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Compiled motif matrices

The Sox-Oct composite motif was identified from both the Oct4 and the Sox2 positive ChIP
regions by the software CisModule [1] with a heterogeneous Markov background [2]. Noting that
this motif is identical to the Sox-Oct composite motif detected from an independent Oct4 ChIP-
PET data set in mouse ESCs [3], we included it in our pre-compiled motif set. In addition, we
included all the 219 high-quality PWMs from TRANSFAC release 9.0 [4] and the PWMs of four
TFs with known functions in ES cells from ref. [5]-[8].

Ten-fold CVs on the Oct4 ChIP-chip data

To eliminate co-linearity among the background word frequencies in LR-Full, we removed the last
category of the k-mers from the input feature vector for k = 2 and 3, respectively. In Step-SO, we
started from the LR-SO model and used the stepwise method (with both forward and backward
steps) to add or delete features in the linear regression model based on the AIC criterion (see R
function “step”). The Step-Full was performed similarly, but starting from the LR-Full model.

For neural networks (implemented in R package “nnet” by Venables and Ripley), we tested
its performance with all combinations of different number of hidden nodes (2, 5, 10, 20, 30) and
weight decay (0, 0.5, 1.0, 2.0). The CV-cor of NN-SO reached a quite stable level around 0.46 when
the weight decay was > 0.5 for different number of hidden nodes. Its optimal CV-cor (=0.468) was
achieved with weight decay = 1.0 and 10 hidden nodes. The neural network with all the features
encountered a severe overfitting problem, resulting in a CV-cor < 0.38 for all tested combinations
of weight decay and numbers of hidden nodes. In order to alleviate the overfitting problem for
NNs, we reduced the input features to those selected by the stepwise regression (about 45), and
employed a weight decay of 1.0 with 2, 5, 10, 20, or 30 hidden nodes. We call this approach
Step+NN, and it reached an optimal CV-cor of 0.463 with 2 hidden nodes.

We applied MARS (R package “mda” by Hastie and Tibshirani) to this data set under two
settings: the one with no interaction terms (d = 1) and the one with two-way interactions (d = 2).
For each setting, we chose different values for the penalty λ, which specifies the cost per degree
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of freedom. In the first setting (d = 1), we set the penalty λ = 1, 2, · · · , 10, and observed that
the CV-cor reached its maximum of 0.580 when λ = 6. We note that the performance of MARS
was quite sensitive to the choice of λ. With λ ≤ 2, MARS greatly overfitted the training data,
and the CV-cors dropped to below 0.459. MARS with two-way interactions (d = 2) showed
unsatisfactory performance for λ ≤ 5 with CV-cor < 0.360. We then tested λ in the range of
[10, 50] and identified the optimal CV-cor of 0.561 when λ = 20.

Support vector regression (ε-SVR) as defined in [9] was applied to this data set with the
implementation of LIBSVM [10] in the R-package “e1071”. We tested the linear, radial basis,
3rd-order polynomial and sigmoid kernels with the cost C = 0.1, 1, 10, 100. It turned out that
for this data set, the radial basis kernel performed better than all the other kernels and the
corresponding CV-cor ranged from 0.489 to 0.547 for different values of C. The optimal result
was achieved when C = 1 with insignificant decrease in CV-cor for C > 1.

As discussed in the main text, the tuning parameter for boosting is the number of iterations,
which equals the number of additive model components (regression trees here) included. We
applied the R package “gbm” by Ridgeway to this data set, with the shrinkage parameter (learning
rate) ν = 0.1 and the default settings for all the other parameters. The number of trees M was
set between 50 and 500, and the optimal model was obtained when stopped at 100 trees. It was
observed that the CV-cors of boosting, between 0.541 and 0.581, were quite robust for different
number of trees.

For BART, we ran 20,000 iterations after a burn-in period of 2,000 iterations, as implemented
in the R package “BayesTree” [11]. We tested the method with the number of trees ranging from
20 to 200. Other parameters for prior distributions were specified by the default setting in the
R package. Notably, BART with different number of trees reached CV-cors between 0.592 and
0.6, which outperformed the optimal results of all the other methods. We also noticed that the
performance of BART was very robust for different choices of tree numbers.

Ten-fold CVs on the Sox2 ChIP-chip data

For LR-SO, LR-Full, Step-SO, Step-Full, SVM, boosting, and BART, the cross validations were
performed exactly the same as we did on the Oct4 data set. For NN-SO, we tried all the combina-
tions of the number of hidden nodes (2, 5, 10, 20, and 30) and weight decay (0, 0.5, 1, and 2), and
found that NN-SO showed its optimal performance (CV-cor = 0.364) with 5 hidden nodes and a
weight decay of 0.5. For various numbers of hidden nodes, optimal performance was reached with
weight decay between 0.5 and 1, and the CV-cor started to drop down for weight decay = 2. For
Step+NN, we fixed the weight decay to 1.0, and tested with 2, 5, 10, 20, and 30 hidden nodes,
and obtained the best result when there were only 2 hidden nodes (CV-cor = 0.465). We also
tried different parameter settings for MARS similarly to what we have done on the Oct4 data set.
For d = 1, we applied MARS with λ = 1, · · · , 10 and 15, 20, · · · , 50. The optimal CV-cor of 0.553
was achieved with λ = 10, and it decreased to below 0.45 for λ ≤ 2. For d = 2, we applied MARS

2



with λ = 10, 15, · · · , 50 and obtained CV-cors in the range of [0.498, 0.539]. In addition, our pilot
runs showed that MARS with d = 2 performed unsatisfactorily for λ < 10 (CV-cor < 0.45). Both
boosting and BART were very robust to the number of trees included: The CV-cors ranged from
0.534 to 0.560 for boosting and from 0.561 to 0.572 for BART. The best prediction of SVM was
achieved by the radial kernel with C = 1 and the CV-cor dropped to a level below 0.5 for the
other tested values of C (0.1, 10 or 100).

Robustness of BART to negative control sequences

For both the Oct4 and Sox2 ChIP-chip data sets, the results of BART were quite robust to the
selection of random sequence regions (serving as negative controls). The average change in Pin was
about 0.06 across two independent sets of random regions, which makes no qualitative differences
in identifying important sequence features.
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