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1. Assumptions

Reading: Schafer (1997), Section 2.1 to 2.3.
Let Y be an n× p matrix of complete data, Y = (Yobs, Ymis), yi be the ith row
of Y , i = 1, . . . , n.

Example of missing data

Variables 1 2 . . . p
1
2 ? ?
. . .
n ? ?
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Under the iid assumption, the probability density of Y

p(Y | θ) =
n∏

i=1

f(yi | θ),

where θ is the parameter for this data generation model.

1.1. Ignorability

Missing at random (MAR) is defined in terms of a probability model for the
missingness. Let R = (rij) be an n × p matrix of indicator variables: rij = 1
if yij is observed and rij = 0 otherwise. We put a probability model for R,
p(R | Y, ξ), where ξ is some parameter. The MAR assumption is that

p(R | Yobs, Ymis, ξ) = p(R | Yobs, ξ), (1)

that is, R ⊥ Ymis | Yobs. A stronger assumption is missing completely at random
(MCAR): R ⊥ (Ymis, Yobs). If neither holds, then the data are missing not at
random (MNAR): R depends on Ymis.
Consider an example in Mohan and Pearl (2021): A study in a school measured
age (A), gender (G), and obesity (O) for students, with missing values in O
since some students fail to reveal weight.

• MCAR: some students accidentally lost questionnaires (R ⊥ A,G,O).
• MAR: some teenagers not reporting weight (R ⊥ O | A).
• MNAR: overweight students reluctant to report weight (O → R).

Distinctness of parameters. Let θ denote the parameters of the data model, and
ξ the parameters of the missingness mechanism. Then, θ and ξ are distinct if
(a) Bayesian: any joint prior on (θ, ξ) must factor into independent marginal
priors for θ and ξ, that is:

π(θ, ξ) = πθ(θ)πξ(ξ).

(b) Frequentist: joint parameter space of (θ, ξ) is the Cartesian product of the
individual parameter spaces for θ ∈ Θ and ξ ∈ Γ. That is:

(θ, ξ) ∈ Θ× Γ.

MAR & distinctness ⇒ the missing-data mechanism is ignorable.



Zhou, Q./Advanced Modeling and Inference 3

1.2. Observed data likelihood and posterior

P(R, Yobs|θ, ξ) =
∫
Ωmiss

P(R, Y |θ, ξ)dYmiss

=

∫
P(R|Y, θ, ξ)P(Y |θ, ξ)dYmiss

=

∫
P(R|Y, ξ)P(Y |θ)dYmiss

= P(R|Yobs, ξ)

∫
P(Y |θ)dYmiss by MAR

= P(R|Yobs, ξ)P(Yobs|θ).

Consider the maximum likelihood estimate (MLE) of (θ, ξ). Under distinctness,

max
(θ,ξ)∈Θ×Γ

P(R, Yobs|θ, ξ) =
{
max
ξ∈Γ

P(R|Yobs, ξ)

}{
max
θ∈Θ

P(Yobs|θ)
}

is separable. Define the observed-data likelihood L(θ|Yobs) := P(Yobs|θ). If both
MAR and distinctness hold, we have the following MLE of θ:

θ̂MLE = argmax
θ∈Θ

P(Yobs|θ) = argmax
θ∈Θ

L(θ|Yobs).

Now for the posterior distribution of the parameters:

P(θ, ξ|Yobs, R) ∝ P(R, Yobs|θ, ξ)π(θ, ξ)
=MAR P(R|Yobs, ξ)P(Yobs|θ)π(θ, ξ)
=Distinctness P(R|Yobs, ξ)P(Yobs|θ)πθ(θ)πξ(ξ).

Then we could derive the posterior of θ:

P(θ|Yobs, R) =

∫
P(θ, ξ|Yobs, R)dξ

∝ P(Yobs|θ)πθ(θ)

∫
h(R, Yobs, ξ)dξ

∝ L(θ|Yobs)πθ(θ),

where h(R, Yobs, ξ) is a function independent of θ and L(θ|Yobs) is the observed
data likelihood. Therefore, the observed-data posterior:

P(θ|Yobs, R) = P(θ|Yobs) ∝ P(Yobs|θ)πθ(θ).

2. The EM algorithm and its properties

Reading: Schafer (1997), Section 3.2 and 3.3. Also see Dempster, Laird and
Rubin (1977) and Wu (1983).
Recall that our goal is to find:

θ̂MLE = argmax
θ∈Θ

P(Yobs|θ) = argmax
θ∈Θ

∫
P(Yobs, Ymiss|θ)dYmiss.
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2.1. The algorithm

Definition 1 (EM Algorithm). First, start with an initial θ(0). For the (t+1)th

iteration:

• E-step: Calculate the expectation of complete-data log-likelihood:

Q(θ|θ(t)) := E[logP(Yobs, Ymiss|θ)|Yobs, θ
(t)].

• M-step: Find θ(t+1) by maximizing Q(θ|θ(t)):

θ(t+1) := argmax
θ∈Θ

Q(θ|θ(t)).

Iterate the above 2 steps until convergence.

Remark 1. The expectation in the E-step is taken with respect to P(Ymiss|Yobs, θ
(t))

(conditional distribution), but not P(Ymiss|θ(t)) (marginal distribution).

Example 1 (Bivariate binary data). Y1 and Y2 are correlated binary variables
on {1, 2}. Missing values occur on either Y1 or Y2 in an i.i.d. sample of n units.
We want to estimate θ = (θ11, θ12, θ21, θ22), where θij := P(Y1 = i, Y2 = j).
Complete data: X = (x11, x12, x21, x22) (2 × 2 contingency table), where xij is
the number of units with Y1 = i and Y2 = j. Complete data log-likelihood:

ℓ(θ|X) =

2∑
i,j=1

xij log θij .

According to the missingness pattern, we partition the n units into three blocks:

A: Both observed
Y1\Y2 1 2

1 xA
11 xA

12 xA
1+

2 xA
21 xA

22 xA
2+

xA
+1 xA

+2

B: Y2 missing
Y1\Y2 1 2

1 xB
1+

2 xB
2+

C: Y1 missing
Y1\Y2 1 2

1
2

xC
+1 xC

+2

Then we have:

(xB
i1, x

B
i2)|Yobs, θ

(t) ∼ M

(
xB
i+,

(
θ
(t)
i1

θ
(t)
i+

,
θ
(t)
i2

θ
(t)
i+

))
, i = 1, 2.
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(xC
1j , x

C
2j)|Yobs, θ

(t) ∼ M

(
xC
+j ,

(
θ
(t)
1j

θ
(t)
+j

,
θ
(t)
2j

θ
(t)
+j

))
, j = 1, 2.

where θ
(t)
i+ = θ

(t)
i1 + θ

(t)
i2 , θ

(t)
+j = θ

(t)
1j + θ

(t)
2j . Thus we derive the EM algorithm as

follows:

• E-step: To calculate E[ℓ(θ|X)|Yobs, θ
(t)], let

x
(t)
ij := E(xij |Yobs, θ

(t)) = xA
ij + xB

i+

θ
(t)
ij

θ
(t)
i+

+ xC
+j

θ
(t)
ij

θ
(t)
+j

, 1 ≤ i, j ≤ 2.

Then

Q(θ | θ(t)) = E[ℓ(θ|X)|Yobs, θ
(t)] =

∑
i,j

x
(t)
ij log θij .

• M-step: Maximizing Q(θ | θ(t)) subject to
∑

i,j θij = 1, we have

θ
(t+1)
ij =

x
(t)
ij

n
=

1

n

[
xA
ij + xB

i+

θ
(t)
ij

θ
(t)
i+

+ xC
+j

θ
(t)
ij

θ
(t)
+j

]
.

2.2. EM as MM Algorithm

MM Algorithm: Minorization-Maximization Algorithm. It was first proposed
by Professor Jan de Leeuw at UCLA.
We start with a simple identity:

logP(Ymiss, Yobs|θ) = ℓ(θ|Yobs) + logP(Ymiss|Yobs, θ).

Now denote by F any distribution for Ymiss. Then re-arrange the above equation
to get

ℓ(θ|Yobs) = logP(Ymiss, Yobs|θ)− logF (Ymiss) + log
F (Ymiss)

P(Ymiss|Yobs, θ)
.

Take expectation on both sides w.r.t. F (L.H.S. is a constant since it does not
involve Ymiss):

ℓ(θ|Yobs) = EF [logP(Ymiss, Yobs|θ)] +H(F ) +D(F∥P(Ymiss|Yobs, θ)),

where H(F ) denotes the entropy of distribution F and D(·∥·) denotes the
Kullback-Leibler divergence. Since D(·∥·) ≥ 0, thus for any F we have:

ℓ(θ|Yobs) ≥ EF [logP(Ymiss, Yobs|θ)] +H(F ) := L(θ, F ),

and equality holds when F = P(Ymiss|Yobs, θ). Let F (t) = P(Ymiss|Yobs, θ
(t)).

Then L(θ, F (t)), called a minorization function of ℓ(θ|Yobs), satisfies the following
two conditions:
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(i) ℓ(θ|Yobs) ≥ L(θ, F (t)) for any θ;
(ii) ℓ(θ(t)|Yobs) = L(θ(t), F (t)).

EM iterates between two steps:

1. Minorization (E-step): Find L(θ, F (t)) by calculating

EF (t) [logP(Ymiss, Yobs|θ)] = Q(θ|θ(t)).

Note that L(θ, F (t)) = Q(θ|θ(t)) + H(F (t)), where H(F (t)) is a constant
w.r.t θ and thus can be omitted.

2. Maximization (M-step): maxθ L(θ, F
(t)) ⇔ maxθ Q(θ|θ(t)) to obtain θ(t+1).

Then, we can show the ascent property (Proposition 1) of the EM:

ℓ(θ(t+1)|Yobs) ≥ L(θ(t+1), F (t)) by (i)

≥ L(θ(t), F (t)) M-step

= ℓ(θ(t)|Yobs). by (ii)

θθ(t+1) θ(t)

black curve: ℓ(θ|Yobs)

blue curve: L(θ, F (t))

2.3. Properties of the EM

To establish the ascent property of the EM algorithm, we need the following
inequality:

Lemma 1 (Jensen’s inequality). Assume that a random variable W is defined
in the interval (a, b). If h(W ) is convex on (a, b), then

E[h(W )] ≥ h[E(W )],

provided that both expectations exist. For a strictly convex function, equality hold
iff W = E(W ) a.s.

Proof. Use the supporting hyperplane theorem. Denote g(W ) as the support-
ing hyperplane of h(W ) at point w0 = E(W ). By convexity, we have h(w) ≥
g(w) ∀w ∈ (a, b), and thus,

E[h(W )] ≥ E[g(W )] = g[E(W )] = h[E(W )].

The second equality is due to the linearity of E(·) and g(·).
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Proposition 1 (Ascent property of the EM). Let ℓ(θ|Yobs) := logP(Yobs|θ),
which is the observed-data log-likelihood. Then the EM iterations satisfy

ℓ(θ(t+1)|Yobs) ≥ ℓ(θ(t)|Yobs).

Proof. There are three crucial steps. First, write

ℓ(θ|Yobs) = logP(Yobs|θ) = Q(θ|θ(t))−H(θ|θ(t)),

where

H(θ|θ(t)) =
∫

[logP(Ymiss|Yobs, θ)]P(Ymiss|Yobs, θ
(t))dYmis.

Note that −H(θ(t)|θ(t)) is the entropy of the distribution [Ymiss|Yobs, θ
(t)]. Sec-

ond, we have
Q(θ(t)|θ(t)) ≤ Q(θ(t+1)|θ(t))

since θ(t+1) is a maximizer of Q(•|θ(t)). Third, note that by Jensen’s inequality
and convexity of − log(·):

H(θ(t)|θ(t))−H(θ(t+1)|θ(t)) = E
{
log

P(Ymiss|Yobs, θ
(t))

P(Ymiss|Yobs, θ(t+1))

∣∣∣∣Yobs, θ
(t)

}
≥ 0.

Therefore,

ℓ(θ(t)|Yobs) = Q(θ(t)|θ(t))−H(θ(t)|θ(t))
≤ Q(θ(t+1)|θ(t))−H(θ(t+1)|θ(t)) = ℓ(θ(t+1)|Yobs).

Theorem 1 (Convergence property of the EM). Under some conditions, the
sequence {θ(t)} defined by the EM iterations converges to a stationary point of
the observed-data log-likelihood ℓ(θ|Yobs).

2.4. Missing information and convergence rate

Recall that Q(θ|θ) = ℓ(θ|Yobs)+H(θ|θ). Taking second derivatives on both sides:

− ∂2

∂θ2
Q(θ|θ)︸ ︷︷ ︸

IC(θ)

= − ∂2

∂θ2
ℓ(θ|Yobs)︸ ︷︷ ︸

IO(θ)

+(− ∂2

∂θ2
H(θ|θ)︸ ︷︷ ︸

IM (θ)

).

Thus, IC(θ) = IO(θ)+ IM (θ). This is called missing information principle.

For regular problems where θ(t+1) ⇐ ∂Q(θ|θ(t))
∂θ = 0, we have

(θ(t+1) − θ̂)=̇D(θ(t) − θ̂),

when θ(t) is close to the MLE θ̂ = argmaxθ ℓ(θ|Yobs). Here, D = IC(θ̂)−1IM (θ̂)
is called the fraction of missing information. Therefore after r iterations,

(θ(t+r) − θ̂)=̇Dr(θ(t) − θ̂),

which shows that the convergence rate of EM is governed by the largest eigen-
value of D.
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2.5. Another example

Example 2. Multinomial distribution with cell probabilities

(π1, π2, π3, π4) =

(
1

2
+

θ

4
,
1− θ

4
,
1− θ

4
,
θ

4

)
,

where θ ∈ (0, 1) is the only unknown parameter. Given observations

y = (y1, y2, y3, y4),

4∑
i=1

yi = n,

we want to find the MLE of θ.
We could directly maximize the likelihood via numerical optimization, but we
could also use EM algorithm, i.e., treat this as a missing data problem. Split the
first category π1 = π11 + π12, π11 = 1

2 , π12 = θ
4 . Therefore, the complete data is

ycmp = (y11, y12, y2, y3, y4). The complete data log-likelihood is:

ℓ(θ|ycmp) = y11 log
1

2
+ (y12 + y4) log

θ

4
+ (y2 + y3) log

1− θ

4
= (y12 + y4) log θ + (y2 + y3) log(1− θ) + constant.

EM algorithm:

• E-step: Calculate

E(y12 | y, θ(t)) = y1
θ(t)/4

1/2 + θ(t)/4
:= y

(t)
12 .

Then

Q(θ | θ(t)) = E[ℓ(θ|ycmp)|y, θ(t)] = (y
(t)
12 + y4) log θ + (y2 + y3) log(1− θ)

+ constant.

• M-step: Maximizing Q(θ | θ(t)) (binomial log-likelihood),

θ(t+1) =
y
(t)
12 + y4

y
(t)
12 + y4 + y2 + y3

.

3. EM for exponential families

3.1. Exponential families

Definition 2. A family of pdfs or pmfs is called an exponential family (EF) if
it can be expressed as

f(x | θ) = h(x)c(θ) exp
[
ϕ(θ)Tt(x)

]
, (2)

where θ = (θm)1:d ∈ Rd, ϕ(θ) = (ϕj(θ))1:k ∈ Rk, t(x) = (tj(x))1:k ∈ Rk and
d ≤ k. If d < k, the family is called a curved exponential family.
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Theorem 2. Suppose that f(x | θ) and its partial derivatives ∂f(x | θ)/∂θm
are continuous in x and θ. If X is a random variable with density f(x | θ), then

E

 k∑
j=1

∂ϕj(θ)

∂θm
tj(X)

 = −∂ log c(θ)

∂θm
for m = 1, . . . , d.

Theorem 3 (Sufficient statistic). Let Y1, . . . , Yn be an iid sample of size n from
f(· | θ). Then

T (Y1, . . . , Yn) =

(
n∑

i=1

t1(Yi), . . . ,

n∑
i=1

tk(Yi)

)
:=

n∑
i=1

t(Yi)

is a sufficient statistic for θ.

Proof. Let Y = (Y1, . . . , Yn) and yi be the observed value of Yi. Then

f(y | θ) = f(y1, . . . , yn | θ) =

[
n∏

i=1

h(yi)

]
[c(θ)]

n
exp

[
ϕ(θ)T

n∑
i=1

t(yi)

]
.

Suppose
∑n

i=1 t(yi) = t∗. The conditional distribution [Y | T (Y ) = t∗, θ] is
given by

p(y | t∗, θ) ∝ f(y | θ) · I(T (y) = t∗)

=

n∏
i=1

h(yi) · I(T (y) = t∗) · [c(θ)]n exp
[
ϕ(θ)Tt∗

]
∝

n∏
i=1

h(yi) · I(T (y) = t∗),

which is independent of θ.

3.2. MLE for complete data

Let Tj(y) =
∑n

i=1 tj(yi), j = 1, . . . , k. The log-likelihood given complete data

ℓ(θ | y) = n log c(θ) + ϕ(θ)T
n∑

i=1

t(yi)

= n log c(θ) +

k∑
j=1

ϕj(θ)Tj(y). (3)

The MLE is given by the solution to

∂ℓ(θ | y)
∂θm

= n
∂ log c(θ)

∂θm
+

k∑
j=1

∂ϕj(θ)

∂θm
Tj(y) = 0, m = 1, . . . , d.
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From Theorem 2 and that Yi ∼ f(· | θ), we have

n
∂ log c(θ)

∂θm
= −nE

 k∑
j=1

∂ϕj(θ)

∂θm
tj(Y1)

 ,

and therefore, the MLE is given by the solution to

k∑
j=1

∂ϕj(θ)

∂θm
Tj(y) = n

k∑
j=1

∂ϕj(θ)

∂θm
E [tj(Y1)] , m = 1, . . . , d.

Assume that d = k and the matrix

∂ϕ

∂θ
=

(
∂ϕj(θ)

∂θm

)
k×k

is invertible, where ∂ϕj(θ)/∂θm is the (m, j)th element. Then the MLE θ̂ =

(θ̂1, . . . , θ̂k) is the solution to

∂ϕ

∂θ

 T1(y)
...

Tk(y)

 = n
∂ϕ

∂θ

 Et1(Y1)
...

Etk(Y1)


⇐⇒ Tj(y) = nEθ[tj(Y1)], j = 1, . . . , k.

That is,

n∑
i=1

tj(yi) = nEθ[tj(Y1)] = Eθ

[
n∑

i=1

tj(Yi)

]
, j = 1, . . . , k.

Note that the left-hand side is the observed value of the sufficient statistic and
the right-hand side the expectation which depends on θ.

Example 3. N (µ, σ2) and Bin(n, p).

3.3. EM for incomplete data

Let yobs be the observed data.

• E-step:

Q(θ | θ(t)) = E
[
ℓ(θ | Y ) | yobs, θ(t)

]
= n log c(θ) +

k∑
j=1

ϕj(θ)E
[
Tj(Y ) | yobs, θ(t)

]
(due to (3))

= n log c(θ) +

k∑
j=1

ϕj(θ)E

[
n∑

i=1

tj(Yi)
∣∣∣ yobs, θ(t)] .
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• M-step: θ(t+1) is the solution to

E

[
n∑

i=1

tj(Yi)
∣∣∣ yobs, θ(t)] = nEθ[tj(Y1)], j = 1, . . . , k.

Example 4. Let y1, . . . , yn be iid observations from N (µ, 1), but only sgn(yi)
are observed for i = 1, . . . , k. Find the MLE of µ.
Let ϕ(·) and Φ(·) be the pdf and cdf of N (0, 1), respectively. Suppose that
sgn(yi) = 1 for i = 1, . . . , k1 and sgn(yi) = −1 for i = k1 + 1, . . . , k1 + k2 = k.

(+ . . .+︸ ︷︷ ︸
k1

| − . . .−︸ ︷︷ ︸
k2︸ ︷︷ ︸

k

| yk+1, . . . , yn)

(1) By EM: Regard y1, . . . , yk as missing. Sufficient statistic for µ is T =∑n
i=1 Yi. In E-step, calculate E(T | yobs, µ(t)) =

∑
i E(Yi | yobs, µ(t)).

(a) For i > k, E(Yi | yobs, µ(t)) = yi.
(b) For i = 1, . . . , k1,

E(Yi | yobs, µ(t)) = E(Yi | Yi > 0, µ(t)) = µ(t) +
ϕ(µ(t))

Φ(µ(t))
.

(c) For i = k1 + 1, . . . , k,

E(Yi | yobs, µ(t)) = E(Yi | Yi < 0, µ(t)) = µ(t) − ϕ(µ(t))

1− Φ(µ(t))
.

M-step: Solve E(T | yobs, µ(t)) = nµ(= Eµ(T )) to obtain

µ(t+1) =
1

n

[∑
i>k

yi + kµ(t) +

(
k1

Φ(µ(t))
− k2

1− Φ(µ(t))

)
ϕ(µ(t))

]
. (4)

(2) Direct approach: Since P (Yi > 0) = Φ(µ) and P (Yi < 0) = 1− Φ(µ),

p(yobs | µ) ∝ [Φ(µ)]k1 [1− Φ(µ)]k2 exp

[
−1

2

∑
i>k

(yi − µ)2

]
.

Thus, observed data log-likelihood

ℓ(µ | yobs) = k1 log Φ(µ) + k2 log[1− Φ(µ)]− 1

2

∑
i>k

(µ− yi)
2.

Therefore, setting

∂ℓ(µ | yobs)
∂µ

=
k1ϕ(µ)

Φ(µ)
− k2ϕ(µ)

1− Φ(µ)
− (n− k)µ+

∑
i>k

yi = 0
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shows that MLE µ̂ satisfies

µ̂ =
1

n

[∑
i>k

yi + kµ̂+

(
k1

Φ(µ̂)
− k2

1− Φ(µ̂)

)
ϕ(µ̂)

]
. (5)

Compare (4) and (5): µ̂ is a fixed point of the EM iteration, i.e., µ(t+1) = µ̂ if
µ(t) = µ̂.

4. Incomplete normal data

4.1. The complete-data model

Complete data: Y = (yij)n×p, yi = (yi1, yi2, . . . , yip) ∈ Rp, and

yi|θ
iid∼ N (µ,Σ), i = 1, . . . , n.

Put θ = (µ,Σ). Complete-data likelihood is

L(θ|Y ) ∝ |Σ|−n/2 exp

{
−1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ)

}
.

Let S :=
∑n

i=1(yi − ȳ)(yi − ȳ)T ∈ Rp×p. The exponent

n∑
i=1

(yi − µ)TΣ−1(yi − µ) = tr
[∑

i

(yi − µ)TΣ−1(yi − µ)
]

= tr
[∑

i

Σ−1(yi − µ)(yi − µ)T
]

= tr(Σ−1S) + tr[Σ−1n(ȳ − µ)(ȳ − µ)T]

= tr[Σ−1S] + n(ȳ − µ)TΣ−1(ȳ − µ).

Therefore,

ℓ(θ|Y ) = −n

2
log |Σ| − 1

2
tr[Σ−1S]− 1

2
n(ȳ − µ)TΣ−1(ȳ − µ).

This gives us the maximum likelihood estimate of θ:

µ̂MLE = ȳ, Σ̂MLE =
1

n
S.

4.2. Sufficient statistics and conditional distributions

We start with the log-likelihood given complete data,

ℓ(θ|Y ) = −n

2
log |Σ| − 1

2

n∑
i=1

(
µTΣ−1µ− 2µTΣ−1yi + yTi Σ

−1yi
)

= −n

2
log |Σ| − n

2
µTΣ−1µ+ µTΣ−1

∑
i

yi −
1

2

∑
i

yTi Σ
−1yi.
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Using properties of trace,

∑
i

yTi Σ
−1yi =

∑
i

tr
(
yTi Σ

−1yi
)
=
∑
i

tr
(
Σ−1yiy

T
i

)
= tr

(
Σ−1

∑
i

yiy
T
i

)
.

Letting

T1 :=

n∑
i=1

yi = nȳ, T2 :=

n∑
i=1

yiy
T
i = Y TY,

we arrive at

ℓ(θ|Y ) = −n

2
log |Σ| − n

2
µTΣ−1µ+ µTΣ−1T1 −

1

2
tr(Σ−1T2) (6)

Note that

µTΣ−1T1 = ⟨Σ−1µ, T1⟩,
tr(Σ−1T2) = ⟨vec(Σ−1), vec(T2)⟩.

Therefore, (i) N (µ,Σ) is an exponential family and (ii) (T1, T2) is a sufficient
statistic for θ = (µ,Σ). Also we have the following facts:

• Eθ(T1) = nµ;
• Eθ(T2) = n(Σ + µµT).

Now we can find the MLE by solving

n∑
i=1

yi = nµ,

n∑
i=1

yiy
T
i = n(Σ + µµT),

which leads to

µ̂MLE =
1

n

n∑
i=1

yi = ȳ, Σ̂MLE =
1

n

n∑
i=1

yiy
T
i − ȳȳT =

1

n
S. (7)

Theorem 4 (Conditional distributions). Suppose x = (x1,x2) ∼ N (µ,Σ),

where µ =

(
µ1

µ2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. Then

x1|x2 ∼ N (µ1|2(x2),Σ1|2),

where µ1|2(x2) := µ1 +Σ12Σ
−1
22 (x2 − µ2) and Σ1|2 := Σ11 − Σ12Σ

−1
22 Σ21.
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4.3. EM algorithm for incomplete normal data

Illustration of missing values
Variables 1 2 3 4 . . . p

yi ✓ ✓ ✓ ? ? ?

Let O(i) index the observed data in ith observation, and M(i) index the missing
data in ith observation. By Theorem 4,

yi,M(i) | yi,O(i) ∼ N
(
µM(i)|O(i)(yi,O(i)),ΣM(i)|O(i)

)
,

which will be used in the E-step.

• E-step:

E[ℓ(θ|Y )|Yobs, θ
(t)] = µTΣ−1 E(T1|Yobs, θ

(t))︸ ︷︷ ︸
∗

−1

2
tr[Σ−1 E(T2|Yobs, θ

(t))︸ ︷︷ ︸
⊠

]

− n

2
log |Σ| − n

2
µTΣ−1µ. (8)

1) ∗ =
∑

i E(yi|Yobs, θ
(t)) and

E(yij |Yobs, θ
(t)) =

{
yij if j ∈ O(i)

y∗ij if j ∈ M(i)
,

where y∗i,M(i) := E(yi,M(i)|yi,O(i), θ
(t)) = µ

(t)
M(i)|O(i)(yi,O(i)).

2) ⊠ =
∑

i E(yiyTi |Yobs, θ
(t)). Note that

E(yiyTi |Yobs, θ
(t)) = [E(yijyik|Yobs, θ

(t))]p×p.

We have

E(yijyik|Yobs, θ
(t)) =


yijyik if j, k ∈ O(i)

yijy
∗
ik if j ∈ O(i), k ∈ M(i)

y∗ijyik if j ∈ M(i), k ∈ O(i)(
Σ

(t)
M(i)|O(i)

)
jk

+ y∗ijy
∗
ik if j, k ∈ M(i)

.

The last case, i.e. j, k ∈ M(i), is due to

Cov(yij , yik|yi,O(i), θ
(t)) = E(yijyik|yi,O(i), θ

(t))− y∗ijy
∗
ik.

• M-step:

Let T
(t)
1 := E(T1|Yobs, θ

(t)), T
(t)
2 := E(T2|Yobs, θ

(t)). Max (8) over θ =
(µ,Σ) or solve the following equations for (µ,Σ)

T
(t)
1 = Eθ(T1) = nµ

T
(t)
2 = Eθ(T2) = n(Σ + µµT)
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to update:

µ(t+1) =
1

n
T

(t)
1 , Σ(t+1) =

1

n
T

(t)
2 − (µ(t+1))(µ(t+1))T.

Compare to (7).

5. Problem set

1. (a) Let f(x) and g(x) be probability densities defined on Rn. Suppose
f(x) > 0 and g(x) > 0 for all x. Show that Ef (log f) ≥ Ef (log g)
using Jensen’s inequality, where Ef (h) =

∫
h(x)f(x)dx.

(b) The entropy of a probability distribution p(x) on Rn is

H(p) := −Ep(log p) = −
∫

p(x) log p(x)dx.

Among all distributions with mean µ =
∫
xp(x)dx and covariance

matrix Σ =
∫
(x − µ)(x − µ)Tp(x)dx, prove that the multivariate

normal distribution has the maximum entropy.
Hint: In fact, (b) is a special case of a more general result: Consider the
Boltzmann distribution

pβ(x) ∝ exp[−βh(x)]

with energy function h(x) at inverse temperature β > 0. Define the average
energy of a distribution q(x) by Eq(h) =

∫
h(x)q(x)dx. Let U(β) be the

average energy of pβ . Then among all distributions with average energy
U(β), the Boltzmann distribution pβ has the maximum entropy.
Proof outline: First show that the cross-entropy −Eq(log pβ) is a constant
depending on β for any q with average energy U(β). Then apply (a).

2. In a genetic linkage experiment, 197 animals are randomly assigned to
four categories according to the multinomial distribution with cell proba-
bilities π1 = 1

2 + θ
4 , π2 = 1−θ

4 , π3 = 1−θ
4 , and π4 = θ

4 . The corresponding
observations are y = (y1, y2, y3, y4) = (125, 18, 20, 34).

(a) Derive and implement an EM algorithm to estimate θ.

(b) Plot the observed data log-likelihood function ℓ(θ | y) for θ ∈ (0, 1).
Compare the maximum of this function with your EM estimate.

3. Consider an i.i.d. sample drawn from a bivariate normal distribution with
mean µ = (µ1, µ2) and covariance matrix

Σ =

(
σ2
1 σ12

σ12 σ2
2

)
.

Suppose that the first k observations are missing their first component,
the next m observations are missing their second component, and the last
r observations are complete. Derive an EM algorithm for estimating the
mean assuming that the covariance matrix Σ is known.
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4. Prove the following propositions.

(a) If Y ∼ N (µ, 1), then E(Y | Y > 0) = µ+ ϕ(µ)/Φ(µ).

(b) Under the assumptions of Theorem 2, if X is a random variable with
pdf in an exponential family, then

E

 k∑
j=1

∂ϕj(θ)

∂θm
tj(X)

 = −∂ log c(θ)

∂θm
for m = 1, . . . , d.

Hint: Start from the equality
∫
f(x | θ)dx = 1 and differentiate both

sides.
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