∣∣∣
∑

j

|zj |2 ≤ ǫ2 and |z2
1 + · · ·+ z2

n| ≤ ρ
}

and
B =

{
w ∈ C

∣∣ |w| ≤ ρ
}
.

The sum-of-squares map f : Cn → C restricts to a map E → B, and we will
refer to this restriction as a bounded sum-of-squares mapping. We’ll denote
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this restriction as g. Note that the condition ρ < ǫ2 simply guarantees that g is
surjective. The map g behaves in almost exactly the same way as the original map
f . Namely,

(1) For every nonzero w ∈ B, the fiber g−1(w) is homotopy equivalent to an (n−1)-

sphere. Indeed, when w ∈ R the inclusion Sn−1(
√
|w|) →֒ g−1(w) is a defor-

mation retraction, and all the other fibers (except w = 0) are homeomorphic
to this one.

(2) The fiber g−1(0) is contractible.
(3) The restriction E − g−1(0)→ B − 0 is a fiber bundle.

These facts are easy exercises that we will leave to the reader.
One thing that is different about the present setting is that the fibers are now

manifolds with boundary. As the fibers over all nonzero points are homemorphic,
let us for convenience just consider the fiber over ρ:

Fρ =
{
(z1, . . . , zn)

∣∣ ∑ |zj|2 ≤ ǫ2 and
∑

z2
j = ρ

}

∂Fρ =
{
(z1, . . . , zn)

∣∣ ∑ |zj|2 = ǫ2 and
∑

z2
j = ρ

}
.

Writing each zj as xj + iyj, we have

∂Fρ
∼=
{
(x, y)

∣∣ x, y ∈ Rn, |x|2 + |y|2 = ǫ2, |x|2 − |y|2 = ρ, x · y = 0
}

∼=
{
(x, y)

∣∣ x, y ∈ Rn, |x|2 =
ǫ2 + ρ

2
, |y|2 =

ǫ2 − ρ
2

, x · y = 0
}
.

From the last description one sees immediately that ∂Fρ is homeomorphic to the
Stiefel manifold V2(Rn) of 2-frames in Rn: to get the homeomorphism one only has
to normalize each of x and y.

In fact the same homeomorphisms show that the pair (Fρ, ∂Fρ) is homeomor-
phic to the pair (D(TSn−1), S(TSn−1)) consisting of the disk- and sphere-bundles
of the tangent bundle to Sn−1. In terms of explicit formulas one could write

D(TSn−1) =
{
(u, v)

∣∣ u, v ∈ Rn, |u| = 1, |v| ≤ 1, u · v = 0
}

S(TSn−1) =
{
(u, v)

∣∣ u, v ∈ Rn, |u| = 1, |v| = 1, u · v = 0
}
.

We will need to know some basic facts about the homology groups of ∂Fρ and
their relationship to the homology groups of Fρ. These things turn out to depend
on the parity of n. The necessary facts are summarized below:

(1) Projection onto the first vector p : V2(Rn) → Sn−1 is a fiber bundle with fiber
Sn−2. The Serre spectral sequence gives H0(V2(Rn)) = H2n−3(V2(Rn)) = Z
and a single differential Z→ Z whose kernel and cokernel are Hn−1 and Hn−2,
respectively. All other homology groups are zero.

(2) When n ≥ 4 there is a CW-complex structure for V2(Rn) in which the n-
skeleton is homeomorphic to RP

n−1/RP
n−3 (see [MT, Corollary 1 of Chapter

5]). Consequently, the cellular chain complex for V2(Rn) has

0 // Z
1+(−1)n−1

// Z // 0

in dimensions n through n− 3.
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(3) When n ≥ 3 the groups H∗(V2(Rn)) in dimensions n− 1 and n− 2 are equal to

n even n odd

n− 1 Z 0

n− 2 Z Z/2

The case n = 3 is included in the table, but does not follow from (2)—it must be
dealt with separately. Here V2(R3) ∼= RP

3, the homeomorphism coming about
in two steps. First, V2(R3) ∼= SO(3) using the cross-product: the 2-frame (v, w)
maps to the matrix with columns v, w, and v×w. Next, a classical construction
associates to a vector v ∈ D3 the rotation of R3 about the line R.v, through
an angle of π · |v| radians, directed counterclockwise from the point of view of
a person standing at the tip of v and looking towards the origin. This gives
a map D3 → SO(3) (well-defined even when v = 0) that identifies antipodal
points on the boundary and gives a homeomorphism RP

3 ∼= SO(3).
(4) We will also have need of the case n = 2. Here V2(R2) ∼= O(2) ∼= S1 ∐ S1. So

H0 = H1 = Z ⊕ Z in this case. Note that this may be regarded as continuing
the pattern given in (3) for n even: the homology of V2(Rn) has the ‘standard’
copies of Z in dimensions 0 and 2n− 3 and an ‘extra’ copy of Z in dimensions
n− 1 and n− 2. When n = 2 it just happens that these extra copies lie in the
same dimensions as the standard copies.

(5) Next we need to analyze the long exact homology sequence for the pair
(Fρ, ∂Fρ). Lefschetz Duality says Hi(Fρ, ∂Fρ) ∼= H2n−2−i(Fρ), and since
Fρ ≃ Sn−1 this group is nonzero only when i = n − 1. The long exact ho-
mology sequence is therefore mostly trivial except for the following piece:

0→ Hn−1(∂Fρ)→ Hn−1(Fρ)→ Hn−1(Fρ, ∂Fρ)→ Hn−2(∂Fρ)→ 0.

The middle two groups are both Z, and we have seen that the identity of the
other groups depends on the parity of n. When n is even the sequence is

0→ Z→ Z→ Z→ Z→ 0

which shows that the middle map is zero and the other two are isomorphisms.
When n is odd the sequence is

0→ 0→ Z→ Z→ Z/2→ 0

which shows that the middle map is multiplication by 2.
(6) There are two particular pieces of geometric information we need to extract

from the above sequences. First, when n is even the generator of Hn−1(Fρ)
may be deformed to the boundary. Second, when n is odd the generator of
Hn−1(Fρ, ∂Fρ; Q) (note the rational coefficients!) may be deformed so that it
lies entirely in Fρ.

2.5. Monodromy and variation. We will need to also do a monodromy
calculation, so let us review how this works. Suppose p : E → B is a fiber bundle,
and assume for convenience that the fiber F is a CW -complex. Then for every b ∈ B
one obtains a map of groups from π1(B, b) into the group SHE(Fb) ⊆ [Fb, Fb] of self-
homotopy equivalences of Fb. This is called the monodromy action of π1(B, b)
on Fb. As an immediate corollary one obtains an induced action of π1(B, b) on
topological invariants of Fb such as H∗(Fb) and H∗(Fb).
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To construct the monodromy action, let γ : I → B be a loop at b (so γ(0) =
γ(1) = b). Consider the digram

F × {0}
��

��

// E

p

��
F × I // B

where the lower horizontal map is the composite F × I → I
γ−→ B and the upper

horizontal map is the inclusion of the fiber over b. Since E → B is a fiber bundle,
the square has a lifting λ : F × I → E. Restricting λ to F × {1} gives a map
φ(γ) : Fb → Fb. One proves that

(1) A different choice of λ will not change the homotopy class of φ(γ);
(2) If γ′ and γ represent the same element of π1(B, b), then the maps φ(γ) and

φ(γ′) are homotopic; and
(3) φ(γ · β) is homotopic to φ(γ) ◦ φ(β).

Facts (1) and (2) are simple consequences of the homotopy lifting property for fiber
bundles, and fact (3) follows immediately from the construction. Together, these
facts tell us that we have a map of groups φ : π1(B, b)→ SHE(Fb).

Now we do a calculation. Let f : Cn → C be the sum-of-squares map, and let
Q = f−1(0). Then the restriction Cn − Q → C − 0 is a fiber bundle with fiber
Sn−1

C . Let 1 ∈ C − 0 be the basepoint. The fundamental group of the base is just
Z, and the cohomology of the fibers is interesting only in dimension n − 1. Our
monodromy action on cohomology is a homomorphism Z→ Aut(Hn−1(Sn

C)), which
will be determined by the image of a generator.

Proposition 2.6. Let γ be the generator t 7→ e2πit of π1(C − 0, 1). Then the
monodromy action of γ on Hn−1(Sn−1) is multiplication by (−1)n. The same is
true for the action on Hn−1(S

n−1).

Proof. Certainly the action is multiplication by 1 or −1, as these are the
only possible actions on the group Z. To determine the sign we just note that
λ : F × I → Cn − Q given by λ(z, t) = eπit · z provides a lift for the necessary
square. Putting t = 1 we obtain the map R : Sn−1

C → Sn−1
C given by (z1, . . . , zn) 7→

(−z1,−z2, . . . ,−zn). The commutative square

Sn−1
C

R // Sn−1
C

Sn−1

OO
∼
OO

R|Sn−1

// Sn−1

OO
∼
OO

allows us to identify the map R∗ on Hn−1(Sn−1
C ) with multiplication by (−1)n. �

It is possible to refine the monodromy action to a slightly different invariant.
To see this, let E → B be a fiber bundle, b ∈ B be a base point, and let F be
the fiber over b. Let γ : I → B be a loop based at b and consider again the lifting
square

F × {0} //
��

∼
��

E

��
F × I //

λ

;;

B
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where the bottom map is the composite F × I → I
σ−→ B. Then λ maps F × ∂I

into F , so we can write down the following composite:

Hk(F )
(−)×i // Hk+1(F × I, F × ∂I)

λ∗ // Hk+1(E,F ),

where i ∈ H1(I, ∂I) is the standard generator. The composite is called the exten-
sion map, or the variation map, associated to the path γ. We will denote it
by Varγ . The formula ∂(x × i) = (∂x) × i+ (−1)|x|x × ∂i immediately yields the
following connection between variation and monodromy, for x ∈ Hk(F ):

∂[Varγ(x)] = (−1)k · [γ.x− x].(2.7)

There is also a relative version of the variation. Suppose that E′ ⊆ E is a
sub-fiber bundle over B, and let F ′ ⊆ F be the fiber over b. Assume that ???? This
time consider the composite

Hn−1(F, ∂F
′)

(−)×i // Hn(F × I, (F ′ × I) ∪ (F × ∂I)) λ∗ // Hn(E,F ∪ E′)

Hn(E,F ).

∼=

OO

This is called the relative variation map, and will be denoted Varrel
σ . There is no

simple formula connecting the relative variation to monodromy, but the are some
evident commutative diagrams connecting the relative variation to the variation.

Now return to the bounded sum-of-squares map g : E → B. Let

E′ =
{

(z1, . . . , zn) ∈ Cn
∣∣∣
∑

j

|zj |2 = ǫ2 and |z2
1 + · · ·+ z2

n| ≤ ρ
}

and let

E′
sh =

{
(z1, . . . , zn) ∈ Cn

∣∣∣ ǫ
2

2
≤
∑

j

|zj |2 ≤ ǫ2 and |z2
1 + · · ·+ z2

n| ≤ ρ
}
.

We think of E′
sh as a small shell around E′; note that this shell deformation retracts

down onto E′. The map E′
sh → B is a fiber bundle, as the map g has no crtical

points inside of E′
sh. Since B is contractible, we have that E′

sh
∼= F ′

sh × B. This
homeomorphism can be chosen to carry E′ to (∂F ) × B. As a consequence, there
is a deformation retraction r : E′ → (∂F ). Later we will construct such a map
explicitly.

Let σ : I → B be a loop. Consider now the lifting square

(F × {0}) ∪ (∂F × I) //
��

∼
��

E

��
F × I //

λ

77

B

where the bottom map is the composite F × I → I
σ−→ B. Note that ∂(F × I) =

[(∂F )× I]∪ [F × ∂I], and λ carries the first piece into E′ and the second piece into
F . So λ maps ∂(F × I) into F ∪ E′. We can therefore write down the following
composite:

Hn−1(F, ∂F )
(−)×i // Hn(F × I, ∂(F × I)) λ∗ // Hn(E,F ∪ E′) Hn(E,F )

∼=oo
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where i is the canonical generator for H1(I, ∂I). This composite is called the

Proposition 2.8. Choose a diagram

Sn−1 δ //
��

��

F
��

��
Dn ∆ // E

consisting of a vanishing cycle δ and a corresponding thimble ∆. Let γ be the loop
in B given by t 7→ ρe2πit. Then

Varγ(x) = (−1)(
n
2)〈x, δ〉 ·∆

where 〈−,−〉 denotes the intersection product in H∗(F ) and x is any element of
Hn−1(F, ∂F ) ∼= Z.

The proof of this result is not so easy to understand. Note that Hn(E,F ) is
a copy of Z generated by ∆, and so Varγ(x) will necessarily be a multiple of ∆.
To prove the result one only has to calculate the coefficient, which for a chosen
generator of Hn−1(F, ∂F ) comes down to just determining a sign. It is a simple
matter to produce the lifting λ, and an analysis of this lift determines the sign,
but what the lift produces is really an element of Hn(E,F ∪E′)—whereas ∆ is an
element of Hn(E,F ). Although the groups are isomorphic, it takes some effort to
see how a given element of the former determines an element in the latter.

Because of the delicate nature of the proof, we postpone it until Section ????,
by which point the reader has a better idea why Proposition 2.8 is important to us.

3. Lefschetz pencils

If V is a complex vector space write P(V ) for the projective space of complex
lines in V . In this notation CPn = P(Cn+1). If the coordinates on Cn+1 are
z0, z1, . . . , zn, then a hyperplane in CPn is the vanishing set for a linear form
a0z0 + · · ·+ anzn, with ai ∈ C. Scaling the form does not change the hyperplane,
so the hyperplanes in CPn are parameterized by the points in the space

ĈPn = P
(
Hom(Cn+1,C)

)
.

A pencil of hyperplanes is defined to be a linear embedding H : CP 1 →֒ ĈPn,
and we use the notation

(t ∈ CP 1) 7→ (Ht ⊆ CPn).

The map H comes from an associated linear embedding H̃ : C2 →֒ Hom(Cn+1,C),

and our pencil sends t = [x : y] to Ht = P(ker H̃(x, y)). Let f1 and f2 be the image

under H̃ of the standard basis elements, so that we have H[x:y] = P(ker(xf1 +yf2)).
Write

W = (ker f1) ∩ (ker f2),

which is an (n− 1)-dimensional subspace of Cn+1. Note that P(W ) is contained in
Ht for every t. The space A = P(W ) is called the axis of the pencil.

The following facts are easy and left to the reader:

(1) Every point in CPn is contained in some Ht;
(2) Every point in CPn\A is contained in a unique Ht;
(3) If s 6= t then Hs ∩Ht = A.
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If X →֒ CPn is a subvariety then we would like to define a map X → CP 1 by
sending x ∈ X to the unique t such that x ∈ Ht. The fibers of such a map would be
the intersections X ∩Ht. The trouble, of course, is that if x ∈ A then the map will
not be well-defined: because then x belongs to Ht for every t! In the case n = 2 the
space A was just a point, and we could move the pencil so that A did not intersect
X . But in higher dimensions this does not work: the dimension of A is n− 2, and
so the intersection A∩X will be no more than codimension 2 in X . For dimX > 1
this means A ∩X will never be empty, no matter how we choose our pencil.

The way around this problem is to replace X by another space, one obtained
by blowing-up A. Define

Y = {(x, t) |x ∈ X and t ∈ CP 1 and x ∈ Ht} ⊆ X × CP 1.

Let p : Y → X be the projection onto the first factor, and f : Y → CP 1 be projec-
tion onto the second. Let X ′ = X ∩A and Y ′ = p−1(X ′). Note that

(1) Y \Y ′ → X\X ′ is a homeomorphsm;
(2) Y ′ = p−1(X ′) = X ′ × CP 1;
(3) For each t ∈ CP 1, the fiber f−1(t) is homeomorphic to X ∩Ht.

In this way we have obtained a map f : Y → CP 1 whose fibers are the hyperplane
sections of X . This will be our primary object of study.

Theorem 3.1. One can choose the embedding S →֒ ĈPn in such a way that

(a) The axis A of the pencil intersects X transversally;
(b) Y is smooth;
(c) The map f : Y → CP 1 has finitely-many criticial points, with at most one in

each fiber;
(d) Every critical point of f is nondegenerate, in the sense that the determinant of

the Hessian matrix of f at this point is nonzero.

A pencil S →֒ ĈPn with the properties listed in the above theorem is called a
Lefschetz pencil for X . We will in fact see that such pencils are generic—that
is, among the collection of all hyperplane pencils the ones that are not Lefschetz
constitute a set of measure zero. This will be explained in Section ???? below. For
the moment we wish to accept the existence of Lefschetz pencils and investigate
what the consequences are.

Our approach from this point will be to

(i) Study the fibers of the map f : Y → CP 1, and in particular study how the
generic fiber degenerates into the singular fibers;

(ii) Compare the homotopy type of the fibers (e.g., the cohomology groups) to
the homotopy type of the total space Y ;

(iii) Compare the homotopy type of Y to that of X .

In this way we relate the homotopical properties of X to those of the hyperplane
sections X ∩Ht which form the fibers of the map f .

To begin with, separate CP 1 ∼= S2 into two disks D+ and D−, intersecting in
a circle, in such a way that the critical values of f all lie in the interior of D+.
As there are only finitely many critical values, this is certainly possible. Choose a
basepoint b in D+ ∩D−. Define

Y+ = f−1(D+), Y− = f−1(D−), Y0 = f−1(D+ ∩D−), Yb = f−1(b).

Finally, let n = dimX .
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As f : Y− → D− has no critical points, it is a fiber bundle—and therefore a
trivial fiber bundle since D− is contractible. So Y− ∼= D− × Yb, and Y0

∼= S1 × Yb.
We have arranged things so that all the ‘action’ is concentrated inside of Y+. The
paper [La] identifies the main lemma of Lefschetz theory to be the following:

Lemma 3.2 (Main Lemma). Hi(Y+, Yb) = 0 for i 6= n and Hn(Y+, Yb) ∼= Zr

where r is the number of critical points of f . Even more, the inclusion Yb →֒ Y+ is
an ??-equivalence.

Sketch of Proof. The idea is simple. Use a Mayer-Vietoris argument to
reduce the homology calculation to what happens around each critical point. But
locally around the critical points we are looking at the bounded sum-of-squares
map, which has contractible total space and generic fibers homotopy equivalent
to Sn−1. So the relative homology group Hn(U,F ) around each critical point is
isomorphic to Z, and Hi(U,F ) = 0 for all other i’s. Mayer-Vietoris gives that
Hi(Y+, Yb) is the direct sum of all such Hi(U,F )’s, one for each critical point.

A detailed version of this argument can be found in [La]. �

The Weak Lefschetz theorem is almost an immediate corollary of the Main
Lemma. It is proved by induction, with the induction step being the following:

Theorem 3.3. Given a Lefschetz pencil for a dimension n variety X →֒ CPN ,
there is an isomorphism

Hq(X,Xb) ∼= Hq−2(Xb, X
′)

for q < n.

Proof. Recall that Y ′ = p−1(X ′) ∼= X ′ × CP 1 and we have a homotopy
pushout diagram

Y ′ // //

��

Y

��
X ′ // // X.

(3.4)

Consider the cofiber sequence

(Y+ ∪ Y ′)/(Yb ∪ Y ′) →֒ Y/(Yb ∪ Y ′)→ Y/(Y+ ∪ Y ′).(3.5)

The first term is just Y+/Yb. The homotopy pushout diagram (3.4) gives that
Y/Y ′ → X/X ′ is a weak equivalence, and it then follows that

Y/(Yb ∪ Y ′)→ X/Xb

is also a weak equivalence (recall that Xb ⊇ X ′).
Also, there is a homotopy pushout diagram

Y0
//

��

Y+

��
Y− // Y

which gives that Y/Y+ ≃ Y−/Y0. It likewise follows that Y/(Y+ ∪ Y ′) ≃ Y−/(Y0 ∪
Y ′). But recall Y− ∼= D− ×Xb, and the isomorphism may be chosen to restrict to
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Y0
∼= (∂D−)×Xb and Y ′ ∼= D− ×X ′. We then have

Y/(Y+ ∪ Y ′) ≃ (D− ×Xb)/[(∂D− ×Xb) ∪ (D− ×X ′)] ∼= (D−/∂D−) ∧ (Xb/X
′)

∼= S2 ∧ (Xb/X
′).

We have now proven that (3.5) may be rewritten (in the homotopy category)
as a cofiber sequence

Y+/Yb → X/Xb → Σ2(Xb/X
′).

The Main Lemma gives us that Y+/Yb is (n − 1)-connected, and so the homology
isomorphisms in the statement of the theorem follow immediately. �

Corollary 3.6 (Weak Lefschetz Theorem). If X →֒ CPN has dimension d
and H →֒ CPN is a generic hyperplane, then Hq(X,X ∩H) = 0 for q < d. That
is, Hq(X ∩H)→ Hq(X) is an isomorphism for q < d− 1 and an epimorphism for
q = d− 1.

Proof. We do this by an induction on the dimension of X . If the dimension
is zero there is nothing to prove.

If X has dimension d, then we choose a Lefschetz pencil for X and by The-
orem 3.3 we have Hq(X,Xb) ∼= Hq−2(Xb, X

′) for q < d. But Xb is a (d − 1)-
dimensional variety andX ′ is a generic hyperplane section ofXb, hence by induction
Hq−2(Xb, X

′) = 0 since q − 2 < d− 1. �

4. The Picard-Lefschetz formulas

Let us return now to our Lefschetz fibration f : Y → CP 1, with critical values
t1, . . . , tk ∈ CP 1. Then

Y − f−1({t1, . . . , tk})→ CP 1 − {t1, . . . , tk}
is a fibration. Pick a b ∈ CP 1 − {t1, . . . , tk} and let Yb be the fiber over b. We
will consider the monodromy action of π1(CP 1 − {t1, . . . , tk}, b) on H∗(Yb) and on
H∗(Yb).

For convenience let Y ∗ = Y − f−1({t1, . . . , tk}) and S∗ = CP 1 − {t1, . . . , tk}.
For each i, choose a loop wi in S∗ that is based at b, moves very close to ti

via a simple path, loops once around ti counterclockwise, and returns to b via the
same simple path. What we mean is shown in the following picture:

t1

t2
t3

b
w1

w2
w3 CP 1

In fact we will need several pieces of notation that go with this picture. Let Di be
the disk around ti, let li be the path from b to this disk, let si be the terminal point
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of li (where it reaches the boundary of the disk), and let γi be the counterclockwise
loop starting at si and moving around the boundary of Di. Note that

wi = l−1
i γili.

Finally, let Yi = f−1(Di), let Fi = f−1(si), and let Li = f−1(li).
Provided that the ti’s are appropriately ordered, π1(S

∗, b) may be identified
with the quotient

F (w1, . . . , wk)/〈w1w2 · · ·wk〉N ,
where F (−) denotes the free group and 〈−〉N is the normal subgroup generated by
the given element. Note that this group is just a free group on k − 1 generators.

Note that Y ∗ → S∗ is a fiber bundle and so it is necessarily trivial over li.
Therefore the inclusions Yb →֒ Li and Fi →֒ Li are homotopy equivalences. Con-
sider the following maps of homology groups, all induced by the inclusions:

Hn−1(Ti, Fi) // Hn−1(Yi, Fi) // Hn−1(Y+, Fi)
∼= // Hn−1(Y+, Li)

Hn−1(Y+, Yb).

∼=

OO

Recall that Hn−1(Ti, Fi) ∼= Z. A choice of generator gives, via the above maps, an
element δi ∈ Hn−1(Y+, Yb). Such a homology class will again be called a vanishing
cycle for the map f : Y → CP 1, just as was done in the local case.

There are three easy facts about the monodromy action of π1(S
∗) on H∗(Yb):

(1) The action on Hk(Yb) is trivial if k 6= n;
(2) wi.δi = (−1)nδi;
(3) If 〈x, δi〉 = 0 then wi.x = x.

We now explain these three points. First note that we can replace CP 1 by D+

and Y by Y+. Write Y ∗
+ = Y+ ∩ Y ∗ and D∗

+ = D+ ∩ S∗. The key point for the rest
of the argument is that if j : Yb →֒ Y ∗

+ is the inclusion then j∗(wi.x) = j∗(x) for all
x ∈ H∗(Yb). This is a basic fact about monodromy that we will explain below. By
the Main Lemma (3.2) the map Hk(Yb) → Hk(Y+) is injective for k 6= n − 1, and
consequently the same is true for j∗. So it follows that wi.x = x when x ∈ Hk(Yb)
and k 6= n− 1.

To explain the key point about the monodromy action from the last paragraph,
recall that the action of wi comes about from a lifting square

Yb × {0} //

��

Y ∗
+

��
Yb × I //

λ

::vvvvvvvvv
D∗

+

where the bottom map is the composite Yb × I → I
wi−→ D∗

+. More precisely,
λ1 = λ|Yb×{1} gives a map Yb → Yb and the induced map on homology is the
monodromy action of wi. But if we look in Y ∗

+ instead of in Yb (i.e., if we compose
with the inclusion j : Yb →֒ Y ∗

+) then λ itself is precisely a homotopy between λ1

and the identity. In other words, j ◦ λ1 is homotopic to j.
Fact (2) is a direct consequence of ?????.
Fact (3) uses a geometric consequence of Lefschetz Duality. Namely,
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Proposition 4.1 (Lefschetz Moving Lemma). Suppose that M and N are com-
pact, n-dimensional manifolds-with-boundary, and that they have the same bound-
ary: ∂M = ∂N = A. Let X = M ∪A N , which is a compact n-manifold. Assume
that X is orientable. Let x ∈ Hk(X). If 〈x, i∗(y)〉 = 0 for all y ∈ Hn−k(N), then x
is in the image of Hk(M)→ Hk(X).

In the situation of the above result result, note that if x is in the image of
Hk(M) then it is also in the image of Hk(M\∂M), because by choosing a collaring
of the boundary we can deformation retract M into M\∂M . So any homology
class in the image of Hk(M) will have trivial intersection with classes in the image
of Hk(N). This works with any coefficients. The Lefschetz Moving Lemma gives
a converse to this in the case of rational coefficients: if a cycle in X has trivial
intersection product with all cycles lying in N , then it can be moved into M .

Proof of Proposition 4.1. First consider the sequence

Hk(M)
j∗−→ Hk(X)

l∗−→ Hk(X,M),

which is exact in the middle, together with the excision isomorphismHk(N, ∂N)
i∗−→

Hk(X,M). Then x ∈ Hk(X) is in the image of j∗ if and only if (i∗)−1(l∗(x)) is
zero. But for u ∈ H∗(N), intersection theory gives us that

〈(i∗)−1(l∗(x)), u〉N = 〈x, i∗(u)〉X ,
and we have assumed that this vanishes for every u. Lefschetz Duality says that
the intersection pairing Hk(N, ∂N)⊗Hn−k(N)→ Q is nondegenerate, so the above
implies that (i∗)−1(l∗(x)) = 0. This means that l∗(x) = 0, and so x is in the image
of j∗. �

Now let us apply the Lefschetz Moving Lemma to our monodromy calculation.
Let x ∈ Hn−1(Yb) and assume that 〈x, δi〉 = 0. By applying the monodromy for li,
we may as well replace Yb with Fi. Let B be a small closed ball around the critical
point of f , and note that Fi\ intB and Fi ∩ B are two n-dimensional manifolds
with boundary, whose union is Fi. Since Hn−1(Fi ∩B) ∼= Z with generator δi, our
assumption that 〈x, δi〉 = 0 together with the Lefschetz Moving Lemma implies
that x is in the image of Hn−1(Fi\ intB). But Yi\ intB → Di is a fiber bundle (we
have removed the single criticial point from Yi, which lies in B), and for this bundle
the monodromy action of wi is trivial because wi vanishes inside of π1(Di, b). It
follows by naturality that the monodromy action of wi, on the class x, with respect
to the bundle Yi → D∗

i is also trivial. This completes the argument.
Facts (1)–(3) are almost enough to determine the entire monodromy action of

π1(S
∗, b) on H∗(Yb). When n is odd they are enough, but when n is even one needs

to work harder. The result we are aiming for, which gives a complete description
of the monodromy action in all cases, is the following:

Theorem 4.2 (Picard-Lefschetz). π1(S
∗, b) acts trivially on Hq(Yb) for q 6=

n− 1. For x ∈ Hn−1(Yb) the action is given by

wi.x = x+ (−1)(
n+1
2 )〈x, δi〉δi.

The displayed formula in this theorem is called the Picard-Lefschetz for-
mula. Before proving it we need one small lemma:
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Lemma 4.3. Let δi ∈ Hn−1(Yb) be a vanishing cycle. Then

〈δi, δi〉 =

{
0 if n− 1 is odd

2 · (−1)
n−1

2 if n− 1 is even.

Proof. When n−1 is odd there is nothing to prove, as the intersection pairing
is skew-symmetric on odd-dimensional homology groups. (The vanishing could also
be proven by the same argument we are about to give for the even case.)

As a general remark, it suffices to prove the theorem with Yb replaced with any
other non-critical fiber; so in particular, we can move b as close to the critical value
ti as we would like. Choose a neighborhood around the critical point ci in which
the map f may be written as the sum-of-squares map. Within this neighborhood
Yb is homeomorphic to D(TSn−1), the disk bundle of the tangent bundle for Sn−1,
and under this homeomorphism δi comes from the map Sn−1 → D(TSn−1) given
by the zero-section. Since the intersection product is local, we can replace Yb with
D(TSn−1) and δi with the zero-section. But then the intersection product gives
the Euler characteristic of Sn−1, by a classical calculation. So the intersection
product is 2 when n − 1 is even (and zero when n − 1 is odd). There is one last
point to be made, though, which is that the natural orientation of D(TSn−1) does
not coincide with the natural orientation on Yb (the one coming from the complex
structure). Here one needs to recall the homeomorphism between the complex
manifold z2

1+· · ·+z2
n = 1, |(z1, . . . , zn)| ≤ ǫ andD(TSn−1), which sends (z1, . . . , zn)

to the tuple ( u
|u| , v) where zj = uj +ivj and u = (u1, . . . , un), v = (v1, . . . , vn). Near

the point z = (1, 0, 0, . . . , 0), the orientation on our complex manifold is represented
by the coordinate system u2, v2, . . . , un, vn, whereas the orientation on the disk
bundle near this point is represented by u2, . . . , un, v2, . . . , vn. These orientations

differ by (−1)(
n−1

2 ). But for n = 2k + 1 one has
(
n−1

2

)
= k(2k − 1) ≡ k = n−1

2 (mod 2).

�

Proof of Theorem 4.2. The statement about the action on Hq(Yb) for q 6=
n−1 was explained above in point (1). For the action on Hn−1(Yb), the case where
n is odd is easy and the case where n is even is hard. When n is odd we know
that 〈δi, δi〉 6= 0, and so the space Hn−1(Yb) is the direct sum of Q.δi and (Q.δi)⊥

(the point is that the intersection form is nondegenerate and these two subspaces
do not intersect) Since we know the action wi.(−) on each summand by points (2)
and (3) above, we know the action everywhere. It is just a matter of checking that
the Picard-Lefschetz formula conforms with the formulas in (2) and (3), which is
easy (using Lemma 4.3 for (2)).

In the case when n is even, 〈δi, δi〉 = 0 and so δi ∈ (Q.δi)⊥. So formulas (2)
and (3) do not suffice to determine the action here. What remains is to determine
wi.c for a c ∈ Hn−1(Yb) with 〈c, δi〉 = 1. This is where things get tricky. The key
is to calculate the variation, and then to use the variation to get the monodromy.

Let ???????. Consider the following diagram:

Hn−1(Yb) //

Varγi ((QQQQQQQQQQQQ
Hn−1(Yb, Yb\ intF )

Varrel
γi

��

Hn−1(F, ∂F )
∼=oo

Varrel
γi

��
Hn(Y+, Yb) Hn(T, F )oo
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Let C ∈ Hn−1(F, ∂F ) be the image of c under the top composite. Then 〈C, δi〉 = 1,
and in fact C is completely determined by this property. The right-most vertical
map has been calculated previously, as this is just a local matter. By Proposition 2.8
we know that

Varrel
γi

(C) = (−1)(
n
2) ·∆i.

By naturality we obtain Varγi
(c) = (−1)(

n

2)i∗(∆i). Finally, recall the formula

∂ Varγi
(x) = (−1)n[γi.x− x]

from (2.7). Since ∂(∆i) = δi, by combining the above formulas we now get

γi.x = x+ (−1)(
n

2)+nδi = x+ (−1)(
n+1

2 )δi.

To complete the proof, just note that Hn−1(Yb) is the direct sum of Q.c and (Q.δi)⊥.
We just verified the Picard-Lefschetz formula on the first piece, and on the second
piece it was already verified by point (3) above. �

Let V ⊆ Hn−1(Yb) be the Q-subspace generated by the vanishing cycles
δ1, . . . , δk. Define I ⊆ Hn−1(Yb) to be the set of elements fixed by the monodromy

action; that is, I = [Hn−1(Y
b)]π1(S∗). Then we can state the following

Corollary 4.4. I = V ⊥.

Proof. This follows directly from the Picard-Lefschetz formulas. �

4.5. Consequences of the Picard-Lefschetz formulas.

Proposition 4.6. For any two vanishing cycles δi and δj, there exists a g ∈ G
such that g.δi = ±δj.

????

Theorem 4.7. The following conditions are equivalent:

(1) The restriction of the intersection form 〈−,−〉 to V ⊆ Hn−1(Yb) is nondegen-
erate;

(2) Either V = 0 or V is a non-trivial simple G-module (i.e., V is simple but it is
not the one-dimensional trivial module);

(3) Hn−1(Yb) is a semi-simple G-module.

Proof. Suppose 〈−,−〉 is nondegenerate on V . Let W ⊆ V be a nonzero
G-invariant submodule, and let x ∈ W − {0}. By the nondegeneracy of the form,
there exists a δi such that 〈x, δi〉 6= 0. By the Picard-Lefschetz formula we have
(wi).x = x±〈x, δi〉δi. Since x and (wi).x both belong toW , it follows that δi ∈ W as
well. Then by Proposition 4.6 all the other δj’s also belong to W , hence W = V . So
we have proven that V is simple. If n−1 is odd then the form 〈−,−〉 is alternating,
hence non-degeneracy guarantees that V is even-dimensional (and in particular, is
not one-dimensional). If n− 1 is even then the Picard-Lefschetz formula gives

(wi).δi = −δi,
hence the G-action on V is not trivial. We have therefore proven that (1) implies
(2).

Note that V ∩ V ⊥ is a G-invariant submodule of V . If (2) holds, then either
V ∩V ⊥ = 0 (in which case the form 〈−,−〉 is nondegenerate on V ) or else V ∩V ⊥ =
V . But the latter yields V ⊆ V ⊥, yet G acts trivially on V ⊥ by Picard-Lefschetz
and nontrivially on V by assumption. This proves (2) implies (1).
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Assumption (1) yields that V ∩V ⊥ = 0, hence Hn−1(Yb) decomposes as V ⊕V ⊥.
The group G acts trivially on V ⊥, and by (1)⇒ (2) we know that V is simple. So
Hn−1(Yb) is semi-simple.

Finally, suppose (3) is true and let v ∈ V ⊥ be nonzero. Then g.v = v for
all g ∈ G. If L is the subspace spanned by v, it follows that L⊥ is G-invariant:
for if 〈v, x〉 = 0 then 〈v, g.x〉 = 〈g.v, g.x〉 = 〈v, x〉 = 0 as well. Since Hn−1(Yb) is
assumed to be semi-simple, it follows that there is a G-submodule M such that
Hn−1(Yb) = L⊥ ⊕M . By nondegeneracy of the form on Hn−1(Yb), the module M
is one-dimensional. But if m ∈ M − {0} then 〈v,m〉 = 〈g.v, g.m〉 = 〈v, g.m〉, and
so 〈v, g.m−m〉 = 0. Therefore g.m−m ∈ L⊥ ∩M , hence g.m = m. As this holds
for all g, we have that M is the trivial G-module. So M is contained in V ⊥.

Now suppose that we also have v ∈ V . Then M is orthogonal to v, hence M is
contained in L⊥. But this is a contradiction. So V ∩ V ⊥ = 0, and this proves that
(3) implies (1). �

5. Construction of Lefschetz pencils

In this section we develop the machinery needed to establish the existence of
Lefschetz pencils. Even if you were willing to accept their existence on faith, this
machinery is still needed to prove some of the basic facts about the monodromy
action.

5.1. Geometry of the dual variety. Consider the projective space CPn

and the dual projective space ĈPn. Recall that the points of ĈPn are in bijective
correspondence with hyperplanes in CPn. Given a subset S ⊆ CPn, define α(S) ⊆
ĈPn to be the set of hyperplanes in CPn that contain S. That is,

α(S) = {H ∈ ĈPn |H ⊇ S}.
Likewise, given T ⊆ ĈPn define

β(T ) =
⋂

H∈T

H.

Note that if S ⊆ S′ then α(S) ⊇ α(S′), and similarly for β. That is, both α and β
reverse the order of subsets.

Linear algebra shows that if S is a linear subspace of CPn then β(α(S)) = S,

and if T is a linear subspace of ĈPn then α(β(T )) = T . The maps α and β give
a bijective correspondence between the linear k-dimensional subspaces of CPn and

the linear (n− k − 1)-dimensional subspaces of ĈPn.
Let X ⊆ CPn be a smooth hypersurface. Then we can define a map of spaces

Φ: X → ĈPn by letting Φ(x) be the tangent hyperplane to X at the point x. The
map Φ is algebraic; if X is defined by the homogeneous polynomial equation g = 0
then in appropriate coordinates Φ(x) is just (∇g)(x) (more precisely, Φ(x) is the
projective space of the kernel of the linear map Cn+1 → C whose associated matrix
is (∇g)(x)). The image of Φ will be denoted D(X), and called the dual variety
of X . Notice that D(X) is simply the collection of hyperplanes that are tangent to
X at some point.

A general fact about D(X) is that it will be (n − 1)-dimensional at every
point—one can imagine moving a tangent hyperplane in any direction along X ,
and dimX = n− 1. But unlike X , the dual variety D(X) might be singular. This
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will happen exactly when there exist hyperplanes that are simultaneously tangent
to X at more than one point, as depicted below:

X

In this case the map Φ is not injective, and so points of X are being identified to
make D(X).

Since D(X) is possibly not smooth, we cannot form D(D(X)) using our present
definition. However, there is a clever generalization of our construction which works
for any subvariety of CPn: it doesn’t have to be smooth, and it doesn’t have to be
a hypersurface. We will now describe this generalization and use it to prove that
D(D(X)) ∼= X . This will justify the name “dual variety”.

Let X ⊆ CPn be a closed, algebraic subvariety. When x ∈ X is a smooth point,
let us say that a hyperplane is “tangent to X at x” if it contains the tangent space
TxX . When x is not a smooth point, we will regard a hyperplane as being tangent
to X at x if it is the limit of hyperplanes that are tangent to X at smooth points.

We then define D(X) ⊆ ĈPn to be the collection of all tangent hyperplanes.
To make the above description completely rigorous we do the following. Let

Xns ⊆ X denote the Zariski open set of nonsingular points. Define a subspace

V ◦
X ⊆ CPn × ĈPn by

V ◦
X = {(x,H) ∈ CPn × ĈPn |x ∈ Xns and H is tangent to X at x}.

Then V ◦
X is a quasi-projective subvariety of CPn × ĈPn. Let VX be the Zariski

closure of V ◦
X . There are maps π1 : VX → CPn and π2 : VX → ĈPn. We define

D(X) = π2(VX) and call this the dual variety of X .
Note the following facts:

(1) When X is smooth, V ◦
X = VX .

(2) When X is smooth, π1 : VX → X is a fiber bundle with fiber CPn−1−dim X

(this is the collection of hyperplanes in CPn containing a given tangent space
of X). In particular, if X is irreducible then so is VX .

(3) When X is a smooth hypersurface, π1 : VX → X is an isomorphism. Note that

in this case π2 : VX → ĈPn is just a map X → ĈPn, and it coincides with the
map Φ introduced earlier in this section.

5.2. The basic construction. We are almost ready to describe the construc-

tion of Lefschetz pencils. In brief, the idea is to choose a projective line S →֒ ĈPn

that avoids the singular set of D(X) and intersects D(X) transversally. This line S
will be our pencil of hyperplanes. We will show to construct the Lefschetz fibration
Y → S and prove that this has the properties we outlined in Theorem 3.1.

From now on assume that X is smooth. Let

W = {(x,H) ∈ CPn × ĈPn |x ∈ H}.
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Note that the projectionW → CPn is a fiber bundle with fiber CPn−1 (and likewise

for the projection W → ĈPn). Let WX be the pullback of W → CPn to X . That
is,

WX = {(x,H) ∈ CPn × ĈPn |x ∈ X ∩H}.
Note that VX is a subspace of WX . We have the following diagram depicting the
spaces we are currently considering:

ĈPn

VX
// //

CPn−1−dim X

33 33

WX
// //

CP n−1 !! !!C
CC

CC
CC

C
W // //

CP n−1 %% %%KKKKKKKKKK

CPn−1
99 99tttttttttt

CPn × ĈPn

π2

OO

π1

��
X // // CPn

Here the two-headed arrows are fiber bundles, with the fiber indicated next to the
arrow.

Now assume that X is both smooth and irreducible. Then WX is also smooth
and irreducible, as WX → X is a fiber bundle with fiber CPn−1. We will study in

detail the map π2 : WX → ĈPn. Note that the fiber of π2 over a point H ∈ ĈPn

is the intersection X ∩H .
Define Y to be the pullback of π2 : WX → ĈPn along S →֒ ĈPn:

Y //

��

WX

��
S // // ĈPn.

The map Y → S will be our Lefschetz fibration. Our task, then, is to analyze the
critical points of this map.

5.3. Detailed analysis of critical points. It will be important to first an-

alyze the critical points of WX → ĈPn, which we do below:

Lemma 5.4.

(a) The critical points of π2 : WX → ĈPn are those pairs (x,H) where H is tangent
to X at x. In other words, the critical points of π2 constitute the subspace VX .

(b) If (x,H) is a critical point of π2, then (Dπ2)(T(x,H)WX) is precisely TH(D(X)).

Proof. Part (a) is clear geometrically. If (x,H) is a point in WX where H is
not tangent to X , then all small movements of H still result in a nearby intersection
with X . This amounts to saying that (Dπ2)(x,H) is surjective.

However, when H is tangent to X then moving H in the normal direction to
X does not result in a nearby intersection. So this “direction” in the tangent space

TH(ĈPn) is not in the image of (Dπ2)(x,H).
Part (b) involves the same ideas as the previous paragraph. The image of

(Dπ2)(x,H) constitutes the “directions of movement” that result in H still inter-
secting X near x. But for a tangent hyperplane these are precisely the movements
where H remains tangent to X . This exactly describes TH(D(X)). �
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Proposition 5.5 (Duality Theorem). Assume that X is smooth and irre-

ducible. Let x ∈ CPn, and let Hx ∈ ĈPn be the dual hyperplane—that is,
Hx = α({x}). Then x ∈ X if and only if Hx is tangent to D(X). Equivalently,
D(D(X)) = X.

This is in some sense repeating the obvious, but it is nice to think of this result
via the following picture:

CPn ĈPn

X

Hxx

D(X)

As the point x moves in CPn, the associated hyperplane Hx moves around ĈPn.
The Duality Theorem says that when x moves onto X the hyperplane Hx becomes
tangent to D(X), and vice versa.

Proof. Using the evident identification
̂̂
CPn = CPn, the variety VD(X) is just

VD(X) = {(x,H) ∈ CPn × ĈPn |Hx is tangent to D(X) at H}.
The statement of the proposition amounts to the equality VX = VD(X). This is
because x ∈ X if and only if there exists an H such that (x,H) ∈ VX , and likewise
Hx is tangent to D(X) if and only if there exists an H such that (x,H) ∈ VD(X).

We will prove that VX ⊆ VD(X). The subset in the other direction is nearly
the same, but it will be easier to observe that both VX and VD(X) are closed,
irreducible subvarieties, and moreover they have the same dimension. So once we
know VX ⊆ VD(X) we automatically have equality.

Define U ⊆ VX to be the set of points (x,H) ∈ VX such that H ∈ D(X)ns

(in other words, H is tangent to X at the point x and nowhere else). Then U is a
nonempty, Zariski open subset of VX , and therefore U = VX . We need only prove
U ⊆ VD(X), since then we have VX = U ⊆ VD(X) and we are done.

Let (x,H) ∈ U . In vague terms, the proof goes as follows. The space TH [D(X)]
consists of all “infinitesimal movements” of H that remain tangent to X . It is clear
geometrically that this is the same thing as all “infinitesimal movements” of H that
intersect X near x. Because H is tangent to X , this space is (n − 1) dimensional.
But at the same time it clearly contains all movements where H is simply “rotated”
about the point x, and these constitute the (n − 1)-dimensional space Hx. So we
have that Hx contains TH [D(X)], i.e. that Hx is tangent to D(X) at H .

We now phrase the above argument more formally. Note that {x}×Hx ⊆WX ;
that is, (x, J) ∈WX for any hyperplane J that contains x. Consider the subsets

TH(Hx) ⊆ (Dπ2)(T(x,H)WX) ⊇ (Dπ2)(T(x,H)VX) ⊆ TH [D(X)].

The assumption (x,H) ∈ U gives that the last of these is an equality. The space

TH(Hx) has dimension n−1, and since (x,H) is a critical point for π2 : WX → ĈPn

we have that the dimension of (Dπ2)(T(x,H)WX) is at most n−1. So the first subset
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is also an equality. We therefore conclude that TH(Hx) ⊇ TH [D(X)], which is what
we wanted. So (x,H) ∈ VD(X), we have shown U ⊆ VD(X), and we are done. �

Before proceeding further we need a basic fact from algebraic geometry. Let
b ∈ CPn, which corresponds to a line l ⊆ Cn+1. Choose a complementary subspace
W to this line. Then the projective lines in CPn that pass through b are in bijective
correspondence with the points of P(W ). We denote Lb = P(W ) and call this the
space of projective lines through b.

Lemma 5.6. Let Z ⊆ CPn be a closed, proper subvariety and let b ∈ CPn\Z.

(a) If dimZ ≤ n − 2 then the set of projective lines through b that do not meet Z
is a nonempty, Zariski open subset of Lb.

(b) If dimZ = n− 1 then the set of projective lines through b that do not intersect
the singular set of Z and also meet Z transversally form a nonempty, Zariski
open subset of Lb.

Proof. This is standard. �

Now let us be very specific about our choice of projective line S →֒ ĈPn.

Choose any point b ∈ ĈPn\D(X). Note that this corresponds to a hyperplane
Hb ⊆ CPn that intersects X transversally. If dimD(X) ≤ n− 2, let S →֒ CPn be
a projective line through b that doesn’t intersect D(X). If dimD(X) = n− 1 then
let S be a projective line through b that avoids the singular set of D(X) and also
meets D(X) transversally. As we have seen above, this S determines a pencil of
hyperplanes and a corresponding map f : Y → S.

If t ∈ S\D(X) then Ht intersects X transversally. If t ∈ S ∩D(X) then Ht is
tangent to X in exactly one point xt (for otherwise Ht would be a singular point
of D(X), and S was chosen to avoid such points).

Lemma 5.7. The critical points of f : Y → S are the pairs (x, t) such that
t ∈ S ∩D(X) and Ht is tangent to X at x. In particular, the points S ∩D(X) are
the critical values of f and each of these values has exactly one critical point in its
fiber.

Proof. By general properties of pullbacks we know that

(Df)(T(x,H)Y ) = (Dπ2)(T(x,H)WX) ∩ THS.

We know by Lemma 5.4(b) that (Dπ2)(T(x,H)WX) equals THCPn when H is not
tangent to X at x, and that it equals TH [D(X)] when H is tangent to X at x.
In the former case we have that Df is surjective, and in the latter case it is not
surjective because TH [D(X)] ∩ THS is 0-dimensional by our choice of S. So the
critical points of f are pairs (x,H) where H is tangent to X at x.

If (x,H) and (x′, H) are both critical points of f , then H is tangent to X at
both x and x′. This would imply that H lies in the singular set of D(X), yet S
was chosen to avoid this singular set. So no two critical points of f lie in the same
fiber. �

Proposition 5.8 (Existence of Lefschetz pencils). With S ⊆ ĈPn chosen as
above, we have that:

(a) The axis of the pencil intersects X transversally;
(b) If dimD(X) ≤ n− 2 the map f : Y → S has no critical points;
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(c) If dimD(X) = n− 1 then the map f : Y → S has finitely many critical points,
the number of such points is the same as the degree of D(X), and no two critical
points lie in the same fiber.

(d) In the situation of part (c), it moreover is true that each critical point of the
map f : Y → S is nondegenerate.

Proof. The axis of the pencil is A = ∩H∈SH , and recall that this is just
β(S). This is a codimension two linear subspace of CPn. Suppose that A does not
intersect X transversally. Then there is a point x ∈ A ∩ X such that A ⊆ TxX .
Write H = TxX . Applying α to the inclusions {x} ⊆ A ⊆ H yields

α(x) ⊇ S ⊇ α(H).(5.9)

Since H is tangent to X , α(H) is by definition a point on D(X). So α(H) lies on
S ∩ D(X). But the Duality Theorem (Proposition 5.5) says that H is tangent to
X at x if and only if α(x) is tangent to D(X) at α(H). By (5.9) this implies that
S is tangent to D(X) at α(H), which contradicts our choice of S. This proves (a).

Part (b) and (c) follow directly from Lemma 5.7.
For part (d) we have to determine the Hessian for f in the neighborhood of a

critical point (w,H) ∈ Y . By the lemma, being a critical point means that H is
tangent to X at w.

Recall that Y ⊆ WX ⊆ W ⊆ CPn × ĈPn. Choose projective coordinates

x0, . . . , xn on CPn, and let y0, . . . , yn be the dual coordinates on ĈPn. In these
coordinates W consists of all pairs ([x0 : . . . : xn], [y0 : . . . : yn]) such that

∑
xiyi =

0. By choosing the coordinates appropriately, we can assume that S →֒ ĈPn is the
subspace {[a : 0 : 0 : . . . : 0 : b] | a, b ∈ C}, that w = [1 : 0 : 0 : . . . : 0], and moreover
that H = [0 : 0 : . . . : 0 : 1].

Our first goal is to determine what π2 : WX → ĈPn looks like in local coordi-
nates around the point (x,H). To this end, let U = {x ∈ X |x0 6= 0} and note that
π1 : WX → X is trivial over U . In fact let us use the explicit trivialization

φ : U × CPn−1 ∼=−→ π−1
1 (U)

(x, [z1 : . . . : zn]) 7→
(
x,
[
−
∑

i>0

xizi : x0z1 : x0z2 : . . . : x0zn

])
.

For points in CPn near w, we can normalize their projective coordinates so that
x0 = 1. For points in CPn−1 near [0 : 0 : . . . : 1], we can normalize their projective
coordinates so that zn = 1. Let t1, . . . , td be local holomorphic coordinates on X
near w: so we have functions xi = xi(t1, . . . , td) and the points [1 : x1(t) : . . . : xn(t)]
give a neighborhood of w in X . We find that

t1, . . . , td, z1, . . . , zn−1 7→ φ([1 : x1(t) : . . . : xn(t)], [z1 : . . . : zn−1 : 1])

give local affine coordinates in WX near w.

Finally, on ĈPn we get affine coordinates in a neighborhood of H by normal-

izing so that yn = 1. Using these coordinates we find that π2 : WX → ĈPn has the
form

t1, . . . , td, z1, . . . , zn−1 7→
(
−
∑

i>0

xi(t)zi, z1, . . . , zn−1

)
= (g(t, z), z1, . . . , zn−1)

where we take the last equality as a definition of the function g(t, z).
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Now that we know π2 in local coordinates, we can compute its Jacobian. We
find it has the form 



∂g
∂t1

∂g
∂t2

· · · ∂g
∂td

∗ ∗ · · · ∗
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...

...
...

...
...

... · · ·
...

0 0 · · · 0 0 · · · 0 1




Recall that VX ⊆ WX is the space of critical points of π2, i.e. the space of points
where the above Jacobian matrix does not have full rank. So in our local coordinate
system VX is given by the equations

∂g

∂t1
= · · · = ∂g

∂td
= 0.

The codimension of VX inside of Cd+n−1 (the neighborhood with coordinates ti and
zi) is therefore given by the rank of the matrix




∂2g
∂t21

∂2g
∂t1t2

· · · ∂2g
∂t1td

∂2g
∂t1t2

∂2g
∂t22

· · · ∂2g
∂t2td

...
... · · ·

...

∂2g
∂t1td

∂2g
∂t2td

· · · ∂2g
∂t2

d




.

In our case X is a hypersurface and VX → X is an isomorphism, so VX has di-
mension d (and recall d = n− 1). It follows that the above matrix of second order
partial derivatives has full rank at all points of VX .

To finally complete this proof, we return to the map f : Y → S. Recall that this

is the restriction of π2 : WX → ĈPn to the subspace S. In our choice of coordinates,
S is described simply by the vanishing of z1, . . . , zn−1. So the map f looks like

t1, . . . , tn−1 7→ g(t, 0)

in local coordinates about (w,H), and the Hessian at our critical point is just the
above matrix of second order partial derivatives. As this matrix has full rank, we
are done. �

6. Leftover proofs and geometrical considerations

In this section we tie up some loose ends.

Recall the statement of Proposition 4.6: For any two vanishing cycles δi and
δj, there exists a g ∈ G such that g.δi = ±δj. We can now give the proof of this,
based on our construction of Lefschetz pencils from the last section.

Proof of Proposition 4.6. Let Ĝ = π1(ĈPn\D(X)), and note that there

is a map G → Ĝ. There are three geometric facts that go into the proof of this
proposition:

(i) The action of G on Hn−1(Yb) factors through an action of Ĝ;

(ii) The loops wi and wj become conjugate in Ĝ;

(iii) The map of groups h : G→ Ĝ is surjective.
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Accepting these three facts, here is what we do. By (ii) and (iii) together there is
a u ∈ G such that uwi and wju become the same element after applying h. Using
(i) this then implies that

u.(wi.x) = wj .(u.x)

for all x ∈ Hn−1(Yb). Applying the Picard–Lefschetz formula to both sides and
simplifying, we get the formula

〈x, δi〉 · (u.δi) = 〈u.x, δj〉δj
for all x ∈ Hn−1(Yb). From here the proof is just algebraic manipulation.

If δi = 0 and δj 6= 0, then we have 〈u.x, δj〉 = 0 for all x ∈ Hn−1(Yb). Since
u acts on Hn−1(Yb) as an automorphism, this says that δj is orthogonal to all of
Hn−1(Yb), which is a contradiction. So if δi = 0 then δj = 0 as well, and in this
case there is nothing to prove as we may take g = id.

So suppose δi 6= 0. Then there exists an x ∈ Hn−1(Yb) such that 〈x, δi〉 6= 0.
We then get

u.δi =
〈u.x, δj〉
〈x, δi〉

· δj .

Abbreviate the coefficient to c, so that u.δi = c · δj . Note that c 6= 0, as u.(−) is an
automorphism. Then

c =
〈u.x, δj〉
〈x, δi〉

=
〈u.x, δj〉
〈u.x, u.δi〉

=
〈u.x, δj〉
〈u.x, cδj〉

=
1

c
.

So c = ±1, and this completes the proof.
It only remains to justify facts (i)–(iii). Fact (i) is the simplest. Recall the

space

W = {(x, f) ∈ CPN × ĈPN | f(x) = 0}.
and the map π2 : W → ĈPN . Also consider the square of inclusions

CP 1 // j1 //
ĈPN

CP 1 − {t1, . . . , tk} j2
//

OO
j3

OO

ĈPN\D(X).

OO
j4

OO

Our Lefschetz pencil came from pulling back W → ĈPN along j1, and the mon-
odromy action came about by further pulling back along j3. But this is the same
as pulling back along j4 and then j2, and pulling back along j4 gives a fiber bundle

with monodromy action by the group π1(ĈPN\D(X)). This justifies the claim.
The proof of conditions (ii) and (iii) will take up the rest of this section. These

conditions are restated and proven as Proposition 6.4 below. �

6.1. π1-considerations. We begin with a lemma that is useful in a variety of
circumstances.

Lemma 6.2. Let X be a smooth, quasi-projective variety over C and let Z →֒ X
be a closed subvariety that has codimension at least k near every point. Then the
inclusion X\Z →֒ X is a (2k− 1)-equivalence—i.e., it is an isomorphism on πi(−)
for i < 2k − 1 and a surjection on π2k−1(−).
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Sketch of proof. First assume that Z is smooth. Then by a choosing a
tubular neighborhood U of Z, we have a homotopy pushout digram

U\Z // //
��

��

X\Z

��
U // // X.

The map U\Z →֒ U is homeomorphic to S(N) →֒ D(N) where S(N) and D(N)
are the sphere- and disk- bundles of the normal bundle to Z in X . The projection
S(N)→ Z has fiber Ck − 0 ≃ S2k−1, and so S(N)→ Z is a (2k − 1)-equivalence.
Then the same is true for S(N)→ D(N), since D(N)→ Z is a weak equivalence.
By the Blakers-Massey theorem, X\Z →֒ X is therefore also a (2k−1)-equivalence.

Now consider the general case where Z is not necessarily smooth. Then Z has
a filtration

Z = Z0 ⊇ Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ Zn+1 = ∅
in which each Zi\Zi+1 is smooth and Zi+1 has codimension at least 1 in Zi near
all points.

Consider the associated filtration

X\Z = X\Z0 ⊆ X\Z1 ⊆ · · · ⊆ X\Zn ⊆ X.(6.3)

Since Zn →֒ X has codimension at least k + n near each point, X\Zn →֒ X is
a (2(k + n) − 1)-equivalence. Likewise, Zn−1\Zn →֒ X\Zn is smooth and has
codimension at least k + n− 1 near each point; so the inclusion X\Zn−1 →֒ X\Zn

is a (2(k + n− 1)− 1)-equivalence. Continuing in this way, we find that each link
in the chain of inclusions (6.3) is a (2k − 1)-equivalence, and therefore so is the
composite. �

Let Z →֒ CPN be a hypersurface, possibly singular. Recall that a projective
line L ⊆ CPN meets Z in general position if L does not intersect the singular
set of Z and if L meets Z transversallly at all points of intersection. Note that
topologically L ∼= S2, and the complex structure on L equips it with a natural
orientation.

Let b ∈ CPN\Z. By an “elementary loop” in L\Z we mean a loop based at b
that moves straight towards an intersection point p ∈ L∩Z, runs once around this
intersection point counterclockwise (with respect to the orientation of L), and then
runs straight back to b. That is, the loop has the form l−1σl where l is a path and
σ is a small loop around the point p.

Proposition 6.4. Suppose that L is a projective line through b that meets Z
in general position. Then

(a) The map π1(L\Z, b)→ π1(CPN\Z, b) is surjective.
(b) Let L1 and L2 be two lines through b meeting Z in general position (including

the possibility that L1 = L2). If v1 and v2 are elementary loops in L1\Z and
L2\Z, then v1 and v2 are conjugate in π1(CPN\Z).

Proof. The point b ∈ CPN may be regarded as a line ℓ in CN+1. Choose
any hyperplane V ⊆ CN+1 which doesn’t contain this line. Then points in P(V )
are in bijective correspondence with planes in CN+1 containing ℓ, or equivalently
with projective lines in CPN containing b. For brevity write P = P(V ); this is the
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parameter space for lines through b. For w ∈ P write Lw for the corresponding
projective line in CPN .

Let C ⊆ P be the subspace of lines which are not in general position with
respect to Z. This is a closed algebraic subvariety, and it is not equal to the entire
space P. Since P is irreducible the codimension of C is at least one near every
point. Write Pgp = P\C; this is the open subvariety of lines through b that are in
general position with respect to Z.

Define

E = {(x,w) ∈ CPN × Pgp |x ∈ Lw and x /∈ Z},
E′ = {(x,w) ∈ CPN × P |x ∈ Lw and x /∈ Z}.

Then E ⊆ E′ is an open subvariety, and π2 : E → Pgp is a fiber bundle with fiber

L\Z. Note that E = E′\π−1
2 (C), and so by Lemma 6.2 the inclusion E →֒ E′ is a

1-equivalence. In particular, it is surjective on π1.
Let us further explain the significance of the spaces E and E′. Denote the

projection E′ → CPN\Z by p. This is not a fiber bundle, but it is a simple map to
understand. For every x ∈ CPN\(Z ∪ {b}) the fiber p−1(x) consists of exactly one
point, whereas p−1(b) ∼= P. The space E′ is the blow-up of CPN\Z at the point b.

Consider the diagram below:

π1(L\Z)

��>
>>

>>
>>

>>
>>

>>
>>

>>
>

// π1(E)
(π2)∗ //

j∗

��

π1(Pgp)

π1(E
′)

p∗

��
π1(CPN\Z).

The horizontal row is part of the homotopy long exact sequence for the fiber bundle
L\Z → E → Pgp. Note that π2 : E → Pgp has a splitting χ given by χ(w) = (b, w)
(because all the lines in Pgp automatically contain b by definition). It follows at
once that (π2)∗ is a split surjection.

We have already seen that j∗ is surjective, and we claim the same is true for
p∗. To see this it is convenient to temporarily use a basepoint in CPN\Z different
from b, say b′. Every loop in CPN\Z based at b′ can be deformed so that it avoids
b. But E′\p−1(b) → CPN\(Z ∪ {b}) is an isomorphism. So any loop in CPN\Z
that avoids b has a unique lifting to E′. This proves that p∗ is surjective when
the basepoint is b′, and of course it must be the same when the basepoint is b.
[Alternatively, use the van Kampen theorem together with the fact that CPN\Z is
the homotopy pushout of ∗ ← P→ E′.]

It is now a diagram chase to see that the diagonal map is surjective. Let
α ∈ π1(CPN\Z) and lift this to an element β ∈ π1(E). Then β · [χ∗(π2)∗(β)]−1 is
in the kernel of (π2)∗, so it is the image of an element γ ∈ π1(L\Z). Because p ◦ χ
is the trivial map, one readily checks that γ maps to α. This completes the proof
of (a).

The proof of (b) is simpler. Let A consist of all points x ∈ Z − {b} with the
property that the projective line containing b and x is in general position with
respect to Z. Then A ⊂ Z is an algebraic subvariety. Since Z is irreducible, A has
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codimension at least one near all of its points. By Lemma 6.2 one sees that Z\A is
path-connected.

Recall that we start with two elementary loops vi in Li\Z, for i = 1, 2. Let ci
be the point in Li ∩ Z that vi encircles. Since c1, c2 ∈ Z\A, there is a path σ in
Z\A from c1 to c2. For each t, the projective line joining b to σ(t) intersects Z in a
discrete set of points, one of which is σ(t) itself. With a little thought one sees that
it is possible to choose a map J : D2 × I → CPN such that on {0} × I this is just
σ and such that (D2 − {0})× I maps into CPN\Z. After shrinking, rotating, or
deforming things appropriately one gets something like the following picture, where
our elementary loops are v1 = l−1

1 ω1l1 and v2 = l−1
2 ω2l2:

l1

l2

ω1

ω2

θ

Let θ be the restriction of J to {p} × I for some appropriate point p ∈ ∂D2.
Then ω1 is homotopic to θ−1ω2θ, and therefore

v1 = l−1
1 ω1l1 ≃ l−1

1 (θ−1ω2θ)l1 ≃ (l−1
1 θ−1l2)(l

−1
2 ω2l2)(l

−1
2 θl1) = hv2h

−1

where h = l−1
1 θ−1l2. �

We have now completed the proof of Proposition 4.6.

7. Proof of the variation formula

Our final task is to prove Proposition 2.8. Recall that this is a statement about
the variation inside the bounded sum-of-squares mapping, and that it was the key
step in the analysis of the monodromy of Lefschetz pencils.

Let us review the setting. We fix ρ > 0 and ǫ > 0 such that ρ < ǫ2, and define

E =
{
(z1, . . . , zn) ∈ Cn

∣∣∣
∑

j

|zj |2 ≤ ǫ2 and |z2
1 + · · ·+ z2

n| ≤ ρ
}

and
B =

{
w ∈ C

∣∣ |w| ≤ ρ
}
.

Define the map f : E → B to send (z1, . . . , zn) to z2
1 + · · · + z2

n. This is a fiber
bundle when restricted to B − 0, with the fiber a manifold-with-boundary that is
isomorphic to (D(TSn−1), S(TSn−1)) (the disk bundle and sphere bundle of the
tangent bundle of Sn−1). Let γ : I → B − 0 be the path γ(t) = e2πit. There is an
associated relative variation map

Varrel
γ : Hn−1(F, ∂F )→ Hn(E,F ),

and our goal is to calculate this. Both the domain and codomain are isomorphic to
Z.
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Let (∆, δ) : (Dn, Sn−1)→ (E,F ) consists of a vanishing cycle δ and correspond-
ing thimble ∆. Proposition 2.8 consists of the formula

Varγ(x) = (−1)(
n
2)〈x, δ〉 ·∆

where x is any element of Hn−1(F, ∂F ). Because Varγ is a map Z→ Z, it suffices
for us to verify the formula on any chosen nonzero element.

The verification of this formula will be easier to understand if we first ex-
plore the case n = 2. We will freely use the homeomorphism of pairs (Fρ, ∂Fρ) ∼=
(D(TSn−1), S(TSn−1)). From now on we’ll just write (F, ∂F ) for (Fρ, ∂Fρ). When
n = 2 we have ∂F ∼= V2(R2) = O(2) ∼= S1 ∐ S1, and F ∼= S1 × I (because the
tangent bundle to S1 is trivial). We have the following picture, which shows a
vanishing cycle δ ∈ H1(F ) and also a cycle c ∈ H1(F, ∂F ) such that 〈c, δ〉 = 1:

δc

We claim that as this picture moves through the monodromy it becomes the
following:

δ

c′

So the cycle c changes to c′ = c+ δ.
???
Let us work through the definition of Varrel

γ in this case. We construct the
lifting λ by

λ(z1, . . . , zn, t) = (eπitz1, . . . , e
πitzn).

Consider the diagram

H1(F, ∂F ) // H2(F × I, ∂(F × I))

∂

��

λ∗ // H2(E,F ∪ E′)

∼= ∂

��

H2(E,F )

∼= ∂

��

∼=oo

H1(D
1, ∂D1)

C∗
66mmmmmmm

// H2(S, ∂S)
(C×id)∗

55jjjjjjjj

��

H1(∂(F × I)) λ∗ // H1(F ∪ E′) H1(F )
∼=oo

H1(∂S)

44jjjjjjjjj

where S = D1 × I and we are regarding C : (D1, ∂D1)→ (F, ∂F ) as our model for
c (i.e., c is the pushforward under C∗ of the fundamental class in H1(D

1, ∂D1)).

Then Varrel
γ (c) is the image of c across the top row, and we can compute this by

instead computing its boundary. The class c itself is the image of the canonical
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element in H1(D
1, ∂D1), and so we are reduced to understanding the map ∂S =

∂(D1× I)→ F ∪E′ obtained by restricting λ. On D1×{0} this is the original map
D1 → F representing c. On D1 ×{1} it is the composite of c with the monodromy
map F → F . On (∂D1)× I the map is simply (a, t) 7→ eπit · c(a).

To explain this a bit better we now change from (F, ∂F ) to the model
(D(TSn−1), S(TSn−1)). Let f : ∂(D1 × I) → F ∪ E′ be the map we are study-
ing. In this new model the vanishing cycle is the 0-section Sn−1 → D(TSn−1)
given by u 7→ (u, 0). We can model c by a path which starts with a 2-frame (x, y)
and then slowly changes y to −y by the evident straight line passing through 0.
This path is f |D1×{0}.

The monodromy action F → F becomes the map D(TSn−1) → D(TSn−1)
given by (u, v) 7→ (−u,−v). So f |D1×{1} is the path that starts with the 2-frame

(−x,−y) and slowly moves −y to y along the straight-line path. Note that V2(R2)
consists of two circles, corresponding to the positively- and negatively-oriented
frames. The frame (−x,−y) is obtained by rotating (x, y) through 180 degrees,
and in terms of our picture this will be on the same circle as (x, y) but on the
opposite side.

The analysis of f0 = f |{0}×I and f1 = f |{1}×I is slightly more confusing. In
terms of the (F, ∂F ) model (rather than the disk bundle/sphere bundle model),
the former is a path that starts at some point (z1, . . . , zn) = x + iy with x · y = 0
and |x|2 = ρ + |y|2, and then progresses as t 7→ (eπitz1, . . . , e

πitzn). The path f1
is a similar path that starts at (z̄1, . . . , z̄n) = x − iy and does the same thing. We
would like to translate this into our disk bundle/sphere bundle model, but there is
a difficulty in that this model is really only valid on the fiber over the basepoint—
whereas our paths f0 and f1 are mostly not in this fiber. This is the difference
between the map we have, of the form ∂S → F ∪ E′, and the map we would like
which would have the form ∂S → F .

????
We get the following picture:

Now we tackle the general case:

Proof of Proposition 2.8. Fix a representative

Sn−2 c′ //
��

��

∂F
��

��
Dn−1 c // F
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for the generator of Hn−1(F, ∂F ). We start again with the diagram

Hn−1(F, ∂F ) // Hn(F×I, ∂(F×I))

∂

��

λ∗ // Hn(E,F ∪E′)

∼= ∂

��

Hn(E,F )

∼= ∂

��

∼=oo

Hn−1(D, ∂D)

(c,c′) 55lllllll
// Hn(S, ∂S)

44jjjjjjjj

��

Hn−1(∂(F × I)) λ∗ // Hn−1(F ∪E′) Hn−1(F )
∼=oo

Hn−1(∂S)

44jjjjjjjj

where D = Dn−1 and S = D × I. Let R : E′ → F denote the retraction, and let
r : F → Sn−1 denote the map ?????. Finally, let h denote the composite map

∂S = ∂(Dn−1 × I)→ F ∪ E′ R−→ F
r−→ Sn−1.

The result will follow after we show two things:

(1) Equipping Dn−1 with its standard orientation, and taking the induced orien-
tation on ∂S, the degree of the map h is −1.

(2) The map Hn−1(D, ∂D) → Hn−1(F, ∂F ) sends the canonical generator to an

element c having the property that 〈c, δ〉 = (−1)(
n
2).

What makes this process manageable is the ability to write down an explicit
formula for R. We will give a map R′ : E′ → V2(Rn), and then the map R will be
q ◦R′ where q is our standard homeomorphism between V2(Rn) and F . To describe
the formula for R′, let z ∈ Cn and write z = x + iy for x, y ∈ Rn. There exists
an α ∈ R such that the real and imaginary parts of e−iαz are orthogonal, and α
is well-defined up to integral multiples of π. (In fact, if

∑
z2

j = reiθ then α ≡ θ/2

mod π.) If we write e−iαz = x′ + iy′, define R′(z) to be the 2-frame obtained by
taking the real and imaginary parts of

eiα

[
x′

|x′| + i
y′

|y′|

]
.

Note that altering α by an odd multiple of π changes the signs on x′ and y′ AND
changes the sign on eiα, and therefore has no effect on R′(z). The main property
we need about R′ is the following:

If x, y ∈ Rn are orthogonal and z = eit(x + iy), then R′(z) is obtained by
rotating the 2-frame ( x

|x| ,
y
|y|) counterclockwise through t radians..

The map Sn−2 → ∂F may be modelled by v 7→ (e1, v), where e1 is the first
standard basis element of Rn and Sn−2 is regarded as the sphere perpendicular to
e1. The map Dn−1 → F is then described by

tv 7→ (e1, tv)

where v ∈ Sn−2 and t ∈ I. The retraction r : F → Sn−1 is the map (u, v)→ u.
We now proceed to analyze the

∂(Dn−1 × I)→ F ∪ E′ → F → Sn−1.
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On Dn−1 × {0} this is the map (tv, 0) → (e1, tv) → e1. On Dn−1 × {1} this is
(tv, 1)→ (−e1,−tv)→ −e1. Finally, on (∂Dn−1)× I it is the map

(v, t) −→ eπit(e1 + iv)
r◦R′

−→ cos(πt)e1 − sin(πt)v.

It follows that h−1(−e2) is a singleton set consisting of the point (e2,
1
2 ). We

need to compute the local degree of h near this point. If we write v ∈ Sn−2 as
v = (v2, v3, . . . , vn), then v3, . . . , vn, t give a positively-oriented coordinate system
for ∂(Dn−1 × I) near the point (e2,

1
2 ). Likewise u1, u3, . . . , un give a positively-

oriented coordinate system on the target Sn−1 around the point −e2. In these
coordinates one has that

h(v3, . . . , vn, t) = (cos(πt),− sin(πt)v3,− sin(πt)v4, . . . ,− sin(πt)vn).

The Jacobian is the (n− 1)× (n− 1) matrix

J =




0 −1 0 0 · · · 0
0 0 −1 0 · · · 0
0 0 0 −1 · · · 0
...

...
...

...
. . .

...
−π 0 0 0 · · · 0




whose determinant is −π. This shows that the degree of h is −1.
To prove point (2), recall that the vanishing cycle δ can be represented by the

map Sn−1 → F given by u 7→ (u, 0) (it is the 0-section of the tangent bundle for
Sn−1). The relative cycle (c, c′) is represented by Dn−1 → F given by tv 7→ (e1, tv).
Clearly the only intersection between the images of these two maps is when u = e1
and v = 0. To determine 〈c, δ〉 we therefore only need to compute an intersection
multiplicity, by juxtaposing oriented bases for the tangent space to c and the tangent
space to δ and comparing the resulting basis to the chosen orientation of F .

The disk bundle model for F consists of points (u, v) such that |u| = 1,
|v| ≤ 1, and u · v = 0. Near the point (e1, 0) we choose local coordinates
u2, . . . , un, v2, . . . , vn. The orientation for F comes from the complex structure,
however, and that tells us that u2, v2, u3, v3, . . . , un, vn would be an oriented coor-
dinate system for F .

The tangent space to δ at (e1, 0) has coordinates u2, . . . , un. The tangent
space to (c, c′) at (e1, 0) has coordinates v2, . . . , vn. So to compute the intersection
multiplicity we compare the two coordinate systems

[v2, v3, . . . , vn, u2, u3, . . . , un] and [u2, v2, . . . , un, vn]

The number of transpositions needed to move from the first to the second is

(n− 1) + (n− 2) + (n− 3) + · · ·+ 1 = n(n−1)
2 .

So 〈c, δ〉 = (−1)(
n
2). �





CHAPTER 7

Deligne’s proof of the Riemann hypothesis

In this chapter we present Deligne’s first proof.

1. Grothendieck L-functions

L-functions are generalizations of zeta functions. Like zeta functions, one starts
with an algebraic or number-theoretic object and from this data constructs—in
some way—an analytic function defined on a portion of the complex plane. Typi-
cally this function will decompose as an infinite product, have an analytic contin-
uation to the entire complex plane, and certain “special values” of this analytic
continutation will encode interesting information about the original object. There
is no abstract definition of the class of mathematical objects called “L-functions”.
Rather, there is a collection of examples which arise in different contexts, and in
some cases deep conjectures about how some examples relate to others.

In the context of algebraic geometry over finite fields, Grothendieck’s L-
functions are a very mild generalization of the zeta functions we have already
seen—essentially it is just the generalization from constant coefficents to twisted
coefficients that one is familiar with from topology. These L-functions play a crucial
role in Deligne’s proof, however. His proof works by reducing the Riemann hypoth-
esis for zeta functions of varieties to a related claim about more general L-functions
over curves .

Strictly speaking, we could probably give the relevant facts about Grothendieck’s
L-functions fairly quickly and be done with it. But in order to set this material
into a larger context, we will first give a brief—in fact, very brief—overview of the
L-functions from analytic number theory that serve as their prototypes.

1.1. The Riemann zeta function. Recall one has ζ(s) =
∑∞

n=1 n
−s and

this also admits a product description as

ζ(s) =
∏

p

(1 − p−s)−1

where p ranges over all primes in Z. The factors (1 − p−s)−1 are called Euler
factors.

1.2. Dirichlet L-functions. Fix a positive integer m > 1 and a homomor-
phism χ : (Z/mZ)∗ → C∗ (called a character of the group (Z/mZ)∗). Extend χ to
a function χ̃ : Z→ C by

χ̃(k) =

{
0 if (k,m) 6= 1,

χ([k]) otherwise, where [k] is the reduction of k mod m.

One can check that χ(kl) = χ(k)χ(l) for all integers k and l.

153



154 7. DELIGNE’S PROOF OF THE RIEMANN HYPOTHESIS

Define the Dirichlet L-function as Lχ(s) =
∑∞

n=1 χ(n)n−s and check that one
can also write this as

Lχ(s) =
∏

p

(1− χ(p)p−s)−1.

One proves that this function is analytic in the range Re(s) > 0, and admits an
analytic continuation to the entire complex plane.

1.3. Hecke L-functions. ?????

1.4. Artin L-functions. Here one starts with a Galois extension L/K of
number fields. Write OK →֒ OL for the rings of integers in K and L. Given a prime
ideal p in OK , its expansion into OL will typically not be prime: instead it will
factor (uniquely) as

p = qe1
1 · · · qeg

g

where each qi is a prime in OL. Here is a list of facts one can prove about this
decomposition:

(1) Let n = [L : K] = #Gal(L/K). Applying NL/K to the above equation gives

pn = NL/K(q1)
e1 · · ·NL/K(qg)

eg .

By uniqueness of prime factorization of ideals, for each i one must have
NL/K(qi) = pfi for some fi ≥ 1.

(2) One can prove that fi is the degree of the field extension [OL/qi : OK/p].
(3) Gal(L/K) acts transitively on the qi’s, therefore e1 = e2 = · · · = eg and

f1 = f2 = · · · = fg. So let us drop the subscripts and just write e and f . The
number e is called the ramification degree of p, and f is called the residue
field degree of p. When e = 1 the prime p is called unramified.

(4) Substituting ei = e and fi = f into the equation equation from (1) we find that
efg = n.

(5) For each prime q of OL, let Gq →֒ G be the subgroup of automorphisms which
fix q. This is called the decomposition subgroup for the prime q. Since G
acts transitively on the qi’s (a set of size g), we have that #Gq = #G

g = n
g = ef .

(6) There is a homomorphism Gq → Gal(Lq/Kp), and one can prove that it is
surjective. The kernel is called the inertia group of q, and written Iq:

1→ Iq → Gq → Gal(Lq/Kp)→ 1.

(7) #Iq =
#Gq

#Gal(Lq/Kp) = ef
f = e.

(8) Lq/Kp is an extension of finite fields, so the group Gal(Lq/Kp) is cyclic and is

generated by the Frobenius homomorphism x 7→ x(Np)f

(where Np = #Kp).
A preimage of this element in Gq is called a Frobenius element for q over p
and denoted φq/p. Note that if p is unramified then #Iq = e = 1 and therefore
this Frobenius element is uniquely defined.

(9) If σ ∈ G and σ(q) = q′ then φq′/p = σφq/pσ
−1. (In particular, if G is abelian

then the Frobenius element φq/p does not depend on the choice of q.)

Now let V be a representation of G acting on a complex vector space. Let
ρ : G→ Aut(V ) denote the action map. Define a function LV (s) by

LV (s) =
∏

p⊆OK

det(id− (Np)−s · ρ(φq/p))
−1
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where the product is over all unramified primes of OK and for each such prime
one chooses a prime q ⊆ OL lying over it. Note that each of the local factors
det(id − (Np)−1ρ(φq/p))

−1 seems to depend on the choice of prime q, but by fact
(9) above it does not: different choices of q’s give rise to conjugate Frobenius
elements, which will have the same characteristic polynomial.

The function LV (s) is not quite the Artin L-function attached to the repre-
sentation V , but it is close. To construct the Artin L-function one has to add to
the above product certain factors for each of the ramified primes of OK , and the
description of these factors is more complicated—it would be too much of a dis-
traction at the moment. The above definition is good enough to get the general
idea.

Observe that the notion of Artin L-function generalizes that of Dirichlet L-
function. If L = Q(µm), then Gal(L/Q) ∼= (Z/mZ)∗. A representation of this
Galois group on C is precisely given by a character, and the Dirichlet L-function
for this character corresponds with the Artin L-function (is this true?)

1.5. Grothendieck L-functions. We now come to the case we really care
about. Let X be a scheme over a finite field Fq. Let F be a constructible Ql-sheaf
on X . Let F : X → X be the Frobenius morphism.

???
Now one defines

LX,F(t) =
∏

x∈|X|
det(id− tdeg(x)F ∗

x |Fx)−1.

Two observations are worth making right away. First, if 0→ F′ → F → F′′ → 0 is
a short exact sequence of sheaves then one has

LX,F(t) = LX,F′(t) · LX,F′′(t).

Second, if F is the constant sheaf Ql then the local factors just reduce to (1 −
tdeg(x))−1 and we have

LX,Ql
(t) =

∏

x∈|X|
(1 − tdeg(x))−1 = ζX(t).

Grothendieck proved a Lefschetz trace formula for L-functions:

Theorem 1.6 (Local trace formula). For each n ≥ 1,

∑

x∈X(Fqn)

Tr((Fn)∗; Fx) =

∞∑

i=0

(−1)i Tr((F ∗)n|Hi
c(X;F)).

Corollary 1.7. One has the formula

LX,F(t) =
∏

i

[
det(id− tfF ∗|Hi

c(X;F))
](−1)i+1

.

2. First reductions of the proof

Fix a smooth, projective variety X/Fq. We will say that “the Riemann hypoth-

esis holds for X in dimension i” if all the eigenvalues of Frobenius on Hi(X; Ql)
have absolute norm qi/2.
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Proposition 2.1. Fix a finite field Fq and a prime l such that (l, q) = 1.
Assume there is a real number C > 0 such that for all smooth, even-dimensional,
projective varieties X over Fq, the eigenvalues of Frobenius on HX(X ; Ql) are less

than C ·qX/2. Then the Riemann hypothesis holds for all smooth, projective varieties
Y over Fq and all i ≥ 0.

The above proposition is telling us three things:

(1) We can restrict to studying the Riemann hypothesis on the middle-dimensional
cohomology groups;

(2) We can restrict to looking at even-dimensional varieties;
(3) We do not have to prove the Riemann hypothesis on the nose: it is enough to

bound the norms of the eigenvalues by some fixed multiple of qX/2.

The proof that these restrictions are sufficient is very easy: it only uses the Künneth
and Weak Lefschetz theorems.

Proof. We first show that for all smooth, projective varieties X/Fq of dimen-
sion d, the Riemann hypothesis holds in dimension d. Let α be an eigenvalue of
Frobenius on Hd(X ; Ql). Then for every k > 0, α2k is an eigenvalue of Frobenius

on H2kd(X2k; Ql) by the Künneth Theorem. By hypothesis we therefore have

|α|2k = |α2k| ≤ C · qkd

(and likewise for all the conjugates of α). Taking roots then gives

|α| ≤ C1/2k · qd/2,

and taking the limit as k 7→ ∞ gives that |α| ≤ qd/2.
By Poincaré Duality we know that qd/α is another eigenvalue of Frobenius on

Hd(X ; Ql). Applying the above arguments to this eigenvalue shows |qd/α| ≤ qd/2,
or qd/2 ≤ |α|. So in fact we have |α| = qd/2, as desired. This completes the first
step of the proof.

We have now shown that the Riemann hypothesis holds for all middle-
dimensional cohomology groups. We now prove that it holds for all cohomology
groups Hi(Y ; Ql), by an induction on dimY −i. The base was just established, and
the induction step is taken care of by the Weak Lefschetz Theorem. To be precise,
let Y be a smooth, projective variety overy Fq of dimension d and let i < dim Y .
Let Z →֒ Y be a smooth hyperplane section of Y . By the Weak Lefschetz Theorem,
Hi(Y ; Ql)→ Hi(Z; Ql) is an isomorphism. But by induction we know the Riemann
hypothesis for the eigenvalues of Frobenius on Hi(Z; Ql), and so we are done. �

For the second reduction in the proof we make use of Lefschetz pencils. Let
X/Fq be a smooth, projective variety of dimension d. Assume by induction that we
have a bound for the norms of the eigenvalues of Frobenius on middle-dimensional
cohomology groups for (d − 1)-dimensional varieties. We know that there exists
a Lefschetz Pencil f : X ′ → P1, with X ′ constructed as a blow-up of X along a
(d− 2)-dimensional subvariety Z →֒ X .

????
There is a spectral sequence

Ep,q
2 = Hp(P1;Rqf∗(Ql))⇒ Hp+q(X ′; Ql).

We know that Hp(P1; F) = 0 for p > 2, so this spectral sequence consists of three
vertical lines and a single column of differentials (from the p = 0 line to the p = 2
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line). The Frobenius acts on the entire spectral sequence (commuting with the
differentials), and so to analyze the eigenvalues of Frobenius on Hd(X ′; Ql) it will
be enough to analyze the eigenvalues on the three groups

H0(P 1;Rdf∗(Ql)), H1(P 1;Rd−1f∗(Ql)), and H2(P 1;Rd−2f∗(Ql)).

More specifically, the spectral sequence gives a filtration

Hd(X ′; Ql) = V0 ⊇ V1 ⊇ V2 ⊇ 0

that is preserved by the Frobenius map, together with isomorphisms

V0/V1
∼= ker[d : H0(P1;Rdf∗(Ql))→ H2(P1;Rd−1f∗(Ql))]

V1/V2
∼= H1(P 1;Rd−1f∗(Ql)),

V2
∼= coker[d : H0(P1;Rd−1f∗(Ql))→ H2(P1;Rd−2f∗(Ql))].

The reduction is accomplished through several applications of the following lemma:

Lemma 2.2. Let E be a field and suppose we have a commutative diagram of
finite-dimensional E-vector spaces

0 // V ′

f ′

��

// V

f

��

// V ′′

f ′′

��

// 0

0 // V ′ // V // V ′′ // 0

where the two rows are the same short exact sequence. Then Pt(f) = Pt(f
′)·Pt(f

′′).

Proof. This is elementary. Pick a basis for V ′ and extend it to a basis for V .
Decompose the matrix for f with respect to this basis into the four evident blocks,
and compute a determinant. �

At this point the proof breaks up into three pieces. For brevity, write Ri =
Rif∗(Ql).

The eigenvalues of Frobenius on H2(P1;Rd−2).

From our knowledge of Lefschetz pencils, the sheaf Rd−2 in constant on P1 with
fiber Hd−2(Y ; Ql). It follows that

H2(P1;Rd−2) ∼= H2(P1; Ql)⊗Hd−2(Y ; Ql).

We know that Frobenius acts on H2(P1; Ql) with eigenvalue q, and by induction
it acts on Hd−2(Y ; Ql) with eigenvalues having absolute norm q(d−2)/2 (use Weak

Lefschetz!) So the eigenvalues on H2(P1;Rd−2) have the required norm.

The eigenvalues of Frobenius on H0(P1;Rd).

This case is similar to the previous one, but slightly harder. We again have
that the sheaf Rd is constant on P1, but now with fiber Hd(Y ; Ql). So

H0(P1;Rd) ∼= Hd(Y ; Ql).

But we know the Riemann hypothesis for Hd(Y ; Ql) by induction, as dimY = d−1.
????

The eigenvalues of Frobenius on H1(P1;Rd−1).
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This is the crucial, and difficult, case. Let j : U →֒ P1 be the inclusion. Then
Rd−1 ∼= j∗E⊕A, where A is the constant sheaf with stalks Hd−1(F ; Ql). Then

H1(P1;Rd−1) ∼= H1(P1; j∗E)⊕H1(P1; A) ∼= H1
c (U ; E)⊕ 0 = H1

c (U ; E).

At this point the proof breaks up into three subcases. Before analyzing these, note
that we have at this point reduced the whole question of the Riemann Hypothesis
to analyzing the eigenvalues of Frobenius on certain groups H1

c (U ; E), where U is
an open subscheme of P1 and E is a certain locally constant sheaf on U . In what
follows, we will make use of some further special properties about E.

???????

3. Preliminaries on the symplectic group

Let V be a vector space over a field E, and assume that V is equipped with
a skew-symmetric, non-degenerate bilinear form 〈−,−〉. Skew-symmetric means
〈v, w〉 = −〈w, v〉 and non-degenerate means that 〈v,−〉 is the zero functional only
when v = 0. A form having these two properties is called a symplectic form.

Define Sp(V ) to be the subgroup of GL(V ) consisting of automorphisms that
preserve the form: that is,

Sp(V ) = {h ∈ GL(V ) | 〈h(v), h(w)〉 = 〈v, w〉 for all v, w ∈ V }.
This is called the symplectic group of the pair (V, 〈−,−〉).

It turns out that a symplectic form can exist on V only when V is even-
dimensional, and that up to isomorphism V has only one such form. This is easy
to explain. Pick any nonzero element v1 ∈ V . Since the functional 〈v1,−〉 is
nonzero, it is surjective: so pick a vector w1 ∈ V with 〈v1, w1〉 = 1. Let V ′ =
(E.v1)

⊥ ∩ (E.w1)
⊥. Each of the two perpendicular complements is a hyperplane

in V , and they are not equal because v1 belongs to the former and not to the
latter. So V ′ is a codimension two subspace ov V . The restriction of 〈−,−〉 to
V ′ is readily checked to be non-degenerate, so repeat the above process for V ′.
Continuing inductively, one produces a basis v1, . . . , vn, w1, . . . , wn for V such that

(
〈vi, wj〉

)
i,j

=

[
O I
−I O

]
.

If we let J2n denote the block matrix in the above formula, let us define

Sp(2n,E) = {A ∈M2n×2n(E) |AJAT = J}.
Then this group is isomorphic to Sp(V ) for any 2n-dimensional symplectic space
V .

Now, if G is any group acting (on the left) on a vector space V , then one can
form the vector space of coinvariants (or orbit space)

VG = V/〈v − gv |v ∈ V, g ∈ G〉.
One can also look at the space V G of vector invariant under G, but this turns
out to be zero in most of the cases we will be interested in below. Instead one can
consider invariant functions defined on V . To be precise, let E[V ] denote the ring of
polynomial functions on V . Then G acts on the right on E[V ] by (φ·g)(v) = φ(g.v).
One can then consider the ring of coinvariants

E[V ]G = {φ ∈ E[V ] |φ · g = φ}.
The classical problems of invariant theory can be loosely stated as follows:
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Problem: For familiar groups G and familiar representations V , compute VG and
E[V ]G.

This was the subject of Weyl’s classic book ?????.
Now let G = Sp(V ). This acts naturally on V , as well as all the tensor powers

V ⊗k. Notice that E[V ⊗V ]G has an obvious element, namely the function φ(v, w) =
〈v, w〉. Generalizing this, suppose we have a partition P of {1, 2, . . . , 2r} into 2-
element subsets {iu, ju} with iu < ju, for 1 ≤ u ≤ r. Then we can construct a
function φP ∈ E[V ⊗2r]G by

φP(v1 ⊗ · · · ⊗ v2r) =
∏

u

〈viu
, vju
〉.

Such functions are called complete contractions .
Here is the classical theorem we will need:

Theorem 3.1. (a) When k is odd one has [V ⊗k]G = 0.
(b) When k is even, the ring of invariants E[V ]G is the subring of E[V ] generated

by the complete contractions.
(c) When k is even there is an isomorphism [V ⊗k]G ∼= E??? given by ??????.

4. The fundamental estimate

Let U be an open subset of A1 over the field Fq. Fix β ∈ Z and let F be a
Ql-sheaf on U with the following properties:

(1) F is equipped with a skew-symmetric bilinear form ψ : F ⊗ F → Ql(−β) which
is non-degenerate on each fiber Fx;

(2) The image of π1(Ū , u) in GL(Fu) is an open subgroup of Sp(Fu, ψu);
(3) For every x ∈ |U |, the polynomial det(id− tFx|Fx) has rational coefficients.

Under these hypotheses we will prove:

Proposition 4.1.

(a) For each x ∈ |U |, the eigenvalues of Fx on Fx are algebraic numbers of absolute

norm q
β/2
x .

(b) The eigenvalues of F on H1
c (Ū ; F) are algebraic numbers, and the norm of each

of their conjugates α satisfies

|α| ≤ q β
2 +1.

The proof proceeds by analyzing two descriptions of the L-function LU,F(t) and
playing them off of each other:

LU,F(t) =
∏

x∈|U|
det(id− tdeg(x)Fx|Fx)−1 =

∏

i

det(id− tF ∗|Hi
c(U ;F))

(−1)i+1

.

Note that the product on the left is a power series in Q[[t]], whereas the product
on the right is a rational function in Ql(t). Our method will consist in analyzing
the radius of convergence for the given analytic function, from the two different
perspectives.

The main ‘trick’, if that is the right word, is to consider the L-functions not
just for F but also for all the even tensor powers of F. It is only for these even
tensor powers that gets a close connection between the radius of convergence of the
product and that of the local factors.
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Let us begin by recalling that for any locally constant Ql-sheaf G on U ,

H0
c (U ; G) = 0 if i = 0 and U is affine;

H2
c (U ; G) = (Gu)π1(U,u) ⊗Ql

Ql(−1)

Hi
c(U ; G) = 0 if i > 2.

This gives that
LU,F(t) = det(id− tF ∗|H1

c (U ;F))

and also that

LU,F⊗(2k)(t) =
det(id− tF ∗|H1

c (U ;F⊗(2k)))

(1− tqkβ+1)
.

In particular, note that the radius of convergence of LU,F(t) is infinite, whereas
that of LU,F⊗(2k)(t) is q−kβ−1. The reader will see in a moment why we are only
interested in the even tensor powers of F.

Now let us turn to the local product description for LU,F⊗(2k)(t).

Lemma 4.2. The radius of convergence of each of the local factors

det(id− tdeg(x)F ∗
x |F⊗(2k)

x )−1

is greater than or equal to the radius of convergence for LU,F⊗(2k)(t).

Proof. Write Lx(t) for the local factor at x, and write L(t) =
∏

x∈U Lx(t)
for the L-function. First observe that the logartihmic derivatives L′

x(t)/Lx(t) are
rational power series with positive coefficients. This follows from the formula

L′
x(t)/Lx(t) =

∞∑

n=0

Tr(Fn
x |F⊗(2k)) · tn+1

and the fact that Tr(Fn
x |F⊗(2k)) = Tr(Fn

x ,F)2k. Here we are using the even powers!
It follows that log(Lx(t)) is a power series with positive rational coefficients, as

d
dt [log(Lx(t))] = L′

x(t)/Lx(t). Therefore Lx(t) = exp(log(Lx(t))) also has positive
rational coefficients.

Let L(t) =
∑

n ant
n and Lx(t) =

∑
n bnt

n. Then the product formula L(t) =∏
x Lx(t) and the positivity of the b’s shows that bn ≤ an for all n. It follows that

if L(t) absolutely converges for some chosen t, then Lx(t) also converges absolutely.
This is what we wanted. �

Let α be an eigenvalue for F ∗
x acting on Fx. Then α2k is an eigenvalue for F ∗

x

acting on F⊗(2k)(x), and so α−2k/ deg(x) is a pole for the local factor at x. Therefore
we must have

|α−2k/ deg(x)| ≤ q−kβ−1,

which we may rewrite as

[qdeg(x)]
β
2 + 1

2k ≤ |α|.
As this holds for all k ≥ 1, we therefore have

qβ/2
x ≤ |α|.

But duality guarantees that if α is in eigenvalue of F ∗
x acting on Fx, then so is

qβ
x/α. Applying the same argument as above to this second eigenvalue, we get

qβ/2
x ≤ |qβ

x/α|,
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or
|α| ≤ qβ/2

x .

So |α| = q
β/2
x , and this completes the proof of Proposition 4.1(a).

To prove Proposition 4.1(b) we return to the L-function for F itself:

LU,F(t) =
∏

x∈|U|
det(id− tdeg(x)Fx|Fx)−1 = det(id− tF ∗|H1

c (U ;F)).

We know at this point that the radius of convergence for each local factor is q−β/2.
Using the fact that the points of U , indexing the product, are easy to understand,
we will prove that the radius of convergence of the Euler product is at least q−1−β/2.
This implies, in particular, that the Euler product is not zero in this range. So if
α is an eigenvalue for F acting on H1

c (U ; F), then 1
α is a zero of the L-function

LU,F(t), and therefore we must have
∣∣∣ 1α
∣∣∣ ≥ q−1−β/2.

Taking reciprocals we get |α| ≤ q1+β/2, as desired.
So what is left to do is to prove that the radius of convergence for the Euler

product is at least q−1−β/2 as claimed. Let N denote the rank of F, and write

det(id− tFx|Fx) = (1 − αx,1t)(1 − αx,2t) · · · (1 − αx,N t).

Then taking log of the Euler product gives

−
∑

x∈U

N∑

i=1

log(1 − αx,it
deg(x)),

and we must decide when this series converges. By a standard result from complex
analysis (see [A, Theorem 6 of Chapter 5 and the discussion preceding it]), this
series converges absolutely if and only if the series

∑

x∈U

N∑

i=1

|αx,it
deg(x)|

converges absolutely. But now we are in business, as we know that |αx,i| = q
β/2
x

for each x and i. So we are really looking at the series

S(t) = N ·
∑

x∈U

qβ/2
x |tdeg(x)|.

If |t| < q−1−β/2 then we can write

|t| = q−1−β/2 · q−ǫ

for some ǫ > 0. Then

S(t) < N ·
∑

x∈U

qβ/2
x · q−1−β/2−ǫ

x = N
∑

x∈U

q−1−ǫ
x = N ·

∞∑

i=0

uiq
(−1−ǫ)i,

where ui is the number of closed points x of U having deg(x) = i.
But U is a subvariety of A1, and A1 has at most qi points of degree i. So

S(t) < N ·
∞∑

i=0

qi · q(−1−ǫ)i =

∞∑

i=0

(q−ǫ)i,
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and the series on the right converges because q−ǫ < 0.

5. Completion of the proof

Recall where we left off at the end of Section 2: we need to prove that the
eigenvalues of F on H1

c (U ; E) have absolute norm qd/2. The sheaf E has a skew-
symmetric bilinear form ψ : E⊗E→ Ql(−d/2), but we do not know that this pairing
is nondegenerate (this is the content of the Hard Lefschetz Theorem!) The proof
now breaks down into three cases:
Case 1: E ∩ E⊥ = 0, i.e., the pairing ψ is nondegenerate.

This is the main case. In fact, if the Hard Lefschetz Theorem is true then this
must happen; but we don’t know the Hard Lefschetz Theorem yet.

The cup product on Hd−1(Y ; Ql) gives rise to an alternating bilinear form
E⊗ E→ Ql(−d/2). Since E ∩ E⊥ = 0, this form is nondegenerate. In this case we
refer to the “Fundamental Estimate”, Proposition 4.1(b), and we are done.

Case 2: ????.

Case 3: E ⊆ E⊥. ???
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CHAPTER 8

Algebraic K-theory

The subject of K-theory spans both algebraic topology and algebraic geometry,
and has a circuitous history. It starts in algebraic geometry, with Grothendieck’s
introduction of the group K(X)—for X a scheme—in his work on the Riemann-
Roch theorem. It them jumps to algebraic topology, where Atiyah and Hirzebruch
took the analog of K(X)—now for X a topological space—and extended it to an
entire cohomology theory K∗(X). Grothendieck’s original group is now written
K0(X). Back in algebraic geometry, there were then efforts over about ten years
to define “algebraic” versions of the Atiyah-Hirzebruch groups K∗(X), where X is
once again a scheme. This culminated with the work of Quillen in the early 1970s,
giving us a definitive version of what one now calls “higher algebraic K-theory”.

In this chapter our aim is to give a brief overview of this subject. We start
at the very beginning, with the connection between vector bundles and projective
modules.

There is an unfortunate notational annoyance which comes up when dealing
with algebraic K-theory, and we might as well get this out of the way at the
beginning. In algebraicK-theory, the group which is the “analog” of the topological
groupKn(X) is unfortunately written K−n(X). This is partly because these groups
turn out to be the most interesting when n is negative, and so the algebraic K-
theory notation eliminates having to write a bunch of minus signs everywhere. But
the notation is very unfortunate, because something which is trying hard to be a
cohomology theory ends up not really “looking” like a cohomology theory. It is also
rather annoying, when X is a variety over the complex numbers, to have to write
the comparison map from algebraic to topological K-theory as

Kn(X)alg −→ K−n(X)top.

Throughout this chapter we will constantly mix notations, and write

Kn(X) = K−n(X)

for the same group. Our preference, thought, will always be for the latter, coho-
mological notation, because this results in the most natural-looking formulas. The
former notation is in some sense forced on us because it is what everyone uses, but
it would be better if it could be abandoned altogether.
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Part 4

Motives and other topics





CHAPTER 9

Motives

In this chapter we attempt to give a first look at motives. Our discussion will
often be a bit wishy-washy. The aim is not to give a careful, rigorous exposition
but rather to give an overall picture for how one can think about this material.

1. Topological motives

There is indeed a theory of “motives” for topological spaces, although one does
not usually use that term. We’ll start by talking about this because it will be a
very useful guide when we start fantasizing about motives for algebraic varieties.

Let Ab(Top) denote the category of abelian group objects in topological
spaces—that is, the category of topological abelian groups. We will sometimes
write this as AbTop when the parentheses become cumbersome. There are some
evident objects in this category: the discrete abelian groups, the tori S1× · · ·×S1,
and extensions of tori by discrete abelian groups. Every topological abelian group
which is a finite CW-complex is such an extension of a torus. To see this, note
that in an n-dimensional CW -complex there are points with neighborhoods home-
omorphic to Rn. In a topological group, every point looks like every other point
locally—so if the group is a finite CW-complex, it is actually a manifold. Some
nontrivial smoothing theory shows that it is therefore a compact abelian Lie group,
and the classification of these is well-known.

It is important to realize that Ab(Top) has many objects besides these finite-
dimensional ones. Let X be any topological space. The free abelian group on
the underlying set of X inherits a topology from X , and we will denote this new
space as Ab(X). The resulting functor Ab : Top → Ab(Top) is the left adjoint to
the forgetful functor. If (X,x) is a pointed space it is useful to also consider the

reduced abelianization Ãb(X) = Ab(X)/〈x〉. Here we are just forcing x to be the
zero element of our group.

The spaces Ab(X) give us a multitude of objects in Ab(Top). They are typically
infinite-dimensional, however. Here are a few examples worth mentioning:

Example 1.1. Ãb(S1) ∼= S1, Ãb(RP
2) ∼= RP

∞, and Ãb(S2) ∼= CP∞. We
explain the last isomorphism, and leave the reader to ponder the others. Regard
S2 as the Riemann sphere CP 1, or better yet the extended complex plane C ∪∞.
Take ∞ to be the basepoint. Regard CP∞ as the space of lines in the infinite-
dimensional vector space C(t).

An element of Ãb(S2) is a formal word
∑

i ni[zi]. Define a map h : Ãb(S2) →
CP∞ by sending

∑
i ni[zi] to the line in C[t] spanned by the rational function∏

i(t − zi)
ni . This is the rational function whose set of zeros is the formal sum∑

i ni[zi], where we are counting zeros with multiplicities and regarding poles as
zeros with negative multiplicity. It is easy to see that h is continuous and injective.
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The fundamental theorem of algebra shows that h is surjective. We leave it to the
reader to complete the proof that h is a homeomorphism.

The following is the most important theorem about abelianizations:

Theorem 1.2 (Dold-Thom). For any space X one has canonical isomorphisms
πi(Ab(X), 0) ∼= Hi(X ; Z). If X is pointed then there are canonical isomorphisms

πiÃb(X) ∼= H̃i(X ; Z).

Note that by the Dold-Thom theorem it follows that Ãb(Sn) is a K(Z, n). More
generally, if n ≥ 1 and M(n, q) denotes the cofiber of the multiplication-by-q map

Sn → Sn then Ãb(M(n, q)) is a K(Z/q, n).
The category Ab(Top) has a model category structure in which a map is a weak

equivalence or fibration if and only if it is so when regarded in Top. The functor
Ab is a left Quillen functor, and so for X a cofibrant space and Z ∈ Ab(Top) one
has the adjunction formula

Ho (Top)(X,Z) ∼= Ho (AbTop)(Ab(X), Z).(1.3)

For pointed spaces X one has

Ho (Top∗)(X,Z) ∼= Ho (AbTop)(Ãb(X), Z)

where the basepoint of Z is its zero element. Using that Ãb(Sn) is a K(Z, n), we
can now write formulas such as

Hn(X ; Z) ∼= [X,K(Z, n)] ∼= Ho (AbTop)(Ab(X), Ãb(Sn)).

We can also represent singular homology entirely within the context of Ab(Top),
via the formula

Hn(X ; Z) ∼= Ho (Top∗)(S
n,Ab(X)) ∼= Ho (AbTop)(Ãb(Sn),Ab(X)).

The point is that singular homology and cohomology are representable in
Ho (AbTop). Of course they are also representable in Top, but Top has quite a
bit of information which can’t be seen by singular cohomology. We will see below
that Ab(Top) only has information which can be seen by singular cohomology.

1.4. Algebraic models. As a model category, Top is Quillen equivalent to
sSet. One can then see that Ab(Top) is Quillen equivalent to Ab(sSet). Note that
the latter is just the category of simplicial abelian groups, with its usual model
structure where weak equivalences and fibrations are determined by forgetting into
sSet. Finally, recall that the category of simplicial abelian groups is equivalent to
the category of non-negatively graded chain complexes of abelian groups. So we
have Quillen equivalences

Ab(Top) ≃ Ab(sSet) ≃ Ch≥0(Z).

This gives an algebraic model for Ab(Top). What chain complex does Ab(X) cor-
respond to under these maps? It is just the singular chain complex of X .
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1.5. Splittings. Every space X can be constructed up to homotopy as a cell
complex. A related fact is that every topological abelian group decomposes—up
to homotopy—as a product of Eilenberg-MacLane spaces. Probably the easiest
way to prove this is to use the Quillen equivalence of Ab(Top) with Ch≥0(Z) to
reduce the problem to homological algebra. It is a well-known fact that every non-
negatively graded chain complex is quasi-isomorphic to its homology, regarded as
a chain complex with zero differential.

This observation has an important consequence. IfX and Y are any two spaces,
then one can consider the abelian groups

Ho (AbTop)(Ab(X),Ab(Y )).

But since Ab(Y ) splits as a product of Eilenberg-MacLane spaces, this abelian group
splits into products of singular cohomology groups of X , with various shiftings and
coefficients. Thus, studying the category Ab(Top) is really just studying singular
cohomology.

1.6. Motivic notation. The space Ab(X) should be called the unstable

topological motive of X , and we’ll sometimes denote it M(X). The space Ãb(X)

is the unstable reduced motive, denoted M̃(X). The space Ãb(Sn) is denoted
Z[n]. Under the Quillen equivalence with chain complexes, Z[n] is just a chain
complex with Z in dimension n and zeros elsewhere.

The category Ab(Top) is the category of “unstable topological motives”, and
its homotopy category is the “derived category of (unstable) topological motives”.

Note that Ab(Top) has a tensor product: if X and Y are topological abelian
groups then the algebraic tensor product inherits a topology in a natural way.
Tensoring with Z[1] is just the suspension in the model category Ab(Top) (use the
equivalence with chain complexes, for instance). One sometimes writes X [k] for
X ⊗ Z[k].

In our new notation our formulas for singular homology and cohomology be-
come

Hn(X ; Z) ∼= Ho (AbTop)(Ab(X),Z[n])

and
Hn(X ; Z) ∼= Ho (AbTop)(Z[n],Ab(X)).

1.7. Stable motives. One can stabilize the category of spaces to form spec-
tra. One can stabilize the category of non-negatively graded chain complexes to
get all Z-graded chain complexes. In the same way, we can stabilize the model
category Ab(Top). This produces a model category we’ll call the category of stable
topological motives. It is Quillen equivalent to Z-graded chain complexes. The
suspension spectrum of Ab(X) will be called the (stable) topological motive of X ,
and will also be denoted M(X) by abuse.

Note that the category Ab(Top) was already semi-stable, in the sense that

Ho (AbTop)(A,B) ∼= Ho (AbTop)(ΣA,ΣB).

Here Σ denotes the suspension in Ab(Top), which is not the suspension of underlying

topological spaces; the suspension in Ab(Top) is instead tensoring with Ãb(S1). In
motivic notation, it is A 7→ A[1]. Here again, it is probably easiest to justify the
above semi-stability formula by working in the category Ch≥0(Z).
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Because of this semi-stability, the process of stabilization does not really do
much to the maps...it only adds new objects, namely formal desuspensions and
colimits of such things. So for instance, if A,B ∈ Ab(Top) then

Ho (AbTop)(A,B) ∼= Ho (Spectra(AbTop))(Σ∞A,Σ∞B).

Again, compare the passage from Ch≥0(Z) to Ch(Z).

1.8. The moral. There are a multitude of generalized cohomology theories
for topological spaces, but among these one can isolate certain special ones which
we’ll call “abelian”. These are the cohomology theories which can be calculated as
the homology groups of a chain complex functorially associated (contravariantly) to
every space X . So these include singular cohomology theory with any coefficients
and shifts of such cohomology theories, but excludes things like K-theory and
cobordism.

One way to obtain an abelian cohomology theory is to start with a spectrum
object E in Ab(Top). One gets an ordinary spectrum by forgetting the abelian
group structures. For each X , the mapping space (or spectrum) from Ab(X) to E
can be modelled by a chain complex. So the E-cohomology groups of X are indeed
the cohomology groups of functorial chain complexes.

By adapting the classical proof of Brown representability, one can in fact show
that every abelian cohomology theory is represented by a spectrum object over
Ab(Top)—that is, by an element of Spectra(AbTop). So this category is in some
sense encapsulating everything that can be studied using abelian cohomology the-
ories.

One can think of the stable motive M(X) of a space as a ‘shadow’ of X , in
which many of the features of X have been lost—the things that haven’t been lost
are presicely those things which can be seen by some abelian cohomology theory.

This perspective may seem strange when applied to topological spaces, because
all abelian cohomology theories break up into pieces that look like singular coho-
mology theory with coefficients. The category of stable motives is just the category
of chain complexes, and all we are saying is that the singular chain complex of X
encodes exactly that information which can be seen by singular cohomology. It is
practically a tautology. The real point of this perspective is not what it gives us
for spaces, but what it may give us in the setting of other model categories.

The picture we’ve described in this section—that of looking at the abelian
group objects in Top and using this category as a kind universal setting for sin-
gular homology cohomology—was introduced into topology by Quillen. He used
it to define what is now called André-Quillen cohomology of commutative rings,
by applying the same ideas to the model category of simplicial commutative rings.
Quillen was surely very much aware of Grothendieck’s ideas about motives, so it
seems likely they influenced him here.

2. Motives for algebraic varieties

Let k be a field and consider the category Sm/k of smooth schemes of finite
type over k. More generally one might consider all schemes of finite type, but for
the moment let’s be content with smooth ones.

To each scheme X one can associated the sequence of l-adic cohomology groups
H∗(X ; Zl), one sequence for every prime l different from the characteristic of k. If
X is defined over C one can also look at the singular cohomology groups of the
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analytic space X(C). There are also crystalline cohomology groups, algebraic de
Rham cohomology groups, and probably others. These cohomology theories have
a number of things in common with each other.

Grothendieck envisioned a category M(k) which would be something like a
‘shadow’ of the category Sm/k. This category would only see cohomological infor-
mation about smooth schemes. There would be a functor M : Sm/k→M(k) which
sent every scheme to its ‘shadow image’, and all the cohomology theories mentioned
in the last paragraph would factor through this functor. Theorems which held for
all of these cohomology theories were supposed to really be theorems about the
category M(k). Each object M(X) was called the motive of the scheme X , and
M(k) was called the category of motives. Sometimes Grothendieck and his followers
described the functor M as a ‘universal cohomology theory’.

One thing we should mention right away is that when Grothendieck and others
of that era talked about ’cohomology theories’ for varieties they only had in mind
analogs of abelian cohomology theories. Algebraic K-theory—as a full cohomology
theory—hadn’t even been invented yet, so they weren’t thinking about things like
that at all. Nowadays we have to be careful to say that one would not expect
algebraic K-theory to factor through M , only those cohomology theories of a more
’abelian’ nature.

Based on our discussion of topological motives from the last section (a set of
ideas which was not available to Grothendieck and only later introduced by Quillen),
we see now that Grothendieck was wanting something like a category of abelian
group objects Ab(Sm/k). Yet this is not quite right as stated. An abelian group
object in Sm/k is just an abelian variety. While there are many of these, under our
analogy with topology they are really only giving us those abelian group objects
which are finite-dimensional—the torii and extensions of torii by discrete groups.
For reasons we will see in just a moment, this is enough to basically constructM(X)
when X is an algebraic curve. But as soon as we move to varieties of dimension
at least two, we would expect M(X) not to just decompose into abelian varieties.
The moral is that to construct M(k) we will need a host of new objects.

2.1. Getting familiar with motives. For the moment let us postpone any
discussion of how to construct M(k) and instead focus on what we expect this
category to be like. I want to develop some conventions about notation and also
write down a series of ‘facts’ one would like to hold. The point for the moment is
not to do any serious mathematics but rather to build up some intuition for how
to work with motives.

(1) Based on the situation in topology, we can hope for a stable, additive model
category M(k) and a functor M : Sm/k→M(k).

(2) We also expect to have an embedding j : Ab(Sm/k) → M(k)—that is to say,
every abelian variety should be a motive. If J is an abelian variety we will
usually simplify j(J) to just J .

Discussion: The situation is a little confusing because on the one hand J has
a motive M(J), but at the same time J is a motive via j(J). And M(J) and
j(J) will almost always be different. The thing to remember is that M(J) only
depends on the underlying variety of J , not the group structure; whereas j(J)
really depends on the group structure.
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(3) If X is an object in M(k) we will denote its suspension by either ΣX (topolo-
gists’ notation) or X [1] (geometers’ notation).

(4) The object M(Spec k) will be very special, and we’ll denote it by Z(0) (in
analogy with the topological case, where the motive of a point is the discrete
abelian group Z). Sometimes we’ll abbreviate Z(0) to just “Z”; for instance,
we will write Z[i] instead of Z(0)[i]. But note that this is just notation—the
object Z(0) is certainly not just the usual abelian group Z.

(5) For every X ∈ Sm/k we define the reduced motive M̃(X) to be the homotopy
fiber of M(X)→M(Spec k). Note that if X has a rational point then this map

has a splitting, so that M(X) ≃ M̃(X)⊕ Z(0).
(6) The category M(k) should have a tensor product which descends to the homo-

topy category. The unit will be Z(0).
(7) In addition to the object Z(0) just defined, there will be a special object Z(1)

called the “Tate object”. For q ≥ 0 we define Z(q) = Z(1)⊗q. Also, for each
q < 0 there will be a special object Z(q) and there will be isomorphisms

Z(i)⊗ Z(j) ∼= Z(i+ j)

for all i, j ∈ Z.
For A ∈M(k) the object A⊗ Z(q) will be denoted A(q).

Discussion: There isn’t really a topological analog of the object Z(q). The best
thing is to think about it as a ’twisted’ version of Z(0).

We can explain things a little further as follows. Consider the scheme
A1−0. If we were working over the complex numbers this would be a circle (up
to homotopy), and its reduced motive would therefore also be a circle—i.e., the
topological motive Z[1]. In algebraic geometry the reduced motive of A1 − 0
will not just be Z[1], but it will be an object which has a similar importance in
terms of cohomology in degree 1. The Tate object Z(1) is just the desuspension

of M̃(A1 − 0)—that is,

Z(1) ∼= M̃(A1 − 0)[−1] or M̃(A1 − 0) ∼= Z(1)[1].

(8) The objects Z(q)[n] will be called ‘motivic Eilenberg-MacLane spaces’.
(9) The fact that M(k) is a stable model category shows that there will be isomor-

phisms
Ho (M(k))(A,B) ∼= Ho (M(k)(A[1], B[1])

for any A,B ∈ M(k). Moreover, for any object Z the fact that tensoring with
Z is an additive functor gives us maps

Ho (M(k))(A,B)→ Ho (M(k))(A⊗ Z,B ⊗ Z).

If Z is invertible under the tensor product, then this map will be an isomor-
phism. So this applies in particular when Z is the object Z(q), giving us
isomorphisms

Ho (M(k))(A,B) ∼= Ho (M(k))(A(q), B(q))

for any q ≥ 0.

Discussion: So M(k) is “stable in two directions”.
(10) For any object A ∈M(k) one obtains a bigraded sequence of functors on smooth

schemes
X 7→ Ap,q(X) = Ho (M(k))(M(X), A(q)[p]).
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We’ll call this the bigraded A-cohomology of X .
The motivic cohomology groups of X are the bigraded groups

Hp,q(X ; Z) = Ho (M(k))(M(X),Z(q)[p]).

The motivic homology groups of X are the groups

Hp,q(X ; Z) = Ho (Z(q)[p],M(X)).

These groups are more commonly denoted

Hp,q(X ; Z) = Hp(X ; Z(q)) and Hp,q(X ; Z) = Hp(X ; Z(q)).

We will find ourselves going back and forth between the two notations indis-
criminately.

(11) If A ∈ M(k) it will be convenient for us to introduce the notation πi(A) =
Ho (AbTop)(Z[i], A) and more generally

πp,q(A) = Ho (AbTop)(Z(q)[p], A).

(12) If X ∈ Sm/k then the projection map X × A1 → X should induce a weak
equivalence M(X × A1) ≃M(X).

(13) If {U, V } is a Zariski open cover for a smooth scheme X then there should be
a homotopy cofiber sequence of the form

M(U ∩ V )→M(U)⊕M(V )→M(X)→ ΣM(U ∩ V ).

Discussion: Note that applying Ho (M(k))(−,Σ∗A(q)) will then induce a long
exact Mayer-Vietoris sequence for A∗,q(−). In particular, we get a Mayer-
Vietoris sequence for motivic cohomology.

(14) If E → X is an algebraic vector bundle of rank n then

M(P(E)) ≃M(X)⊕M(X)(1)[2]⊕M(X)(2)[4] · · · ⊕M(X)(n)[2n].

Written differently, M(E) ≃ ⊕n
i=0M(X)⊗ Ln where L = Z(1)[2].

(15) If X is a smooth projective curve then there will be a splitting

M(X) ≃ Z(0)⊕ Jac(X)⊕ Z(1)[2]

where Jac(X) is the Jacobian variety ofX (which is an abelian variety, regarded
as a motive via the functor j).

Discussion: For this one, we should compare the analogous situation in topol-
ogy. Let W be a compact Riemann surface. Then the topological motive of W
splits as a product of Eilenberg-MacLane spaces, and the types can be predicted
from H∗(W ) using the Dold-Thom theorem:

Mtop(W ) ≃ Z× [K(Z, 1)× · · ·K(Z, 1)]×K(Z, 2).

Here there are 2g copies of K(Z, 1), where g is the genus of W . Note that the
Jacobian variety of W is topologically a torus, and it is known classically that
the rank is 2g. So the product of K(Z, 1)’s in the above splitting is precisely
the Jacobian variety.

(16) If X is a smooth projective scheme of dimension d then there will be a splitting

M(X) ≃ Z(0)⊕ e(X)⊕ Z(d)[2d].
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(17) It was conjectured by Grothendieck that any M(X) should split up as

M(X) ≃ h0(X)⊕ h1(X)⊕ h2(X)⊕ · · ·hd(X)

where d is the dimension of X , and where hi(X) is something like the “motive
of X related to i-dimensional cohomology”. Note that such a splitting also
happens in the topological world.

Grothendieck could obtain this splitting if he knew that the Künneth com-
ponents of the diagonal ∆ ∈ H∗

et(X × X ; Zl) ⊗ Ql were all algebraic. This
remains an open problem.

(18) In the topological setting every object was built, up to homotopy, from spheres,
and it resulted that every motive split as a product of Eilenberg-MacLane
spaces. So when computing maps from a motive A into a motive B, one could
typically splitB into factors looking like Z[n]’s and Z/q[m]’s; it followed that the
hom sets in the category of motives all just boiled down to singular cohomology.

In the algebraic geometry world, it does not seem to be possible to construct
all varieties from some simple building blocks. So while one still has the special
groups Ho (M(k))(A,Z(q)[p]) and Ho (M(k))(A,Z/n(q)[p]), these are probably
not enough to understand Ho (M(k))(A,B) for all motives B. In particular,
one can study the sets Ho (M(k))(M(X),M(Y )(q)[p]) for smooth schemes X
and Y . Such groups were explored, for instance, in a paper of Friedlander and
Voevodsky [FV] under the name “bivariant cycle cohomology”.

2.2. Comparison with the classical picture of motives. The picture of
motives we have developed differs in some ways from the one Grothendieck origi-
nally painted.

(1) Grothendieck wanted M(k) to be an abelian category, and he did not consider
anything like an associated homotopy category. Beilinson seems to be the first
one to talk about a derived category of motives, and this is what was eventually
constructed by Voevodsky. Constructing an abelian category of motives seems
to be elusive. Whether or not it can be done has not been relevant for anything
we have considered here, but apparently it is important in relation to certain
conjectures on algebraic cycles.

(2) One can speak of ‘homological motives’ and ‘cohomological motives’. As an
analogy, consider the difference between the covariant functor Top → Ch(Z)
which sends any space X to its singular chain complex S∗(X), as opposed to
the contravariant functor Top → Ch(Z) which sends any space to its singular
cochain complex Hom(S∗(X),Z). Certainly these two functors have the same
information in them, but it’s organized slightly differently in the two cases.

Our discussion has always been about ‘homological’ motives, because it is
in this context that the topological analogies really become clear. In classical
algebraic geometry people always talked about cohomological motives, however.
All the ideas are basically the same, but the variance on everything is reversed.

(3) The classical work on motives was all done rationally. So the categories of mo-
tives were not just additive categories, they were categories where the hom sets
were rational vector spaces. This was necessary in part because the Künneth
isomorphism was needed in order to get the ad hoc constructions of motives off
the ground.
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3. Constructing categories of motives

Grothendieck constructed a category of “pure” motives, sometimes called Chow
motives. The Standard Conjectures on algebraic cycles implied certain properties
of this category, but as of yet these Standard Conjectures remain unproven.

From the point of view of a topologist, the category of Chow motives seems
somewhat crude and deficient. Voevodsky constructed a model category (although
he didn’t quite say it that way) whose homotopy category was to be the derived
category of motives. This requires much more machinery than Grothendieck’s con-
struction, but in the end it gives a more satisfying result.

3.1. Chow motives. Let’s imagine how one might construct the category
M(k). First, for any X ∈ Sm/k one will need an object X̄ ∈ M(k) to serve as its
motiveM(X). To understand the maps from X̄ to Ȳ we proceed in analogy with the
topological case. If W and Z are spaces, maps of abelian groups Ab(W )→ Ab(Z)
are in bijective correspondence with continuous maps W → Ab(Z). Such a map
assigns to each point x ∈ W a formal um f(w) =

∑
i ni[zi]. We can imagine the

“graph” of such a thing in W×Z, and it sort of looks like a certain kind of cycle. We
get something like a formal linear combination of subspaces of W × Z, where each
of these subspaces is a branched cover of W via the projection map W × Z →W .

Lefschetz had long ago considered the concept of a correspondence. Every map
f : W → Z gives a cycle on W × Z by taking its graph, and Lefschetz realized
that more general cycles on W × Z could be thought of as ‘generalized maps’. In
particular, they can be composed and one can use them to get induced maps on
homology. This same idea can be used in algebraic geometry.

Let X and Y be two objects in Sm/k. A correspondence from X to Y is
an element of CH∗(X × Y ). If X is connected, a degree zero correspondence is
one of dimension dimX (if we were constructing cohomological motives we would
require that the codimension of the cycle is dimX). More generally, a degree
zero correspondence is one which arises from a cycle of dimension dimU on every
component U of X . The degree zero correspondences from X to Y play the role of
our “cycles on X × Y made up of branched covers”.

We can make a first approximation to M(k) by saying that the objects are
formal symbols X̄, one for every X ∈ Sm/k, and that the maps from X̄ to Ȳ are
the set of degree zero correspondences from X to Y . Composition comes from the
composition of correspondences. One calls this the correspondence category.

The problem with the correspondence category is that it is not very robust. It
is an additive category, but it typically does not have kernels, images, or cokernels.
One can begin to fix this in the following way. Let C be an additive category. A
projector in C is a map f : X → X such that f2 = f . One can formally add an

image for all projectors. Define a category Ĉ whose objects are pair (X, f) where
X ∈ C and f is a projector. Think of this as the formal image of f . The abelian
group of maps from (X, f) to (Y, g) is the group of all α : X → Y such that fα = αg
modulo the subgroup of those α such that fα = 0. Note that there is a full and

faithful embedding C→ Ĉ sending X to (X, id).
Applying the above hat-construction to the category of correspondences gives

the category MCH(k) of effective Chow motives.

Some missing stuff here...still need to invert the Tate motive to get
the full category of motives. Yuck.
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Remark 3.2 (A clarification). Given any reasonable cohomology theory for
smooth schemes, Grothendieck showed how to construct a category of motives
based on that cohomology theory. The above construction is the one based on the
rational Chow groups CH∗(−)⊗ Q, and is therefore referred to as the category of
Chow motives. This seems to be the most interesting choice, as any reasonable
cohomology theory will receive a map from the Chow groups via the fundamental
classes of algebraic cycles. So the choice to use Chow groups is an attempt to give
the most generic construction.

Grothendieck was also very interested in the corresponding construction where
the Chow groups were replaced by the rational vector spaces of cycles modulo
numerical equivalence. Often when people refer to “pure motives” they mean the
category of motives constructed from this theory.

3.3. Voevodsky’s motives.

4. Motivic cohomology and spaces of algebraic cycles

Let us go back to the topological case for some intuition. For a space X we
looked at the topological abelian group Ab(X) and found that its homotopy groups
were the singular homology groups of X . Note that Ab(X) can be regarded as the
space of 0-cycles on X . Is there a space of n-cycles for any n?

Probably with some effort one could define a topological abelian group Zn(X)
which could reasonably be called the space of n-cycles on X , but no one has really
done this. The reason is that one expects a weak equivalence in AbTop of the form

Zn(X) ≃ ΩnZ0(X).

So the information in Zn(X) is really just the same information as in Z0(X), but
shifted.

In fact, here is one crude construction of Zn(X). Start with the simplicial
abelian group of singular chains on X , loop it down n times by your favorite looping
maching, and then construct the geometric realization. This is kind of silly, though.

Another construction of Zn(X) was given by Almgren in the case where X is
a complex algebraic variety. He defined a space of analytic n-cycles on X , and he
proved exactly that Zn(X) was homotopy equivalent to ΩnZ0(X).

Okay, so considering higher dimensional cycles doesn’t really get us anything
new in the topological world. But in the world of algebraic geometry it does give
something new. Let us postulate that in our category of motives M(k) we have not
only the object M(X) = Z0(X) for any X ∈ Sm/k but also objects Zr(X) for any
r ≥ 0, representing spaces of algebraic cycles of dimension r. Here, the formula we
want turns out to be

Zr(X) ≃ Ω2r,rZ0(X) ≃ Z0(X)(−r)[−2r].

Or more generally,

Zr+1(X) ≃ Ω2,1Zr(X) ≃ Zn(X)(−1)[−2].

Playing with the Dold-Thom theorem just at a formal level, we find that we
expect

πiZr(X) = π2r+i,rZ0(X) = H2r+i,r(X).

If X is smooth and projective of dimension d then we can use Poincaré Duality to
write

H2r+i,r(X) ∼= H2d−2r−i,d−r(X).
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We can use these ideas to understand Bloch’s higher Chow groups. For any
smooth scheme X and any p ≥ 0 Bloch constructed a complex CHp(X,−) which
should be thought of as an algebraic model for the “space of codimension p cycles
on X”. He defined

CHp(X, q) = Hq(CH
p(X,−)).

If we compare this to the above we see that we are looking at

CHp(X, q) = πqZd−p(X) ∼= H2d−2p+q,d−p(X) ∼= H2p−q,p(X).

This formula gives the translation from higher Chow groups to motivic cohomology.
We can use these ideas to understand other constructions of motivic cohomology

as well. For instance, in ???? Voevodsky considers an object analogous to the
following. Start with W = M((A1 − 0) × · · ·M(A1 − 0)) (n factors) and let J be
the sums of all the ‘images’ of the maps

ji : M((A1 − 0)× (A1 − 0)× · · · × (Spec k)× · · · × (A1 − 0))→ W

(where the ith factor has been replaced by Spec k). The cofiber W/J should be
homotopy equivalent to the motive Z(n)[n]. Think about the analogous fact in
topology: we are starting with the motive of a torus and quotienting out the mo-
tives of all smaller torii, and this should leave a single Eilenberg-MacLane space
corresponding to the top piece of our original motive. For any scheme X , Voevod-
sky then writes down a chain complex serving as an algebraic model for a mapping
space Map(M(X),W/J). How should the homology groups of this chain complex
be related to motivic cohomology? We can guess the answer using what we’ve
learned so far:

πi Map(M(X),W/J) ∼= Ho (M(k))(M(X)[i], Z(n)[n])

∼= Ho (M(k))(M(X), Z(n)[n− i])
∼= Hn−i,n(X).

In another paper Voevodsky considers something like the quotient motive
Q = M(Pn)/M(Pn−1) and write down an algebraic model for the mapping space
Map(M(X), Q). The homology groups of this chain complex are again related to
motivic cohomology, and we can figure out how. The motive of Pn splits as

M(Pn) ≃ Z(0)⊕ Z(1)[2]⊕ Z(2)[4]⊕ · · · ⊕ Z(n)[2n].

The submotive M(Pn−1) consists of all the factors except the last one, so that

Q ≃ Z(n)[2n].

Then we should have

πi Map(M(X), Q) ∼= Ho (M(k))(M(X)[i],Z(n)[2n]) ∼= Ho (M(k))(M(X),Z(n)[2n− i])
∼= H2n−i,n(X).

In yet another context Voevodsky writes down an algebraic model for the map-

ping space Map(M(X), M̃(An − 0)). We know that we should have M̃(An − 0) ≃
Z(n)[2n− 1] and so

πi Map(M(X), M̃(An − 0)) ∼= Ho (M(k))(M(X)[i],Z(n)[2n− 1])

∼= Ho (M(k))(M(X),Z(n)[2n− i− 1])

∼= H2n−i−1,n(X).





CHAPTER 10

Crystalline cohomology

Nothing here yet.
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CHAPTER 11

The Milnor conjectures

These lectures concern the two Milnor conjectures and their proofs: from [V3],
[OVV], and [M2]. Voevodsky’s proof of the norm residue symbol conjecture—
which is now eight years old—came with an explosion of ideas. The aim of these
notes is to make this explosion a little more accessible to topologists. My intention
is not to give a completely rigorous treatment of this material, but just to outline
the main ideas and point the reader in directions where he can learn more. I’ve
tried to make the lectures accessible to topologists with no specialized knowledge
in this area, at least to the extent that such a person can come away with a general
sense of how homotopy theory enters into the picture.

Let me apologize for two aspects of these notes. Foremost, they reflect only
my own limited understanding of this material. Secondly, I have made certain
expository decisions about which parts of the proofs to present in detail and which
parts to keep in a “black box”—and the reader may well be disappointed in my
choices. I hope that in spite of these shortcomings the notes are still useful.

Sections 1, 2, and 3 each depend heavily on the previous one. Section 4 could
almost be read independently of 2 and 3, except for the need of Remark 2.10.

1. The conjectures

The Milnor conjectures are two purely algebraic statements in the theory of
fields, having to do with the classification of quadratic forms. In this section we’ll
review the basic theory and summarize the conjectures. Appendix A contains some
supplementary material, where several examples are discussed.

1.1. Background. Let F be a field. In some sense our goal is to completely
classify symmetric bilinear forms over F . To give such a form (−,−) on Fn is the
same as giving a symmetric n×n matrix A, where aij = (ei, ej). Two matrices A1

and A2 represent the same form up to a change of basis if and only if A1 = PA2P
T

for some invertible matrix P . The main classical theorem on this topic says that if
char(F ) 6= 2 then every symmetric bilinear form can be diagonalized by a change of
basis. The question remains to decide when two given diagonal matrices D1 and D2

represent equivalent bilinear forms. For instance, do

[
2 0
0 11

]
and

[
3 0
0 1

]
represent

the same form over Q?
To pursue this question one looks for invariants. The most obvious of these

is the rank of the matrix A. This is in fact the unique invariant when the field is
algebraically closed. For suppose a form is represented by a diagonal matrix D,
and let λ be a nonzero scalar. Construct a new basis by replacing the ith basis
element ei by λei. The matrix of the form with respect to this new basis is the
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same as D, but with the ith diagonal entry multiplied by λ2. The conclusion is that
multiplying the entries of D by squares does not change the isomorphism class of
the underlying form. This leads immediately to the classical theorem saying that
if every element of F is a square (which we’ll write as F = F 2) then a symmetric
bilinear form is completely classified by its rank.

We now restrict to nondegenerate forms, in which case the matrix A is non-
singular. The element det(A) ∈ F ∗ is not quite an invariant of the bilinear
form, since after a change of basis the determinant of the new matrix will be
det(P ) det(A) det(PT ) = det(P )2 det(A). However, the determinant is a well-
defined invariant if we regard it as an element of F ∗/(F ∗)2. Since 22

3 is not a

square in Q, for instance, this tells us that the matrices

[
2 0
0 11

]
and

[
3 0
0 1

]
don’t

represent isomorphic forms over Q.
The rank and determinant are by far the simplest invariants to write down,

but they are not very strong. They don’t even suffice to distinguish forms over
R. This case is actually a good example to look at. For a1, . . . , an ∈ R∗, let
〈a1, . . . , an〉 denote the form on Rn defined by (ei, ej) = δi,jai. Since every el-
ement of R is either a square or the negative of a square, it follows that every
nondegenerate real form is isomorphic to an 〈a1, . . . , an〉 where each ai ∈ {1,−1}.
When are two such forms isomorphic? Of course one knows the answer, but let’s
think through it. The Witt Cancellation Theorem (true over any field) says that
if 〈x1, . . . , xn, y1, . . . , yk〉 ∼= 〈x1, . . . , xn, z1, . . . , zk〉 then 〈y1, . . . , yk〉 ∼= 〈z1, . . . , zk〉.
So our problem reduces to deciding whether the n-dimensional forms 〈1, 1, . . . , 1〉
and 〈−1, . . . ,−1〉 are isomorphic. When n is odd the determinant distinguishes
them, but when n is even it doesn’t. Of course the thing to say is that the associ-
ated quadratic form takes only positive values in the first case, and only negative
values in the second—but this is not exactly an ‘algebraic’ way of distinguishing
the forms, in that it uses the ordering on R in an essential way. By the end of this
section we will indeed have purely algebraic invariants we can use here.

1.2. The Grothendieck-Witt ring. In a moment we’ll return to the prob-
lem of finding invariants more sophisticated than the rank and determinant, but
first we need a little more machinery. From now on char(F ) 6= 2. By a qua-
dratic space I mean a pair (V, µ) consisting of a finite-dimensional vector space
and a non-degenerate bilinear form µ. To systemize their study one defines the
Grothendieck-Witt ring GW (F ). This is the free abelian group generated by iso-
morphism classes of pairs (V, µ), with the usual relation identifying the direct sum
of quadratic spaces with the sum in the group. The multiplication is given by tensor
product of vector spaces.

The classical theory of bilinear forms allows us to give a complete descrip-
tion of the abelian group GW (F ) in terms of generators and relations. Recall
that 〈a1, . . . , an〉 denotes the n-dimensional space Fn with (ei, ej) = δijai. So
〈a1, . . . , an〉 = 〈a1〉 + · · · + 〈an〉 in GW (F ). The fact that every symmetric bilin-
ear form is diagonalizable tells us that GW (F ) is generated by the elements 〈a〉 for
a ∈ F ∗, and we have already observed the relation 〈ab2〉 = 〈a〉 for any a, b ∈ F ∗. As
an easy exercise, one can also give a complete description for when two-dimensional
forms are isomorphic: one must be able to pass from one to the other via the two
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relations

〈ab2〉 = 〈a〉 and 〈a, b〉 = 〈a+ b, ab(a+ b)〉(1.3)

where in the second we assume a, b ∈ F ∗ and a + b 6= 0. As an example, working
over Q we have

〈3,−2〉 = 〈12,−2〉 = 〈10,−240〉 = 〈90,−15〉.
To completely determine all relations in GW (F ), one shows that if two forms
〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are isomorphic then there is a chain of isomorphic
diagonal forms connecting one to the other, where each link of the chain differs in
exactly two elements. Thus, (1.3) is a complete set of relations for GW (F ). The
reader may consult [S1, 2.9.4] for complete details here.

The multiplication in GW (F ) can be described compactly by

〈a1, . . . , an〉 · 〈b1, . . . , bk〉 =
∑

i,j

〈aibj〉.

1.4. The Witt ring. The Witt ring W (F ) is the quotient of GW (F ) by the
ideal generated by the so-called ‘hyperbolic plane’ 〈1,−1〉. Historically W (F ) was
studied long before GW (F ), probably because it can be defined without formally
adjoining additive inverses as was done for GW (F ). One can check that the forms
〈a,−a〉 and 〈1,−1〉 are isomorphic, and therefore if one regards hyperbolic forms
as being zero then 〈a1, . . . , an〉 and 〈−a1, . . . ,−an〉 are additive inverses. So W (F )
can be described as a set of equivalence classes of quadratic spaces, and doesn’t
require working with ‘virtual’ objects.

Because 〈a,−a〉 ∼= 〈1,−1〉 for any a, it follows that the ideal
(
〈1,−1〉

)
is pre-

cisely the additive subgroup ofGW (F ) generated by 〈1,−1〉. As an abelian group, it
is just a copy of Z. So we have the exact sequence 0→ Z→ GW (F )→W (F )→ 0.

Let GI(F ) be the kernel of the dimension function dim: GW (F ) → Z, usu-
ally called the augmentation ideal. Let I(F ) be the image of the composite
GI(F ) →֒ GW (F ) ։ W (F ); one can check that I(F ) consists precisely of equiva-
lence classes of even-dimensional quadratic spaces. Note that I is additively gen-
erated by forms 〈1, a〉, and therefore In is additively generated by n-fold products
〈1, a1〉〈1, a2〉 · · · 〈1, an〉.

The dimension function gives an isomorphism W/I → Z/2. The determinant
gives us a group homomorphismGW (F )→ F ∗/(F ∗)2, but it does not extend to the
Witt ring because det〈1,−1〉 = −1. One defines the discriminant of 〈a1, . . . , an〉 to

be (−1)
n(n−1)

2 · (a1 · · ·an), and with this definition the discriminant gives a map of
sets W (F ) → F ∗/(F ∗)2. It is not a homomorphism, but if we restrict to I(F ) →
F ∗/(F ∗)2 then it is a homomorphism. As the discriminant of 〈1, a〉〈1, b〉 is a square,
the elements of I2 all map to 1. So we get an induced map I/I2 → F ∗/(F ∗)2, which
is obviously surjective. It is actually an isomorphism—to see this, note that

〈x, y〉〈−1, y〉 = 〈−x, xy,−y, y2〉 = 〈1,−x,−y, xy〉
and so 〈x, y〉 ≡ 〈1, xy〉 (mod I2). It follows inductively that 〈a1, . . . , a2n〉 ≡
〈1, 1, . . . , 1, a1a2 · · · a2n〉 (mod I2). So if 〈a1, . . . , a2n〉 is a form whose discrim-
inant is a square, it is equivalent mod I2 to either 〈1, 1, . . . , 1〉 = 2n〈1〉 (if n
is even) or 〈1, 1, . . . , 1,−1〉 = (2n − 2)〈1〉 (if n is odd). In the former case
2n〈1〉 = 2〈1〉 · n〈1〉 ∈ I2, and in the latter case (2n− 2)〈1〉 = 2〈1〉 · (n− 1)〈1〉 ∈ I2.
In either case we have 〈a1, . . . , a2n〉 ∈ I2, and this proves injectivity.
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The examples in the previous paragraph are very special, but they suggest why
one might hope for ‘higher’ invariants which give isomorphisms between the groups
In/In+1 and something more explicitly defined in terms of the field F . This is what
the Milnor conjecture is about.

Remark 1.5. For future reference, note that 2〈1〉 = 〈1, 1〉 ∈ I, and therefore
the groups In/In+1 are Z/2-vector spaces. Also observe that GI(F ) does not
intersect the kernel of GW (F )→ W (F ), and so GI(F )→ I(F ) is an isomorphism.
It follows that (GI)n/(GI)n+1 ∼= In/In+1, for all n.

1.6. More invariants. Recall that the Brauer group Br(F ) is a set of equiv-
alence classes of central, simple F -algebras, with the group structure coming from
tensor product. The inverse of such an algebra is its opposite algebra, where the
order of multiplication has been reversed.

From a quadratic space (V, µ) one can construct the associated Clifford algebra
C(µ): this is the quotient of the tensor algebra TF (V ) by the relations generated
by v ⊗ v = µ(v, v). Clifford algebras are Z/2-graded by tensor length. If µ is
even-dimensional then C(µ) is a central simple algebra, and if µ is odd-dimensional
then the even part C0(q) is a central simple algebra. So we get an invariant of
quadratic spaces taking its values in Br(F ) (see [S1, 9.2.12] for more detail). This
is usually called the Clifford invariant, or sometimes the Witt invariant. Since
any Clifford algebra is isomorphic to its opposite, the invariant always produces a
2-torsion class.

Now we need to recall some Galois cohomology. Let F̄ be a separable closure
of F , and let G = Gal(F̄ /F ). Consider the short exact sequence of G-modules
0 → Z/2 → F̄ ∗ → F̄ ∗ → 0, where the second map is squaring. Hilbert’s Theorem
90 implies that H1(G; F̄ ∗) = 0, which means that the induced long exact sequence
in Galois cohomology splits up into

0→ H0(G; Z/2)→ F ∗ 2−→ F ∗ → H1(G; Z/2)→ 0

and
0→ H2(G; Z/2)→ H2(G; F̄ ∗)

2−→ H2(G; F̄ ∗).

The groupH2(G; F̄ ∗) is known to be isomorphic to Br(F ), so we haveH0(G; Z/2) =
Z/2, H1(G; Z/2) = F ∗/(F ∗)2, and the 2-torsion in the Brauer group is precisely
H2(G; Z/2). From now on we will write H∗(F ; Z/2) = H∗(G; Z/2).

At this point we have the rank map e0 : W (F ) → Z/2 = H0(F ; Z/2), which
gives an isomorphism W/I → Z/2. We have the discriminant e1 : I(F ) →
F ∗/(F ∗)2 = H1(F ; Z/2) which gives an isomorphism I/I2 → F ∗/(F ∗)2, and
we have the Clifford invariant e2 : I2 → H2(F ; Z/2). With a little work one
can check that e2 is a homomorphism, and it kills I3. The question of whether
I2/I3 → H2(F ; Z/2) is an isomorphism is difficult, and wasn’t proven until the
early 80s by Merkurjev [M] (neither surjectivity nor injectivity is obvious). The
maps e0, e1, e2 are usually called the classical invariants of quadratic forms.

The above isomorphisms can be rephrased as follows. The ideal I consists of
all elements where e0 = 0; I2 consists of all elements such that e0 = 0 and e1 = 1;
and by Merkujev’s theorem I3 is precisely the set of elements for which e0, e1, and
e2 are all trivial. Quadratic forms will be completely classified by these invariants if
I3 = 0, but unfortunately this is usually not the case. This brings us to the search
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for higher invariants. One early result along these lines is due to Delzant [De], who
defined Stiefel-Whitney invariants with values in Galois cohomology. Unfortunately
these are not the ‘right’ invariants, as they do not lead to complete classifications
for elements in In, n ≥ 3.

1.7. Milnor’s work. At this point we find ourselves looking at the two rings
GrI W (F ) and H∗(F ; Z/2), and we have maps between them in dimensions 0, 1,
and 2. I think Milnor, inspired by his work on algebraic K-theory, wrote down the
best ring he could find which would map to both rings above. In [Mr2] he defined
what is now called ‘Milnor K-theory’ as

KM
∗ (F ) = TZ(F ∗)/〈a⊗ (1− a)|a ∈ F − {0, 1}〉

where TZ(V ) denotes the tensor algebra over Z on the abelian group V . The grading
comes from the grading on the tensor algebra, in terms of word length. I will write
{a1, . . . , an} for the element a1 ⊗ · · · ⊗ an ∈ KM

n (F ).
Note that when dealing with KM

∗ (F ) one must be careful not to confuse the
addition—which comes from multiplication in F ∗—with the multiplication. So for
instance {a}+{b} = {ab} but {a}·{b} = {a, b}. This is in contrast to the operations
in GW (F ), where one has 〈a〉 + 〈b〉 = 〈a, b〉 and 〈a〉 ⊗ 〈b〉 = 〈ab〉. Unfortunately
it is very easy to get these confused. Note that {a2} = 2{a}, and more generally
{a2, b1, . . . , bn} = 2{a, b1, . . . , bn}.

Remark 1.8. From a modern perspective the name ‘K-theory’ applied to
KM

∗ (F ) is somewhat of a misnomer; one should not take it too seriously. The
construction turns out to be more closely tied to algebraic cycles than to algebraic
K-theory, and so I personally like the term ‘Milnor cycle groups’. I doubt this will
ever catch on, however.

Milnor produced two ring homomorphisms η : KM
∗ (F )/2 → H∗(F ; Z/2) and

ν : KM
∗ (F )/2 → GrI W (F ). To define the map ν, note first that we have already

established an isomorphism F ∗/(F ∗)2 → I/I2 sending {a} to 〈a,−1〉 = 〈a〉 − 〈1〉
(this is the inverse of the discriminant). This tells us what ν does to elements in
degree 1. Since these elements generate KM

∗ (F ) multiplicatively, to construct ν it
suffices to verify that the appropriate relations are satisfied in the image. So we
first need to check that

0 =
(
〈a〉−〈1〉

)
·
(
〈1−a〉−〈1〉

)
= 〈a(1−a)〉−〈a〉−〈1−a〉+〈1〉 = 〈a(1−a), 1〉−〈a, 1−a〉,

but this follows directly from the second relation in (1.3). We also must check that
2{a} maps to 0, but 2{a} = {a2} 7→ 〈a2〉 − 〈1〉 and the latter vanishes by the first
relation in (1.3). For future reference, note that ν({a}) is equal to both 〈a,−1〉 and
〈−a, 1〉 in I/I2, since this group is 2-torsion.

Defining η is similar. We have already noticed that there is a natural iso-
morphism H1(F ; Z/2) ∼= F ∗/(F ∗)2, and so it is clear where the element {a} in
KM

1 (F ) = F ∗ must be sent. The verification that a ∪ (1− a) = 0 in H2(F ; Z/2) is
in [Mr2, 6.1].

Milnor observed that both η and ν were isomorphisms in all the cases he could
compute. The claim that η is an isomorphism is nowadays known as the Milnor
conjecture, and was proven by Voevodsky in 1996 [V1]. The claim that ν is an
isomorphism goes under the name Milnor’s conjecture on quadratic forms. For
characteristic 0 it was proven in 1996 by Orlov, Vishik, and Voevodsky [OVV],
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who deduced it as a consequence of the work in [V1]. I believe the proof now works
in characteristic p, based on the improved results of [V3]. A second proof, also
in characteristic 0, was outlined by Morel [M2] using the motivic Adams spectral
sequence, and again depended on results from [V1]; unfortunately complete details
of Morel’s proof have yet to appear.

It is interesting that the conjecture on quadratic forms doesn’t have an inde-
pendent proof, and is the less primary of the two. Note that both KM

∗ (F )/2 and
GW (F ) can be completely described in terms of generators and relations (although
the latter does not quite imply that we know all the relations in GrI W (F ), which
is largely the problem). The map ν is easily seen to be surjective, and so the only
question is injectivity. Given this, it is in some ways surprising that the conjecture
is as hard as it is.

Remark 1.9. The map η is called the norm residue symbol , and can be de-
fined for primes other than 2. The Bloch-Kato conjecture is the statement that
η : KM

i (F )/l→ Hi(F ;µ⊗i
l ) is an isomorphism for l a prime different from char(F ).

This is a direct generalization of the Milnor conjecture to the case of odd primes.
A proof was released by Voevodsky in 2003 [V4] (although certain auxiliary results
required for the proof remain unwritten). I’m not sure anyone has ever consid-
ered an odd-primary analog of Milnor’s conjecture on quadratic forms—what could
replace the Grothendieck-Witt ring here?

At this point it might be useful to think through the Milnor conjectures in
a few concrete examples. For these we refer the reader to Appendix A. Let’s at
least note here that through the work of Milnor, Bass, and Tate (cf. [Mr2]) the
conjectures could be verified for all finite fields and for all finite extensions of Q (in
fact for all global fields).

Finally, let’s briefly return to the classification of forms over R. We saw
earlier that this reduces to proving that the n-dimensional forms 〈1, 1, . . . , 1〉
and 〈−1,−1, . . . ,−1〉 are not isomorphic. Can we now do this algebraically?
If they were isomorphic, they would represent the same element of W (R). It
would follow that (2n)〈1〉 = 0 in W (R). Can this happen? The isomorphisms
Z/2[a] ∼= H∗(Z/2; Z/2) ∼= KM

∗ (R)/2 ∼= GrI W (R) show that GrI W (R) is a poly-
nomial algebra on the class 〈−1,−1〉 (the generator a corresponds to the generator
−1 of R∗/(R∗)2, and ν(−1) = 〈−1,−1〉). It follows that 2k〈1〉 = ±〈−1,−1〉k
is a generator for the group Ik/Ik+1 ∼= Z/2. If m = 2ir where r is odd, then
m〈1〉 = 2i〈1〉 · r〈1〉. Since r〈1〉 is the generator for W/I and 2i〈1〉 is a generator
for Ii/Ii+1, it follows that m〈1〉 is also a generator for Ii/Ii+1. In particular, m〈1〉
is nonzero. So we have proven via algebraic methods (although in this case also
somewhat pathological ones) that 〈1, 1, . . . , 1〉 6∼= 〈−1,−1, . . . ,−1〉.

1.10. Further background reading. There are several good expository pa-
pers on the theory of quadratic forms, for example [Pf1] and [S2]. The book
[S1] is a very thorough and readable resource as well. For the Milnor conjectures
themselves there is [Pf2], which in particular gives several applications of the con-
jectures; it also gives detailed references to original papers. The beginning sections
of [AEJ] offer a nice survey concerning the search for ‘higher’ invariants of qua-
dratic forms. It’s worth pointing out that after Milnor’s work definitions of e3, e4,
and e5 were eventually given—with a lot of hard work—but this was the state of
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the art until 1996. Finally, the introduction of [V3] gives a history of work on the
Milnor conjecture.
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2. Proof of the conjecture on the norm residue symbol

This section outlines Voevodsky’s proof of the Milnor conjecture on the norm
residue symbol [V1, V3]. Detailed, step-by-step summaries have been given in
[M1] and [Su]. My intention here is not to give a complete, mathematically rigorous
presentation, but rather just to give the flavor of what is involved.

Several steps in the proof involve manipulations with motivic cohomology based
on techniques that were developed in [VSF]. I have avoided giving any details about
these steps, in an attempt to help the exposition. Most of these details are not hard
to understand, however—there are only a few basic techniques to keep track of, and
one can read about them in [VSF] or [MVW]. But I hope that by keeping some of
this stuff in a black box the overall structure of the argument will become clearer.

2.1. Initial observations. The aim is to show that η : KM
∗ (F )/2 →

H∗(F ; Z/2) is an isomorphism. To do this, one of the first things one might try
to figure out is what kind of extra structure KM

∗ (F )/2 and H∗(F ; Z/2) have in
common. For instance, they are both covariant functors in F , and the covariance is
compatible with the norm residue symbol. It turns out they both have transfer maps
for finite separable extensions (which, for those who like to think geometrically, are
the analogs of covering spaces). That is, if j : F →֒ F ′ is a separable extension of
degree n then there is a map j! : KM

∗ (F ′)→ KM
∗ (F ) such that j!j∗ is multiplication

by n, and similarly for H∗(F ; Z/2). (Note that the construction of transfer maps
for Milnor K-theory is not at all trivial—some ideas were given in [BT, Sec. 5.9],
but the full construction is due to Kato [K1, Sec. 1.7]). It follows that if n is odd
then KM

∗ (F )/2 → H∗(F ; Z/2) is a retract of the map KM
∗ (F ′)/2 → H∗(F ′; Z/2).

So if one had a counterexample to the Milnor conjecture, field extensions of all odd
degrees would still be counterexamples. This is often referred to as “the transfer
argument”.

Another observation is that both functors can be extended to rings other than
fields, and if R is a discrete valuation ring then both functors have a ‘localization
sequence’ relating their values on R, the residue field, and the quotient field. I will
not go into details here, but if F is a field of characteristic p then by using the
Witt vectors over F and the corresponding localization sequence, one can reduce
the Milnor conjecture to the case of characteristic 0 fields. The argument is in [V1,
Lemma 5.2]. In Voevodsky’s updated proof of the Milnor conjecture [V3] this step
is not necessary, but I think it’s useful to realize that the Milnor conjecture is not
hard because of ‘crazy’ things that might happen in characteristic p—it is hard
even in characteristic 0.

2.2. A first look at the proof. The proof goes by induction. We assume
the norm residue map η : KM

∗ (F )/2→ H∗(F ; Z/2) is an isomorphism for all fields
F and all ∗ < n, and then prove it is also an isomorphism for ∗ = n. The basic
theme of the proof, which goes back to Merkurjev, involves two steps:

(1) Verify that ηn is an isomorphism for certain ‘big’ fields—in our case, those
which have no extensions of odd degree and also satisfy Kn(F ) = 2Kn(F ) (so
that one must prove Hn(F ; Z/2) = 0). Notice that when n = 1 the condition
K1 = 2K1 says that F = F 2.

(2) Prove that if F were a field for which ηn is not an isomorphism then one could
expand F to make a ‘bigger’ counterexample, and could keep doing this until
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you’re in the range covered by step (1). This would show that no such F could
exist.

In more detail one shows that for any {a1, . . . , an} ∈ Kn(F ) one can con-
struct an extension F →֒ F ′ with the property that {a1, . . . , an} ∈ 2Kn(F ′)
and ηn : Kn(F ′)/2 → Hn(F ′; Z/2) still fails to be an isomorphism. By doing
this over and over and taking a big colimit, one gets a counterexample where
KM

n = 2KM
n .

Neither of the above two steps is trivial, but step (1) involves nothing very
fancy—it is a calculation in Galois cohomology which takes a few pages, but is not
especially hard. See [V3, Section 5]. Step (2) is the more subtle and interesting
step. Note that if a = {a1, . . . , an} /∈ 2KM

n (F ) then none of the ai’s can be in F 2.
There are several ways one can extend F to a field F ′ such that a ∈ 2KM

n (F ′): one
can adjoin a square root of any ai, for instance. The problem is to find such an
extension where you have enough control over the horizontal maps in the diagram

KM
n (F )/2 //

ηF

��

KM
n (F ′)/2

ηF ′

��
Hn(F ; Z/2) // Hn(F ′; Z/2)

to show that if ηF fails to be an isomorphism then so does ηF ′ . The selection of
the ‘right’ F ′ is delicate.

We will alter our language at this point, because we will want to bring more
geometry into the picture. Any finitely-generated separable extension F →֒ F ′

is the function field of a smooth F -variety. A splitting variety for an element
a ∈ KM

n (F ) is a smooth variety X , of finite type over F , with the property that
a ∈ 2KM

n (F (X)). Here F (X) denotes the function field of X . As we just re-
marked, there are many such varieties: X = SpecF [u]/(u2 − a1) is an example.
The particular choice we’ll be interested in is more complicated.

Given b1, . . . , bk ∈ F , let qb be the quadratic form in 2k variables corresponding
to the element

〈1,−b1〉 ⊗ 〈1,−b2〉 ⊗ · · · ⊗ 〈1,−bk〉 ∈ GW (F ).

For example, qb1,b2(x1, . . . , x4) = x2
1 − b1x2

2 − b2x2
3 + b1b2x

2
4. Such q’s are called

Pfister forms, and they have a central role in the modern theory of quadratic
forms (see [S1, Chapter 4], for instance).

For a1, . . . , an ∈ F , define Qa to be the projective quadric in P2n−1

given by
the equation

qa1,...,an−1(x0, . . . , x[2n−1−1])− anx
2
2n−1 = 0.

In [V3] these are called norm quadrics. A routine argument [V3, Prop. 4.1]
shows that Qa is a splitting variety for a. The reason for choosing to study this
particular splitting variety will not be clear until later; isolating this object is one
of the key aspects of the proof.

The name of the game will be to understand enough about the difference be-
tween KM

n (F )/2 and KM
n (F (Qa))/2 (as well as the corresponding Galois cohomol-

ogy groups) to show that KM
n (F (Qa))/2 → Hn(F (Qa); Z/2) still fails to be an

isomorphism. Voevodsky’s argument uses motivic cohomology—of the quadrics Qa

and other objects—to ‘bridge the gap’ between KM
n (F )/2 and KM

n (F (Qa))/2.
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2.3. Motivic cohomology enters the picture. Motivic cohomology is a
bi-graded functor X 7→ Hp,q(X ; Z) defined on the category of smooth F -schemes.
Actually it is defined for all simplicial smooth schemes, as well as for more general
objects. One of the lessons of the last ten years is that one can set up a model
category which contains all these objects, and then a homotopy theorist can deal
with them in much the same ways he deals with ordinary topological spaces. From
now on I will do this implicitly (without ever referring to the machinery involved).

The coefficient groups Hp,q(SpecF ; Z) vanish for q < 0 and for p > q ≥ 0. For
us an important point is that the groupsHn,n(SpecF ; Z) are canonically isomorphic
to KM

n (F ). Proving this is not simple! An account is given in [MVW, Lecture 5].
Finally, we note that one can talk about motivic cohomology with finite coefficients
Hp,q(X ; Z/n), related to integral cohomology via the exact sequence

· · · → Hp,q(X ; Z)
×n−→ Hp,q(X ; Z)→ Hp,q(X ; Z/n)→ Hp+1,q(X ; Z)→ · · ·

The sequence shows Hn,n(SpecF ; Z/2) ∼= KM
n (F )/2 and Hp,q(SpecF ; Z/2) = 0 for

p > q ≥ 0.
Now, there is also an analagous theory Hp,q

L (X ; Z) which is called Lichten-
baum (or étale) motivic cohomology. There is a natural transformation
Hp,q(X ; Z) → Hp,q

L (X ; Z). The theory H∗,∗
L is the closest theory to H∗,∗ which

satisfies descent for the étale topology (essentially meaning that when E → B is
an étale map there is a spectral sequence starting with H∗,∗

L (E) and converging
to H∗,∗

L (B)). The relation between H∗,∗ and H∗,∗
L is formally analagous to that

between a cohomology theory and a certain Bousfield localization of it. It is known
that Hp,q

L (X ; Z/n) is canonically isomorphic to étale cohomology Hp
et(X ;µ⊗q

n ), if
n is prime to char(F ). From this it follows that Hp,q

L (SpecF ; Z/2) is the Galois
cohomology group Hp(F ; Z/2), for all q. At this point we can re-phrase the Milnor
conjecture as the statement that the maps Hp,p(SpecF ; Z/2)→ Hp,p

L (SpecF ; Z/2)
are isomorphisms.

There are other conjectures about the relation between H∗,∗ and H∗,∗
L as well.

A conjecture of Lichtenbaum says that Hp,q(X ; Z) → Hp,q
L (X ; Z) should be an

isomorphism whenever p ≤ q + 1. Note that this would imply a corresponding
statement for Z/n-coefficients, and in particular would imply the Milnor conjecture.
Also, since one knows Hn+1,n(SpecF ; Z) = 0 Lichtenbaum’s conjecture would im-

ply that Hn+1,n
L (SpecF ; Z) also vanishes. This latter statement was conjectured

independently by both Beilinson and Lichtenbaum, and is known as a the Gener-
alized Hilbert’s Theorem 90 (the case n = 1 is a translation of the statement
that H1

Gal(F ; F̄ ∗) = 0, which follows from the classical Hilbert’s Theorem 90).
By knowing enough about how to work with motivic cohomology, Voevodsky

was able to prove the following relation among these conjectures (as well as other
relations which we won’t need):

Proposition 2.4. Fix an n ≥ 0. Assume that Hk+1,k
L (SpecF ; Z(2)) = 0 for

all fields F and all 0 ≤ k ≤ n. Then for any smooth simplicial scheme X over a
field F , the maps Hp,q(X ; Z/2)→ Hp,q

L (X ; Z/2) are isomorphisms when q ≥ 0 and
p ≤ q ≤ n; and they are monomorphisms for p− 1 = q ≤ n. In particular, applying
this when p = q and X = SpecF verifies the Milnor conjecture in dimensions ≤ n.

It’s worth pointing out that the proof uses nothing special about the prime 2,
and so the statement is valid for all other primes as well.
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For us, the importance of the above proposition is two-fold. First, it says that to
prove the Milnor conjecture one only has to worry about the vanishing of one set of
groups (the Hn+1,n

L ’s) rather than two sets (the kernel and cokernel of η). Secondly,
inductively assuming that the Generalized Hilbert’s Theorem 90 holds up through
dimension n is going to give us a lot more to work with than inductively assuming
the Milnor conjecture up through dimension n. Instead of just knowing stuff about
Hn,n of fields, we know stuff about Hp,q of any smooth simplicial scheme. The
need for this extra information is a key feature of the proof.

2.5. Čech complexes. We only need one more piece of machinery before
returning to the proof of the Milnor conjecture. This piece is hard to motivate, and
its introduction is one of the more ingenious aspects of the proof. The reader will
just have to wait and see how it arises in section 2.6 (see also Remark 3.10).

Let X be any scheme. The Čech complex ČX is the simplicial scheme with
(ČX)n = X ×X × · · · ×X (n+ 1 factors) and the obvious face and degeneracies.
This simplicial scheme can be regarded as augmented by the map X → SpecF .

For a topological space the realization of the associated Čech complex is always
contractible—in fact, choosing any point of X allows one to write down a contract-
ing homotopy for the simplicial space ČX . But in algebraic geometry the scheme
X may not have rational points; i.e., there may not exist any maps SpecF → X
at all! If X does have a rational point then the same trick lets one write down a
contracting homotopy, and therefore ČX behaves as if it were SpecF in all com-
putations. (More formally, ČX is homotopy equivalent to SpecF in the motivic
homotopy category).

Working in the motivic homotopy category, one finds that for any smooth
scheme Y the set of homotopy classes [Y, ČX ] is either empty or a singleton. The
latter holds precisely if Y admits a Zariski cover {Uα} such that there exist scheme
maps Uα → X (not necessarily compatible on the intersections). The object ČX
has no ‘higher homotopy information’, only this very simple discrete information
about whether or not certain maps exist. One should think of ČX as very close to
being contractible. I point out again that in topology there is always at least one
map between nonempty spaces, and so ČX is not very interesting.

If E → B is an étale cover, then there is a spectral sequence whose input is
H∗,∗

L (E; Z) and which converges to H∗,∗
L (B; Z) (this is the étale descent property).

In particular, if X is a smooth scheme and we let F ′ = F (X), X ′ = X ×F F
′, then

X ′ → X and SpecF ′ → SpecF are both étale covers. The scheme X ′ necessarily
has a rational point over F ′, so ČX ′ and SpecF ′ look the same to HL. The étale
descent property then shows that ČX and SpecF also look the same: in other
words, the maps Hp,q

L (SpecF ; Z) → Hp,q
L (ČX ; Z) are all isomorphisms (and the

same for finite coefficients). This is not true for H∗,∗ in place of H∗,∗
L . One might

paraphrase all this by saying that in the étale world ČX is contractible, just as it
is in topology.

2.6. The proof. Now I am going to give a complete summary of the proof
as it appears in [V1, V3]. Instead of proving the Milnor conjecture in its
original form one instead concentrates on the more manageable conjecture that
Hi+1,i

L (SpecF ; Z(2)) = 0 for all i and all fields F . One assumes this has been
proven in the range 0 ≤ i < n, and then shows that it also follows for i = n.
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Suppose that F is a field with Hn+1,n
L (F ; Z(2)) 6= 0. The transfer argument

shows that any extension field of odd degree would still be a counterexample,
so we can assume F has no extensions of odd degree. One checks via some
Galois cohomology computations—see [V3, section 5]—that if such a field has

KM
n (F ) = 2KM

n (F ) then Hn+1,n
L (SpecF ; Z(2)) = 0. So our counterexample cannot

have KM
n (F ) = 2KM

n (F ). By the reasoning from section 2.2, it will suffice to show
that for every a1, . . . , an ∈ F the field F (Qa) is still a counterexample. We will in

fact show that Hn+1,n
L (F ; Z(2))→ Hn+1,n

L (F (Qa); Z(2)) is injective.

Suppose u is in the kernel of the above map, and consider the diagram

Hn+1,n
L (SpecF ; Z(2)) //

∼=
��

Hn+1,n
L (SpecF (Qa); Z(2))

Hn+1,n(ČQa; Z(2)) // Hn+1,n
L (ČQa; Z(2)).

Let u′ denote the image of u in Hn+1,n
L (ČQa; Z(2)). One can show (after some

extensive manipulations with motivic cohomology) that the hypothesis on u implies
that u′ is the image of an element in Hn+1,n(ČQa; Z(2)). It will therefore be
sufficient to show that this group is zero.

Let C̃ be defined by the cofiber sequence (ČQa)+ → (SpecF )+ → C̃. This

means H̃∗,∗(C̃) fits in an exact sequence

→ Hp−1,q(ČQa)→ H̃p,q(C̃)→ Hp,q(SpecF )→ Hp,q(ČQa)→ H̃p+1,q(C̃)→ · · ·
So the reduced motivic cohomology of C̃ detects the ‘difference’ between the mo-
tivic cohomology of ČQa and SpecF . The fact that Hi,n(SpecF ; Z) = 0 for

i > n shows that Hn+1,n(ČQa; Z(2)) ∼= H̃n+2,n(C̃; Z(2)). Since Qa has a ra-

tional point (and therefore ČQa is contractible) over a degree 2 extension of F ,
it follows from the transfer argument that the above group is killed by 2. To
show that the group is zero it is therefore sufficient to prove that the image of
H̃n+2,n(C̃; Z(2)) → H̃n+2,n(C̃; Z/2) is zero. This is the same as the image of

H̃n+2,n(C̃; Z)→ H̃n+2,n(C̃; Z/2), which I’ll denote by H̃n+2,n
int (C̃; Z/2).

So far most of what we have done is formal; but now we come to the crux of
the argument. For any smooth scheme X one has cohomology operations acting on
H∗,∗(X ; Z/2). In particular, one can produce analogs of the Steenrod operations:

the Bockstein acts with bi-degree (1, 0), and Sq2
i

acts with bi-degree (2i, 2i−1).
From these one defines the Milnor Qi’s, which have bi-degree (2i+1 − 1, 2i − 1). In

ordinary topology these are defined inductively by Q0 = β and Qi = [Qi−1, Sq
2i

],
whereas motivically one has to add some extra terms to this commutator (these
arise because the motivic cohomology of a point is nontrivial). One shows that
Qi ◦ Qi = 0, and that Qi = βq + qβ for a certain operation q. It follows from
the latter formula that Qi maps elements in H̃int to elements in H̃int. All of these
facts also work in ordinary topology, it’s just that the proofs here are a little more
complex.

The next result is [V3, Cor. 3.8]. It is the first of two main ingredients needed
to complete the proof.
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Proposition 2.7. Let X be a smooth quadric in P2n

, and let C̃X be defined by
the cofiber sequence (ČX)+ → (SpecF )+ → C̃X. Then for i ≤ n, every element

of H̃∗,∗(C̃X ; Z/2) that is killed by Qi is also in the image of Qi.

This is a purely ‘topological’ result, in that its proof uses no algebraic geometry.
It follows from the most basic properties of the Steenrod operations, motivic co-
homology (like Thom isomorphism), and elementary facts about the characteristic
numbers of quadrics. The argument is purely homotopy-theoretic.

The second main result we will need is where all the algebraic geometry enters
the picture. Voevodsky deduces it from results of Rost, who showed that the motive
of Qa splits off a certain direct summand. See [V3, Th. 4.9].

Proposition 2.8. H̃2n,2n−1

(C̃; Z(2)) = 0.

Using the above two propositions we can complete the proof of the Milnor
conjecture. In order to draw a concrete picture, let us just assume n = 4 for the
moment. We are trying to show that H̃6,4

int(C̃; Z/2) = 0. Consider the diagram

Hp,q(SpecF ; Z/2) //

��

Hp,q(ČQa; Z/2)

��
Hp,q

L (SpecF ; Z/2)
∼= // Hp,q

L (ČQa; Z/2).

Our inductive assumption together with Proposition 2.4 implies that the vertical
maps are isomorphisms for p ≤ q ≤ n−1, and monomorphisms for p−1 = q ≤ n−1.
So the top horizontal map is an isomorphism in the first range and a monomorphism
in the second. The long exact sequence in motivic cohomology then shows that
H̃p,q(C̃; Z/2) = 0 for p ≤ q ≤ n − 1. This is where our induction hypothesis has

gotten us. The following diagram depicts what we now know about H̃p,q(C̃; Z/2)

(the group marked ?? is H̃6,4, the one we care about):

6

?

-�

q

p
0

0 0

0 0 0

0 0 0 0

??

1

1

∗
Q1

Q1

* ∗

Q2

*

Q2
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At this point Proposition 2.7 shows that Q1 : H6,4 → H9,5 is injective, and that
Q2 : H9,5 → H16,8 is injective. Since the Qi’s take integral elements to integral
elements, we have an inclusion

Q2Q1 : H̃6,4
int(C̃; Z/2) →֒ H̃16,8

int (C̃; Z/2).

But it follows directly from Proposition 2.8 that H̃16,8
int (C̃; Z/2) = 0, and so we are

done.
The argument for general n follows exactly this pattern: one uses the composite

of the operations Q1, Q2, . . . , Qn−2, but everything else is the same.

2.9. Summary. Here is a list of some of the key elements of the proof:

(1) The re-interpretation of the Milnor conjecture as a comparison of different
bi-graded motivic cohomology theories. An extensive knowledge about such
theories allows one to deduce statements for any smooth simplicial scheme
from statements only about fields (cf. Proposition 2.4).

(2) Choice of the splitting variety Qa (needed for Propositions 2.7 and 2.8).

(3) The introduction and use of Čech complexes.
(4) The construction of Steenrod operations on motivic cohomology and develop-

ment of their basic properties, leading to the proof of Proposition 2.7.
(5) The ‘geometric’ results of Rost on motives of quadrics, which lead to Proposi-

tion 2.8.

2.10. A notable consequence. The integral motivic cohomology groups of a
point Hp,q(SpecF ) are largely unknown—the exception is when q = 0, 1. However,
the proof of the Milnor conjecture tells us exactly what Hp,q(SpecF ; Z/2) is. First
of all, independently of the Milnor conjecture it can be shown to vanish when p ≥ q
and when q < 0. By Proposition 2.4 (noting that we now know the hypothesis to
be satisfied for all n), it follows that

Hp,q(SpecF ; Z/2)→ Hp
et(SpecF ;µ⊗q

2 )

is an isomorphism when p ≤ q and q ≥ 0. As µ⊗q
2
∼= µ2, the étale cohomology

groups are periodic in q; that is, H∗
et(SpecF ;µ⊗∗

2 ) ∼= H∗
Gal(F ; Z/2)[τ, τ−1] where τ

has degree (0, 1).
The conclusion is that H∗,∗(SpecF ; Z/2) ∼= H∗

Gal(F ; Z/2)[τ ], where τ is the
canonical class in H0,1 and the Galois cohomology is regarded as the subalgebra
lying in degrees (k, k). Of course the Milnor conjecture tells us that the Galois
cohomology is the same as mod 2 Milnor K-theory, and so we can also write
H∗,∗(SpecF ; Z/2) ∼=

(
KM

∗ (F )/2
)
[τ ].

2.11. Further reading. Both the original papers of Voevodsky [V1, V3] are
very readable, and remain the best sources for the proof. Summaries have also
been given in [M1] and [Su]. A proof of the general Bloch-Kato conjecture was
recently given in [V4]—the proof is similar in broad outline to the 2-primary case
we described here, but with several important differences. See the introduction to
[V4].

Of course in this section I have completely avoided discussing the two main
elements of the proof, namely Propositions 2.7 and 2.8. The proof of Proposition 2.7
is in [V1, V3] and is written in a way that can be understood by most homotopy
theorists. Proposition 2.8 depends on results of Rost, which seem to be largely
unpublished. See [R1, R2] for summaries.



2. PROOF OF THE CONJECTURE ON THE NORM RESIDUE SYMBOL 197

For more about why Čech complexes arise in the proof, see Proposition 3.9 in
the next section.
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3. Proof of the conjecture on quadratic forms

In this section and the next I will discuss two proofs of Milnor’s conjecture on
quadratic forms. The first is from [OVV], the second was announced in [M2]. Both
depend on Voevodsky’s proof of the norm residue conjecture. As I keep saying, I’m
only going to give a vague outline of how the proofs go, but with references for
where to find more information on various aspects. The present section deals with
the [OVV] proof.

3.1. Preliminaries. Recall that we are concerned with the map ν : KM
∗ (F )/2→

GrI W (F ) defined by ν({a1, . . . , an}) = 〈1,−a1〉 · · · 〈1,−an〉. The fact that I is ad-
ditively generated by the forms 〈1, x〉 shows that ν is obviously surjective; so our
task is to prove injectivity. In general, the product 〈1, b1〉 · · · 〈1, bn〉 is called an
n-fold Pfister form, and denoted 〈〈b1, . . . , bn〉〉. Note that it has dimension 2n.
The proof is intimately tied up with the study of such forms.

Milnor proved that the map ν : KM
2 (F )/2 → I2/I3 is an isomorphism. He

used ideas of Delzant [De] to define Stiefel-Whitney invariants for quadratic forms,
which in dimension 2 give a map I2/I3 → KM

2 (F )/2. One could explicitly check
that this was an inverse to ν. Unfortunately, this last statement generally fails in
larger dimensions; the Stiefel-Whitney invariants don’t carry enough information.
See [Mr2, 4.1, 4.2].

3.2. The Orlov-Vishik-Voevodsky proof. We first need to recall some re-
sults about Pfister forms proven in the 70’s. The first is an easy corollary of the
so-called Main Theorem of Arason-Pfister (cf. [S1, 4.5.6]). For a proof, see [EL,
pp. 192-193].

Proposition 3.3 (Elman-Lam). 〈〈a1, . . . , an〉〉 ≡ 〈〈b1, . . . , bn〉〉 (mod In+1) if
and only if 〈〈a1, . . . , an〉〉 = 〈〈b1, . . . , bn〉〉 in GW (F ).

Combining the result for n = 2 with Milnor’s theorem that KM
2 (F )→ I2/I3 is

an isomorphism, we get the following (note that the minus signs are there because
ν({a1, . . . , an}) = 〈〈−a1, . . . ,−an〉〉):

Corollary 3.4. 〈〈a1, a2〉〉 = 〈〈b1, b2〉〉 in GW (F ) if and only if {−a1,−a2} =
{−b1,−b2} in KM

∗ (F )/2.

Say that two n-fold Pfister forms A = 〈〈a1, . . . , an〉〉 and B = 〈〈b1, . . . , bn〉〉 are
simply-p-equivalent if there are two indices i, j where 〈〈ai, aj〉〉 = 〈〈bi, bj〉〉 and
ak = bk for all k /∈ {i, j}. The forms A and B are chain-p-equivalent if there is a
chain of forms starting with A and ending with B in which every link of the chain is
a simple-p-equivalence. Note that it follows immediately from the previous corollary
that if A and B are chain-p-equivalent then {−a1, . . . ,−an} = {−b1, . . . ,−bn}.

The following result is [EL, Main Theorem 3.2]:

Proposition 3.5. Let A = 〈〈a1, . . . , an〉〉 and B = 〈〈b1, . . . , bn〉〉. The follow-
ing are equivalent:

(a) A and B are chain-p-equivalent.
(b) {−a1, . . . ,−an} = {−b1, . . . ,−bn} in KM

∗ (F )/2.
(c) A ≡ B (mod In+1).
(d) A = B in GW (F ).
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Note that (a) ⇒ (b) ⇒ (c) is trivial, and (c) ⇒ (d) was mentioned above. So
the new content is in (d) ⇒ (a). I will not give the proof, but refer the reader to
[S1, 4.1.2]. The result below is a restatement of (c)⇒ (b):

Corollary 3.6. The equality ν({a1, . . . , an}) = ν({b1, . . . , bn}) can only occur
if {a1, . . . , an} = {b1, . . . , bn}.

Unfortunately the above corollary does not show that ν is injective, as a typical
element x ∈ KM

∗ (F )/2 is a sum of terms {a1, . . . , an}. A term {a1, . . . , an} is
called a pure symbol, whereas a general x ∈ KM

∗ (F ) is just a symbol. The key
ingredient needed from [OVV] is the following:

Proposition 3.7. If x ∈ KM
∗ (F )/2 is a nonzero element then there is a field

extension F →֒ F ′ such that the image of x in KM
∗ (F ′)/2 is a nonzero pure symbol.

It is easy to see that the previous two results prove the injectivity of ν. If
x ∈ KM

n (F )/2 is a nonzero element in the kernel of ν, then by passing to F ′ we
find a nonzero pure symbol which is also in the kernel. Corollary 3.6 shows this to
be impossible, however.

We are therefore reduced to proving Proposition 3.7. If we write x = a1 + . . .+
ak, where each ai is a pure symbol, then we know we can make ai vanish by passing
to the function field F (Qai

) (where Qai
is the splitting variety produced in the last

section). Our goal will be to show that ai is the only term that vanishes:

Proposition 3.8 (Orlov-Vishik-Voevodsky). If a = {a1, . . . , an} is nonzero in
KM

n (F )/2, then the kernel of KM
n (F )/2→ KM

n (F (Qa))/2 is precisely Z/2 (gener-
ated by a).

Granting this for the moment, let i be the largest index for which x is nonzero
in KM

n (F ′)/2, where F ′ = F (Qa1
× · · · × Qai

). Since x will become zero over

F ′(Qai+1
), the above result says that x = ai+1 in KM

n (F ′)/2. This is precisely

what we wanted.
So finally we have reduced to the same kind of problem we tackled in the last

section, namely controlling the map KM
n (F )/2 → KM

n (F (Qa))/2. The techniques
needed to prove Proposition 3.8 are exactly the same as those from the last section.
There is a again a homotopical ingredient and a geometric ingredient.

Proposition 3.9. If X is a smooth scheme over F , then for every n ≥ 0 there
is an exact sequence of the form

0→ Hn,n−1(ČX ; Z/2)→ Hn,n(SpecF ; Z/2)→ Hn,n(SpecF (X); Z/2).

Recall that Hn,n(SpecE; Z/2) ∼= KM
n (E)/2 for any field E. So the above

sequence is giving us control over the kernel of KM
∗ (F )/2 → KM

∗ (F (Qa))/2. The
proof uses the conclusion from Proposition 2.4 (which is known by Voevodsky’s
proof of the Milnor conjecture) and some standard manipulations with motivic
cohomology. See [OVV, Prop. 2.3].

Remark 3.10. In some sense Proposition 3.9 explains why Čech complexes are
destined to come up in the proofs of these conjectures.

If the above proposition is thought of as a ‘homotopical’ part of the proof, the
geometric part is the following. It is deduced using Rost’s results on the motive of
Qa; see [OVV, Prop. 2.5].
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Proposition 3.11. There is a surjection Z/2→ H2n−1,2n−1−1(ČQa; Z/2).

The previous two results immediately yield a proof of 3.8. By Proposition 3.9 we
must show that Hn,n−1(ČQa; Z/2) ∼= Z/2 (and we know the group is nontrivial).

But we saw in the last section that Hn,n−1(ČQa; Z/2) ∼= Hn+1,n−1(C̃Qa; Z/2),

where C̃Qa is the homotopy cofiber of (ČQa)+ → (SpecF )+. We also saw

that the operation Qn−2 · · ·Q2Q1 gives a monomorphism Hn+1,n−1(C̃Qa; Z/2) →֒
H2n−1,2n−1−1(C̃Qa; Z/2). But now we are done, since by 3.11 the latter group has
at most two elements.

This completes the proof of the injectivity of ν.



4. QUADRATIC FORMS AND THE ADAMS SPECTRAL SEQUENCE 201

4. Quadratic forms and the Adams spectral sequence

In [M2] Morel announced a proof of the quadratic form conjecture over char-
acteristic zero fields, using the motivic Adams spectral sequence. The approach
depends on having computed the motivic Steenrod algebra, but I’m not sure what
the status of this is—certainly no written account is presently available. Despite this
frustrating point, Morel’s proof is very exciting; while it uses Voevodsky’s compu-
tation of H∗,∗(SpecF ; Z/2)—see Remark 2.10—it somehow avoids using any other
deep results about quadratic forms! So I’d like to attempt a sketch.

The arguments below take place in the motivic stable homotopy category. All
the reader needs to know as background is that it formally behaves much as the
usual stable homotopy category, and that there is a bigraded family of spheres Sp,q.
The suspension (in the triangulated category sense) of Sp,q is Sp+1,q, and S2,1 is
the suspension spectrum of the variety P1.

4.1. Outline. We have our maps νn : KM
n (F )/2 → In/In+1, and need to

prove that they are injective. We will see that the Adams spectral sequence ma-
chinery gives us, more or less for free, maps sn : In/In+1 → KM

n (F )/(2, J) where
J is a subgroup of boundaries from the spectral sequence. The composite snνn is
the natural projection, and so the whole game is to show that J is zero. That is,
one needs to prove the vanishing of a line of differentials. Using the multiplicative
structure of the spectral sequence and the algebra of the E2-term, this reduces just
to proving that the differentials on a certain ‘generic’ element vanish. This allows
one to reduce to the case of the prime field Q, then to R, and ultimately to a purely
topological problem.

4.2. Basic setup. Now I’ll expand on this general outline. The first step is to
produce a map q : GW (F )→ {S0,0, S0,0} where {−,−} denotes maps in the motivic
stable homotopy category. Recall from Section 1.2 that one knows a complete
description of GW (F ) in terms of generators and relations. For a ∈ F ∗ we let
q(〈a〉) be the map P1 → P1 defined in homogeneous coordinates by [x, y]→ [x, ay].
By writing down explicit A1-homotopies one can verify that the relations in GW (F )
are satisfied in {S0,0, S0,0}, and so q extends to a well-defined map of abelian groups.
It is actually a ring map. Further details about all this are given in [M3].

Now we build an Adams tower for S0,0 based on the motivic cohomology spec-
trum HZ/2. Set W0 = S0,0, and define W1 by the homotopy fiber sequence
W1 → S0,0 → HZ/2. Then consider the map W1

∼= S0,0 ∧W1 → HZ/2 ∧ W1,
and let W2 be the homotopy fiber. Repeat the process to define W3, W4, etc. This
gives us a tower of cofibrations

H ∧W2 H ∧W1 H ∧W0

· · · // W2

OO

// W1

OO

// W0,

OO

where we have written H for HZ/2. For any Y the tower yields a filtration on
{Y, S0,0} by letting Fn be the subgroup of all elements in the image of {Y,Wn}
(note that there is no a priori guarantee that the filtration is Hausdorff.) The tower
yields a homotopy spectral sequence whose abutment has something to do with the
associated graded of the groups {S∗,0 ∧ Y, S0,0}. If the filtration is not Hausdorff
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these associated graded groups may not be telling us much about {S∗,0 ∧ Y, S0,0},
but this will not matter for our application. We will be interested in the case
Y = S0,0.

Set Ea,b
1 = {Sa,0, H ∧ Wb}, so that dr : Ea,b

r → Ea−1,b+r
r . My indexing has

been chosen so that the picture of the spectral sequence has Ea,b
1 in spot (a, b) on

a grid, rather than at spot (b − a, a) as is more typical for the Adams spectral
sequence—but the picture itself is the same in the end. Formal considerations give
inclusions

Fk{Sn,0, S0,0}/Fk+1{Sn,0, S0,0} →֒ En,k
∞

(however, there is no a priori reason to believe the map is surjective). In particular,
if F∗ is the filtration on {S0,0, S0,0} then we have inclusions Fk/Fk+1 →֒ E0,k

∞ .
Let GI(F ) be the kernel of the mod 2 dimension function dim: GW (F )→ Z/2.

The powers GI(F )n define a filtration on GW (F ). One can check that q maps GI1

into F1. Since the Adams filtration Fn on π0,0(S
0,0) will be multiplicative, one finds

that q maps GIn into Fn. So we get maps (GI)n/(GI)n+1 → Fn/Fn+1 → E0,n
∞ .

In a moment I’ll say more about what the Adams spectral sequence looks like
in this case, but first let’s relate GI to what we really care about. One easily
checks that GI = GI ⊕ Z, where the Z is the subgroup generated by 〈1, 1〉 =
2〈1〉. So GIn = GIn ⊕ Z, where the Z is generated by 2n〈1〉. It follows that
GIn/GIn+1 ∼= [GIn/GIn+1]⊕Z/2. Finally, recall from Remark 1.5 that the natural
map GI → I is an isomorphism. Putting everything together, we have produced
invariants [In/In+1]⊕ Z/2→ E0,n

∞ .

4.3. Analysis of the spectral sequence. So far the discussion has been
mostly formal. We have produced a spectral sequence, but not said anything con-
crete about it. The usefulness of the above invariants hinges on what E0,n

∞ looks
like. If things work as in ordinary topology, then the E2 term will turn out to be

Ea,b
2 = ExtbH∗∗H(Σb+a,0H∗∗, H∗∗) where I’ve again written H = HZ/2 and Σk,0

denotes a grading shift on the bi-graded module H∗∗. So we need to know the
algebra H∗∗H , but unfortunately there is no published source for this calculation.
In [V2] Voevodsky defines Steenrod operations and shows that they satisfy analogs
of the usual Adem relations; he doesn’t show that these generate all of H∗∗H ,
though. However, let’s assume we knew this—so we are assuming H∗∗H is the al-
gebra Voevodsky denotes A∗∗ and calls the motivic Steenrod algebra [V2, Section
11].

The form of H∗∗H is very close to that of the usual Steenrod algebra, and so
one has a chance at doing some of the Ext computations. In fact, it is not very
hard. Some hints about this are given in Appendix B, but for now let me just tell
you the important points:

(1) Ep,q
2 = 0 if p < 0.

(2) E0,0
2 = Z/2.

(3) For n ≥ 1, E0,n
2 = Hn,n ⊕ Z/2. The inclusion ⊕nH

n,n →֒ ⊕nE
0,n
2 is a ring

homomorphism, where the domain is regarded as a subring of H∗∗.

Most of these computations make essential use of Remark 2.10, and therefore de-
pend on Voevodsky’s proof of the norm residue conjecture. Also note the connection
between (3) and Milnor K-theory, given by the isomorphism Hn,n ∼= KM

n (F )/2.
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The above two facts show that everything in E0,n
2 is a permanent cycle and

thus E0,n
∞ = (Z/2⊕KM

n (F )/2)/J where J is the subgroup of all boundaries. Recall
that one has maps

KM
n (F )/2

νn−→ In/In+1 → E0,n
∞ ∼= [KM

n (F )/2⊕ Z/2]/J.

The composition can be checked to be the obvious one. To prove that νn is in-
jective, we need to prove that J = 0. That is, we need to prove the vanishing
of all differentials landing in E0,∗ (which necessarily come from E1,∗). As for the
computation of the E1,∗ column, here are the additional facts we need:

(4) E1,0
2 = 0.

(5) E1,1
2 = H0,1 ⊕H2,2 ∼= Z/2⊕H2,2.

(6) The images of the two maps

E0,1
2 ⊗ E1,n−1

2 → E1,n
2 E1,n−1

2 ⊗ E0,1
2 → E1,n

2

generate E1,n
2 as an abelian group.

(7) The composite H1,1 ⊗H2,2 →֒ E0,1
2 ⊗ E1,1

2 → E1,2
2 is zero.

Again, let me say that none of these computations is particularly difficult, and
the reader can find some hints in Appendix B. Portions of columns 0 and 1 of our
E2-term are shown below:

Z/2

H1,1 ⊕ Z/2

H2,2 ⊕ Z/2

H3,3 ⊕ Z/2

H4,4 ⊕ Z/2

0

H2,2 ⊕ Z/2

??

??

??

•

6

-

Remark 4.4. If one only looks at the Z/2’s appearing in the above diagram,
the picture looks just like the ordinary topological Adams spectral sequence. The
Z/2’s in our 0th column indeed turn out to be “hn

0 ’s”, just as in topology. The Z/2
in E1,1

2 is a little more complicated, though—it doesn’t just come from Sq2, like
the usual h1 does (see Appendix B for what it does come from).

We need to prove that all the differentials leaving the E1,∗ column vanish. By
fact (6) and the multiplicative structure of the spectral sequence, it is sufficient to

prove that all differentials leaving E1,1
2 vanish (starting with d2 : E1,1

2 → E0,3
2 ). We

will do this in several steps.
The following result basically shows that, just as in ordinary topology, all the

Z/2’s in column 0 survive to E∞.

Lemma 4.5. The image of dr : E1,1
r → E0,r+1

r lies in the subgroup Hr+1,r+1,
for every r ≥ 2.
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Proof. Suppose there is an element x ∈ E1,1
r such that dr(x) does not lie in

Hr+1,r+1 (or rather its image in Er). We can write x = a + y where a ∈ H2,2 =
KM

2 (F )/2 and y ∈ H0,1 ∼= Z/2. In expressing a as a sum of pure symbols, one
notes that only a finite number of elements of F are involved. By naturality of the
spectral sequence, we can therefore assume F is a finitely-generated extension of
Q.

But now we can choose an embedding F →֒ C, and again use naturality. The
groups KM

n (C)/2 are all zero, and therefore our assumption implies that over C we

have E0,r+1
r+1 = 0 (in other words, the Z/2 in E0,r+1

2 dies in the spectral sequence).
But there is a ‘topological realization map’ from our spectral sequence over C to
the usual Adams spectral sequence in topology, where we know that none of the
Z/2’s in E0,∗ ever die. �

Remark 4.6. There is also a purely algebraic proof of the above result. One
reduces via naturality to the case of algebraically closed fields, where all the Hn,n’s
are zero. Then one shows that the Z/2’s in the 0th column form a polynomial

algebra, and that the composite Z/2 ⊗ Z/2 →֒ E1,1
2 ⊗ E0,1

2 → E1,2
2 is zero (just as

in ordinary topology). The fact that the spectral sequences is multiplicative takes
care of the rest.

Lemma 4.7. For a ∈ H2,2 one has dr(a) = 0, for every r.

Proof. It follows from facts (3) and (7), together with the multiplicative struc-
ture of the spectral sequence, that everything in the image of dr : H2,2 → Hr+1,r+1

is killed by H1,1. This is the key to the proof.
Let z = dr(a). Consider the naturality of the spectral sequence for the map

j : F → F (t). It follows from the previous paragraph that j(z) = dr(ja) is killed by
F (t)∗. In particular, {t} · j(z) = 0 in KM

r+2(F (t))/2. But by [Mr2, Lem. 2.1] there

is a map ∂t : K
M
r+2(F (t))/2→ KM

r+1(F )/2 with the property that ∂t({t} · j(z)) = z.
So we conclude that z = 0, as desired. �

Proposition 4.8. All differentials leaving E1,1 are zero.

Proof. Recall E1,1
2
∼= H0,1 ⊕H2,2 ∼= Z/2⊕H2,2. By the previous lemma we

are reduced to analyzing the maps dr : H0,1 → Hr+1,r+1. SinceH0,1(Q)→ H0,1(F )
is an isomorphism, it suffices to prove the result in the case F = Q.

Now use naturality with respect to the field extension Q →֒ R. The maps
KM

n (Q)/2 → KM
n (R)/2 are isomorphisms for n ≥ 3 (see Appendix A), so now

we’ve reduced to F = R. But here we can again use a ‘topological realization’ map
to compare our Adams spectral sequence to the corresponding one in the context of
Z/2-equivariant homotopy theory. This map is readily seen to be an isomorphism
on the E0,∗ column: the point is that the Z/2-equivariant cohomology groups Hn,n

are isomorphic to the corresponding mod 2 motivic cohomology groups over R (see
[Du, 2.8, 2.11], for instance). We are essentially seeing a reflection of the fact
that GW (R) may be identified with the Burnside ring of Z/2, which coincides
with {S0,0, S0,0} in the Z/2-equivariant stable homotopy category. In any case, we
are finally reduced to showing the vanishing of certain differentials in a topological
Adams spectral sequence: the paper [LZ] seems to essentially do this (but I haven’t
thought about this part carefully—I’m relying on remarks from [M2]). �

This completes Morel’s proof of the quadratic form conjecture for characteristic
zero fields (modulo the identification of H∗∗H , which we assumed).
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Remark 4.9. We restricted to characteristic zero fields because the identifica-
tion of H∗∗H has never been claimed in characteristic p. If we make the wild guess
that in positive characteristic H∗∗H still has the same form, most of the argument
goes through verbatim. There are two exceptions, where we used topological re-
alization functors. The first place was to show that the image of the dr’s didn’t
touch the Z/2’s in E0,∗

2 , but Remark 4.6 mentioned that this could be done another
way. The second place we used topological realization was at the final stage of the
argument, to analyze the differentials dr : H0,1 → Hr+1,r+1. As before, this reduces
to the case of a prime field. But for F a finite field one has KM

n (F ) = 0 for n ≥ 2,
so for prime fields there is in fact nothing to check.

In summary, the same general argument would work in characteristic p if one
knew that H∗∗H had the same form.

4.10. Further reading. There is very little completed literature on the sub-
jects discussed in this section. Several documents are available on Morel’s website,
however; the draft [M5] is particularly relevant, although it only slightly expands
on [M2]. For information on the motivic Steenrod algebra, see [V2]. Finally, Morel
recently released another proof of Milnor’s quadratic form conjecture, using very
different methods. See [M4].
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1. Some examples of the Milnor conjectures

This is a supplement to Section 1. We examine the Milnor conjectures in the
cases of certain special fields F .

(a) F is algebraically closed. Since F = F 2, every nondegenerate form is iso-
morphic to one of the form 〈1, 1, . . . , 1〉. So GW (F ) ∼= Z, and W (F ) ∼= Z/2 with
I(F ) = 0. Thus, GrI W (F ) ∼= Z/2.

The absolute Galois group is trivial, so H∗(F ; Z/2) = Z/2.
Finally, the fact that F = F 2 implies that KM

∗ (F )/2 = 0 for ∗ ≥ 1. This is
because the generators all lie in KM

1 (F ), and if a = x2 then {a} = {x2} = 2{x} =
0 ∈ KM

1 (F )/2.

(b) F = F 2. This case is suggested by the previous one. We only need to check
that the hypothesis implies H∗(F ; Z/2) = 0 for ∗ ≥ 1. Strangely, I haven’t been
able to find an easy proof of this.

(c) F = R. In this case we know forms are classified by their rank and signature,
and it follows that GW (R) is the free abelian group generated by 〈1〉 and 〈−1〉.
Also, 〈−1〉2 = 〈1〉. So GW (R) ∼= Z[x]/(x2 − 1), and W (R) ∼= Z with I(R) = 2Z.
Hence GrI W (R) ∼= Z/2[a].

The absolute Galois group of R is Z/2, so H∗(R; Z/2) = H∗(Z/2; Z/2) =
Z/2[a].

Finally we consider KM
∗ (R)/2. The group KM

1 (R)/2 = R∗/(R∗)2 ∼= {1,−1}
(the set consisting of 1 and −1). A similar calculation, based on the fact that every
element of R is a square up to sign, shows that KM

i (R)/2 ∼= Z/2 for every i, with
the nonzero element being {−1,−1, . . . ,−1}. So KM

∗ (R)/2 ∼= Z/2[a] as well.

(d) F = Fq, q odd. Here F ∗ ∼= Z/(q − 1) and so KM
1 /2 = F ∗/(F ∗)2 ∼= Z/2. If

g is the generator, then {g, g, . . . , g} generates KM
n /2 (but may be zero). In fact

one can show (cf. [Mr2, Ex. 1.5]) that {g, g} = 0 in KM
2 , from which it follows

that KM
∗ = 0 for ∗ ≥ 2. So KM

∗ (F )/2 ∼= Z/2⊕ Z/2, in degrees 0 and 1.

For a finite field the absolute Galois group is Ẑ, the profinite completion of Z.
The Galois cohomology H∗(Ẑ; Z/2) is just the mod 2 cohomology of BZ ≃ S1; so
it is Z/2⊕ Z/2, with the generators in degrees 0 and 1.

Again noting that F ∗/(F ∗)2 ∼= Z/2, it follows that the Grothendieck-Witt
group is generated by 〈1〉 and 〈g〉. A simple counting argument (cf. [S1, Lem.
2.3.7]) shows that every element of F∗

q is a sum of two squares. Writing g = a2 + b2

one finds that

〈1, 1〉 = 〈a2, b2〉 = 〈a2 + b2, a2b2(a2 + b2)〉 = 〈a2 + b2, a2 + b2〉 = 〈g, g〉.
That is, 2(〈1〉 − 〈g〉) = 0. It follows that GW (F ) = Z ⊕ Z/2, with corresponding
generators 〈1〉 and 〈1〉 − 〈g〉.

The computation of the Witt group depends on whether or not −1 is a square;
since F ∗ = Z/(q − 1) and −1 has order 2, then −1 is a square precisely when
4|(q − 1). So if q ≡ 1(mod 4) then 〈1〉 = 〈−1〉 and W (F ) ∼= Z/2 ⊕ Z/2; in this
case I(F ) = (〈1〉 − 〈g〉) ∼= Z/2. If q ≡ 3(mod 4) then 〈g〉 = 〈−1〉 and we have
W (F ) ∼= Z/4 with I(F ) = (2). In either case GrI W (F ) ∼= Z/2⊕ Z/2.
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Remark 1.1. Although Milnor’s quadratic form conjecture says that GrI W (F )
depends only on the absolute Galois group of F , this example makes it clear that
the same cannot be said for W (F ) itself.

(e) F = Q. This case is considerably harder, so we will only make a few
observations. Note that as an abelian group one has

Q∗ ∼= Z/2×
(
⊕pZ

)
,

by the fundamental theorem of arithmetic; the direct sum is over the set of all
primes. Here the isomorphism sends a fraction q to its sign (in the Z/2 factor)
together with the list of exponents in the prime factorization of q. So KM

1 (Q)/2 ∼=
Z/2⊕ (⊕pZ/2).

As the above isomorphism may suggest, to go further it becomes convenient to
work with one completion at a time. The case F = R has already been discussed,
so what is left is the p-adics. We will return to F = Q after discussing them.

(f) F = Qp. We will concentrate on the case where p is odd; the case p = 2
is similar, and can be left to the reader. We know KM

1 (Qp)/2 ∼= H1(Qp; Z/2) ∼=
Q∗

p/(Q
∗
p)

2. A little thought (cf. [S1, 5.6.2]) shows this group is Z/2⊕Z/2, with ele-
ments represented by 1, g, p, and pg, where 1 < g < p is any integer which generates
the multiplicative group F∗

p. By [Se3, Section II.5.2] one has H2(Qp; Z/2) ∼= Z/2
and Hi(Qp; Z/2) = 0 for i ≥ 3.

The fact that KM
1 (Qp)/2 only has four elements tells us that KM

∗ (Qp)/2 can’t
be too big. By finding the appropriate relations to write down, Calvin Moore proved
that KM

∗ (Qp)/2 = 0 for ∗ ≥ 3 [Mr2, Ex. 1.7], and that KM
2 (Qp)/2 = Z/2. This is

an exercise for the reader.
The group GW (Qp) will be generated by the four elements 〈1〉, 〈g〉, 〈p〉, and

〈pg〉. The theory again depends on whether or not −1 is a square, which is when
p ≡ 1(mod 4). When p ≡ 1(mod 4) one has 〈1〉 = 〈−1〉 and so 〈x〉 = 〈−x〉 for any
x. As a result 〈g, g〉 = 〈g,−g〉 = 〈1,−1〉 = 〈1, 1〉, and similarly 〈p, p〉 = 〈pg, pg〉 =
〈1, 1〉. One finds that GW (Qp) = Z ⊕ (Z/2)3 with corresponding generators 〈1〉,
〈1〉 − 〈p〉, 〈1〉 − 〈g〉, and 〈1〉 − 〈pg〉. Since 〈1,−1〉 = 2〈1〉, W (Qp) = (Z/2)4 with
the same generators. I is generated by 〈1, p〉, 〈1, g〉, and 〈1, pg〉; I2 is generated by
〈1, p, g, pg〉, and I3 = 0. So GrI W = Z/2 ⊕ (Z/2 ⊕ Z/2) ⊕ Z/2. Note that this is
the first example we’ve seen where I2 6= 2I.

When p ≡ 3(mod 4) we can take g = −1. One has 〈1, 1〉 = 〈−1,−1〉 by the
same reasoning as for Fp (−1 is the sum of two squares), and so 〈p, p〉 = 〈−p,−p〉.
Note that

〈p, p, p, p〉 = 〈p,−p,−p, p〉 = 〈1,−1,−1, 1〉 = 〈1, 1, 1, 1〉
and so 4(〈1〉 − 〈p〉) = 0. Also,

〈p, p, p〉 = 〈p,−p,−p〉 = 〈1,−1,−p〉 and 〈1, 1, 1〉 = 〈1,−1,−1〉.
So 3(〈1〉 − 〈p〉) = 〈−1〉 − 〈−p〉. Of course GW (Qp) is generated by 〈1〉, 〈1〉 − 〈−1〉,
〈1〉 − 〈p〉, and 〈1〉 − 〈−p〉, and the previous computation shows the last generator
is not needed. So we have a surjective map Z ⊕ Z/2 ⊕ Z/4 → GW (Qp) sending
the standard generators to 〈1〉, 〈1〉 − 〈−1〉, and 〈1〉 − 〈p〉. This is readily checked
to be injective once one knows that 〈1, 1〉 6∼= 〈p, p〉. If these forms were isomorphic
it would follow by reduction mod some power of p that 〈1, 1〉 was isotropic over
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some Fpe ; that is, we would have 〈1, 1〉 ∼= 〈1,−1〉. But we’ve already computed
GW (Fpe), and know this is not the case.

The Witt ring is W (Qp) ∼= Z/4 ⊕ Z/4 with generators 〈1〉 and 〈1〉 − 〈p〉. The
ideal I is generated by 2〈1〉 and 〈1〉 − 〈p〉; I2 is generated by 2(〈1〉 − 〈p〉); I3 = 0.
Again we have GrI W ∼= Z/2⊕ (Z/2 ⊕ Z/2)⊕ Z/2.

(g) Return to F = Q. Our understanding of the higher Milnor K-groups of Q
is based on passing to the various completions Qp and R. A computation of Bass
and Tate [Mr2, Lem. A.1] gives an exact sequence

0→ KM
2 (Q)/2→ KM

2 (R)/2⊕
(
⊕pK

M
2 (Qp)/2

)
→ Z/2→ 0,

and we already know KM
2 (Qp)/2 ∼= KM

2 (R)/2 ∼= Z/2. A computation of Tate
[Mr2, Th. A.2, Ex. 1.8] shows that for ∗ ≥ 3 one has

KM
∗ (Q)/2 ∼= ⊕pK

M
∗ (Qp)/2⊕KM

∗ (R)/2 ∼= 0⊕ Z/2.

To compute H∗(Q; Z/2) we again work one completion at a time. A theorem
of Tate [Se3, Section II.6.3, Th. B] says that for i ≥ 3 one has

Hi(Q; Z/2) ∼= Hi(R; Z/2)×
∏

p

Hi(Qp; Z/2) ∼= Hi(R; Z/2) ∼= Z/2.

Our computation of Q∗/(Q∗)2 ∼= H1(Q; Z/2) shows that the map H1(Q; Z/2) →
H1(R; Z/2) ×∏pH

1(Qp; Z/2) is injective. More of Tate’s work [Se3, Sec. II.6.3,

Th. A] identifies the dual of the kernel with the kernel of H2(Q; Z/2) →
H2(R; Z/2)× (⊕pH

2(Qp; Z/2))—thus, this latter map is also injective. Using this,
[Se3, Sec. II.6.3, Th. C] gives a short exact sequence

0→ H2(Q; Z/2)→ H2(R; Z/2)⊕ (⊕pH
2(Qp; Z/2))→ Z/2→ 0.

As we have already remarked that H2(Qp; Z/2) = H2(R; Z/2) = Z/2, this com-
pletes the calculation of H∗(Q; Z/2).

The method for computing the Witt groupW (Q) proceeds similarly by working
one prime at a time. See [S1, Section 5.3]. One has an isomorphism of groups
W (Q) ∼= Z⊕ (⊕pW (Fp)) [S1, Thm. 5.3.4]. With enough trouble one can compute
GrI W (Q), but we will leave this for the reader to consider.

Remark 1.2. Note that the verification of the Milnor conjectures for F = Q
tells us exactly how to classify quadratic forms over Q by invariants. First one
needs the invariants over R (which are just rank and signature), and then one
needs the invariants over each Qp—but for Qp one has I3 = 0, and so p-adic forms
are classified by the three classical invariants e0, e1, and e2. These observations are
essentially the content of the classical Hasse-Minkowski theorem.

The method we’ve used above, of working one completion at a time, works for
all global fields; this is due to Tate for Galois cohomology, and Bass and Tate for
KM

∗ . In this way one verifies the Milnor conjecture for this class of fields [Mr2,
Lemma 6.2]. Note in particular that the class includes all finite extensions of Q.
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2. More on the motivic Adams spectral sequence

This final section is a supplement to Section 4. I will give some hints on
computing the E2-term of the motivic Adams spectral sequence, for the reader
who would like to try this at home. The computations are not hard, but there are
several small issues that are worth mentioning.

2.1. Setting things up. H∗∗H is the algebra of operations on mod 2 motivic
cohomology. We will write this as A from now on. There is the Bockstein β ∈ A1,0

and there are squaring operations Sq2i ∈ A2i,i. We set Sq2i+1 = βSq2i ∈ A2i+1,i.
Finally, there is an inclusion of ringsH∗∗ → A sending an element t to the operation
left-multiplication-by-t. Under our standing assumptions about A (see Section 4),
it is free as a left H∗∗-module with a basis consisting of the admissible sequences
Sqi1Sqi2 · · ·Sqik .

There are two main differences between what happens next and what happens
in ordinary topology. These are:

(a) The vector space H∗∗ = H∗∗(pt), regarded as a left A-module, is nontrivial.
(b) The image of H∗∗ →֒ A is not central.

The above two facts are connected. Let t ∈ H∗∗ and let Sq denote some
Steenrod operation. It is not true in general that Sq(t · x) = t · Sq(x)—instead
there is a Cartan formula for the left-hand side [V2, 9.7], which involves Steenrod
operations on t. So the operations Sq · t and t · Sq are not the same element of A.
There is one notable exception, which is when all the Steenrod squares vanish on
t. This happens for elements in Hn,n, for dimension reasons. So we have

(c) Every element of Hn,n is central in A.

It is important that we can completely understand H∗∗ as an A-module. This
will follow from (1) the fact that H∗∗ ∼=

(
⊕nH

n,n
)
[τ ] (see Remark 2.10); (2) all

Steenrod operations vanish on Hn,n for dimension reasons; (3) all Sqi’s vanish on
τ except for Sq1, and Sq1(τ) = ρ = {−1} ∈ H1,1; (4) the Cartan formula. In
particular we note the following two facts about H∗∗, which are all that will be
needed later (the second fact only needs Remark 2.10):

(d) The map Sq2 : Hn−1,n → Hn+1,n+1 is zero for all n ≥ 1.
(e) The map Hp,q ⊗Hi,j → Hp+i,q+j is surjective for q ≥ p ≥ 0 and j ≥ i ≥ 0.

We are aiming to compute Exta
A(H∗∗,Σb,0H∗∗). In ordinary topology we could

use the normalized bar construction to do this, but one has to be careful here
because H∗∗, as a left A-module, is not the quotient of A by a two-sided ideal.
One way to see this is to use the fact that Sq1(τ) = ρ. Under the quotient map
A→ H∗∗ sending θ to θ(1), Sq1 maps to zero but Sq1τ does not (it maps to ρ).

So instead of the normalized bar construction we must use the unnormalized
one. This can be extremely annoying, but for the most part it turns out not to
influence the “low-dimensional” calculations we’re aiming for. It is almost certainly
an issue when computing past column two of the Adams E2 term, though. Anyway,
let

Bn = A⊗H∗∗ A⊗H∗∗ · · · ⊗H∗∗ A⊗H∗∗ H∗∗
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(n + 1 copies of A). The final H∗∗ can be dropped off, of course, but it’s useful
to keep it there because the A-module structure on H∗∗ is nontrivial and enters
into the definition of the boundary map. If we denote the generators of Bn as
x = a[θ1|θ2| · · · |θn]t then the differential is

d(x) = (aθ1)[θ2| · · · |θn]t+ a[θ1θ2|θ3| · · · |θn]t+ · · ·+ a[θ1| · · · |θn−1]θn(t).

The good news is that our coefficients have characteristic 2, and so we don’t have
to worry about signs. Note that Bn, as a left H∗∗-module, is free on generators
1[θ1| · · · |θn]1 where each θi is an admissible sequence of Steenrod operations (and
we must include the possibility of the null sequence Sq0 = 1). We will often drop
the 1’s off of either end of the bar element, for convenience.

Generators of HomA(Bn, H
∗∗) can be specified by giving a bar element

[θ1| · · · |θn] together with an element t ∈ H∗∗. This data defines a homomorphism
Bn → H∗∗ sending the generator [θ1| · · · |θn] to t and all other generators of Bn to
zero. Let’s denote this homomorphism by t[θ1| · · · |θn]∗. These elements generate
HomA(Bn, H

∗∗) as an abelian group.
The last general point to make concerns the multiplicative structure in the cobar

construction. If we were working with ExtA(k, k) where k is commutative and A
is an augmented k-algebra, multiplying two of the above generators in the cobar
complex just amounts to concatenating the bar elements—the labels t ∈ k commute
with the θ’s, and so can be grouped together: e.g. t[θ1| · · · |θn] · u[α1| · · · |αk] =
tu[θ1| · · · |θn|α1| · · · |αk]. In our case, the fact thatH∗∗ is not central in A immensely
complicates the product on the cobar complex: very roughly, the u has to be
commuted across each θi, and in each case a resulting Cartan formula will introduce
new terms into the product. Luckily there is one case where these complications
aren’t there, which is when u ∈ Hn,n—for then u is in the center of A, and the
product works just as above. We record this observation for future use:

(f) t[θ1| · · · |θn]∗ · u[α1| · · · |αk]∗ = tu[θ1| · · · |θn|α1| · · · |αk]∗ when u ∈ Hq,q.

2.2. Computations. We are trying to compute the groups ExtaA(H∗∗,Σb,0H∗∗),
and from here on everything is fairly straightforward. As an example let’s look at
b = 1. Since Hp,q 6= 0 only when 0 ≤ p ≤ q, one sees that HomA(B0, H

∗∗) = 0 and
HomA(B1,Σ

1,0H∗∗) ∼= H0,0 ⊕H1,1. The generators for this group are elements of
the form s[Sq1]∗ and t[Sq2]∗, where s ∈ H0,0 and t ∈ H1,1.

We likewise find that HomA(B2,Σ
1,0H∗∗) ∼= H0,1 ⊕H0,1 ⊕H0,1 ⊕H0,1, gen-

erated by elements s[Sq1|1]∗, s[1|Sq1]∗, t[Sq2|1]∗, and t[1|Sq2]∗. A similar analysis
shows that HomA(Bn,Σ

1,0H∗∗) only has such ‘degenerate’ terms for n ≥ 2. No de-
generate terms like these contribute elements to Ext (at worst they can contribute
relations to Ext). So the Extn’s vanish for n ≥ 2. An analysis of the coboundary
shows that everything in dimension 1 is a cycle. So we find that

0 = Ext0(H∗∗,Σ1,0H∗∗) = Extn(H∗∗,Σ1,0H∗∗), for n ≥ 2

and
Ext1(H∗∗,Σ1,0H∗∗) ∼= H0,0 ⊕H1,1

with a typical element in the latter group having the form s[Sq1]∗ + t[Sq2]∗ (where
s ∈ H0,0 and t ∈ H1,1).
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In general, one sees for degree reasons that the ‘non-degenerate’ terms in
HomA(Bn,Σ

n,0H∗∗) all have the form t[θ1| · · · |θn]∗ where each θi is either Sq1

or Sq2. In HomA(Bn−1,Σ
n,0H∗∗) one has non-degenerate terms u[θ1| · · · |θn−1]

∗ of
the following types:

(i) Each θi ∈ {Sq1, Sq2}, and at least one Sq2 occurs. Here u ∈ Hj−1,j where j
is the number of Sq2’s.

(ii) Each θi ∈ {Sq1, Sq2, Sq3}, and exactly one Sq3 occurs. Here u ∈ Hj+1,j+1

where j is the number of Sq2’s.
(iii) Each θi ∈ {Sq1, Sq2, Sq2Sq1}, and exactly one Sq2Sq1 occurs. Here one has

u ∈ Hj+1,j+1 where j is the number of Sq2’s.
(iv) Each θi ∈ {Sq1, Sq2, Sq4}, and exactly one Sq4 occurs. Here u ∈ Hj+2,j+2

where j is the number of Sq2’s.

To analyze the part of the boundary Bn → Bn−1 that we care about, one
only needs to know the Adem relations Sq1Sq2 = Sq3 and Sq2Sq2 = τSq3Sq1.
(In fact, since Sq3Sq1 doesn’t appear in any of the bar elements relevant to
Hom(Bn−1,Σ

n,0H∗∗), one may as well pretend Sq2Sq2 = 0.) From this it’s easy to
compute that Extn(H∗∗,Σn,0H∗∗) ∼= H0,0 ⊕ Hn,n where a typical element has
the form s[Sq1|Sq1| · · · |Sq1]∗ + t[Sq2|Sq2| · · · |Sq2]∗. The computation uses re-
mark 2.1(d). Also, one sees that all elements s[Sq1|Sq2]∗ and s[Sq2|Sq1]∗ are zero
in Ext2 (being the coboundaries of s[Sq3]∗ and s[Sq2Sq1]∗, respectively). Using
remark (f) from Section 2.1, this completely determines ⊕n Extn(H∗∗,ΣnH∗∗) as
a subring of the whole Ext-algebra.

The next step is to compute Ext0(H∗∗,Σ1,0H∗,∗), Ext1(H∗∗,Σ2,0H∗,∗), and
Ext2(H∗∗,Σ3,0H∗,∗) completely. The first group is readily seen to vanish. For the
second group one has to grind out another term of the bar construction, but it’s a
very small term. One finds that

Ext1(H∗∗,Σ2,0H∗,∗) ∼= H0,1 ⊕H2,2

where the generators have the form s[Sq2]∗ + (Sq1s)[Sq3]∗ and t[Sq4]∗. To get the
Ext2 group one will need three more Adem relations, namely

Sq2Sq3 = Sq5 + Sq4Sq1, Sq2Sq4 = Sq6 + τSq5Sq1, and Sq3Sq2 = ρSq3Sq1.

Then the same kind of coboundary calculations (but a few more of them) show that

Ext2(H∗∗,Σ3,0H∗,∗) ∼= H1,2 ⊕H2,2

where the generators are s[Sq2|Sq2]∗ + (Sq1s)[Sq3|Sq2]∗ and t[Sq1|Sq4]∗ =
t[Sq4|Sq1]∗ (these last two classes are the same in Ext). It is important to
note that all elements u[Sq2|Sq4]∗ and u[Sq4|Sq2]∗ are coboundaries (of u[Sq6]∗

and u[Sq4Sq2]∗, respectively). This justifies fact (7) on page 20. To jus-
tify fact (6) from that same page (for n = 2), one notices that the cycles
s[Sq2|Sq2]∗ + (Sq1s)[Sq3|Sq2]∗ and t[Sq4|Sq1]∗ decompose as a products

(
s1[Sq

2]∗ + (Sq1s1)[Sq
3]∗
)
· (s2[Sq2]∗) and

(
t1[Sq

4]∗
)
·
(
t2[Sq

1]∗
)

for some s1 ∈ H0,1, s2 ∈ H1,1, t1 ∈ H2,2, and t2 ∈ H0,0. This uses remarks (e)
and (f) from Section 2.1, together with the fact that (Sq1s1)s2 = Sq1(s1s2) for
s2 ∈ H2,2 (by the Cartan formula).
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The final step is to analyze the groups Extn−1(H∗∗,Σn,0H∗∗) for n ≥ 4; these
complete the E1,∗ column of the Adams spectral sequence. One doesn’t have to
compute them explicitly, just enough to know that every element is decomposable
as a sum of products from Extn−2(H∗∗,Σn−1,0H∗∗) and Ext1(H∗∗,Σ1,0H∗∗).

The calculations involve nothing more than what we’ve done so far, except for
more sweat. It’s fairly easy to write down all the cocycles made up from the classes
of types (i)-(iv) listed previously. All bar elements which have a Sq4 in them are
cocycles, for instance. But note that such a bar element will either begin or end
with a Sq1 or a Sq2, so that it decomposes as a product of smaller degree cocycles
(this again depends on 2.1(e,f)). One also finds cocycles of the form

s[Sq1|Sq1| · · · |Sq3|Sq1| · · · |Sq1]∗ + s[Sq1|Sq1| · · · |Sq2Sq1|Sq1| · · · |Sq1]∗,
but for each of these a common [Sq1]∗ can be pulled off of either the left or right
side—again showing it to be decomposable.

Certainly there are cocycles which are not decomposable, like ones of the form

s[Sq2|Sq1| · · · |Sq1|Sq3]∗ + s[Sq2Sq1|Sq1| · · · |Sq1|Sq2]∗.
But this is the coboundary of s[Sq2Sq1|Sq1| · · · |Sq1|Sq3], and so vanishes in Ext.

Anyway, I am definitely not going to give all the details. But with enough
diligence one can see that all elements of Extn−1(H∗∗,Σn,0H∗∗) for n ≥ 3 do
indeed decompose into products.

Remark 2.3. A final note about Adem relations, for those who want to try
their hand at further calculations. Every formula I’ve seen for the motivic Adem
relations—in publications or preprints—seems to either contain typos or else is just
plain wrong. A good test for a given formula is to see whether it gives Sq3Sq2 =
ρSq3Sq1 (this formula follows from the smaller Adem relation Sq2Sq2 = τSq3Sq1,
the derivation property of the Bockstein, the fact that β2 = 0, and the identity
Sq3 = βSq2).
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