Chapter 1
Incomplete Data and the EM Algorithm

Qing Zhou∗,†

Contents

1 Assumptions . 1
 1.1 Ignorability . 2
 1.2 Observed data likelihood and posterior 3
2 The EM algorithm and its properties 3
 2.1 The algorithm . 4
 2.2 EM as MM Algorithm . 5
 2.3 Properties of the EM . 6
 2.4 Missing information and convergence rate 7
 2.5 Another example . 8
3 EM for exponential families . 8
 3.1 Exponential families . 8
 3.2 MLE for complete data . 9
 3.3 EM for incomplete data . 10
4 Incomplete normal data . 12
 4.1 The complete-data model . 12
 4.2 Sufficient statistics and conditional distributions 12
 4.3 EM algorithm for incomplete normal data 14
5 Problem set . 15
References . 16

1. Assumptions

Reading: Schafer (1997), Section 2.1 to 2.3.
Let Y be an $n \times p$ matrix of complete data, $Y = (Y_{\text{obs}}, Y_{\text{mis}})$, y_i be the i^{th} row of Y, $i = 1, \ldots, n$.

Example of missing data

<table>
<thead>
<tr>
<th>Variables</th>
<th>1</th>
<th>2</th>
<th>…</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

∗UCLA Department of Statistics (email: zhou@stat.ucla.edu).
†I thank Elvis Cui for typesetting part of this chapter in LaTex.
Under the iid assumption, the probability density of Y is

$$p(Y \mid \theta) = \prod_{i=1}^{n} f(y_i \mid \theta),$$

where θ is the parameter for this data generation model.

1.1. Ignorability

Missing at random (MAR) is defined in terms of a probability model for the missingness. Let $R = (r_{ij})$ be an $n \times p$ matrix of indicator variables: $r_{ij} = 1$ if y_{ij} is observed and $r_{ij} = 0$ otherwise. We put a probability model for R, $p(R \mid Y, \xi)$, where ξ is some parameter. The MAR assumption is that

$$p(R \mid Y_{\text{obs}}, Y_{\text{mis}}, \xi) = p(R \mid Y_{\text{obs}}, \xi),$$

that is, $R \perp Y_{\text{mis}} \mid Y_{\text{obs}}$. A stronger assumption is missing completely at random (MCAR): $R \perp (Y_{\text{mis}}, Y_{\text{obs}})$. If neither holds, then the data are missing not at random (MNAR): R depends on Y_{mis}.

Consider an example in Mohan and Pearl (2021): A study in a school measured age (A), gender (G), and obesity (O) for students, with missing values in O since some students fail to reveal weight.

- **MCAR**: some students accidentally lost questionnaires ($R \perp A, G, O$).
- **MAR**: some teenagers not reporting weight ($R \perp O \mid A$).
- **MNAR**: overweight students reluctant to report weight ($O \rightarrow R$).

Distinctness of parameters. Let θ denote the parameters of the data model, and ξ the parameters of the missingness mechanism. Then, θ and ξ are distinct if

(a) **Bayesian**: any joint prior on (θ, ξ) must factor into independent marginal priors for θ and ξ, that is:

$$\pi(\theta, \xi) = \pi_\theta(\theta)\pi_\xi(\xi).$$

(b) **Frequentist**: joint parameter space of (θ, ξ) is the Cartesian product of the individual parameter spaces for $\theta \in \Theta$ and $\xi \in \Gamma$. That is:

$$(\theta, \xi) \in \Theta \times \Gamma.$$

MAR & distinctness \Rightarrow the missing-data mechanism is **ignorable**.
1.2. Observed data likelihood and posterior

\[P(R, Y_{obs} | \theta, \xi) = \int_{\Omega_{miss}} P(R, Y | \theta, \xi) dY_{miss} \]
\[= \int P(R | Y, \theta, \xi) P(Y | \theta, \xi) dY_{miss} \]
\[= \int P(R | Y, \xi) P(Y | \theta) dY_{miss} \]
\[= P(R | Y_{obs}, \xi) \int P(Y | \theta) dY_{miss} \text{ by MAR} \]
\[= P(R | Y_{obs}, \xi) P(Y_{obs} | \theta). \]

Consider the maximum likelihood estimate (MLE) of \((\theta, \xi)\). Under distinctness,

\[
\max_{(\theta, \xi) \in \Theta \times \Gamma} P(R, Y_{obs} | \theta, \xi) = \left\{ \max_{\xi \in \Gamma} P(R | Y_{obs}, \xi) \right\} \left\{ \max_{\theta \in \Theta} P(Y_{obs} | \theta) \right\}
\]
is separable. Define the observed-data likelihood \(L(\theta | Y_{obs}) := P(Y_{obs} | \theta)\). If both MAR and distinctness hold, we have the following MLE of \(\theta\):

\[
\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \Theta} P(Y_{obs} | \theta) = \arg\max_{\theta \in \Theta} L(\theta | Y_{obs}).
\]

Now for the posterior distribution of the parameters:

\[
P(\theta, \xi | Y_{obs}, R) \propto P(R, Y_{obs} | \theta, \xi) \pi(\theta, \xi)
\]
\[= \text{MAR} \ P(R | Y_{obs}, \xi) P(Y_{obs} | \theta) \pi(\theta, \xi)
\]
\[= \text{Distinctness} \ P(R | Y_{obs}, \xi) P(Y_{obs} | \theta) \pi_\theta(\theta) \pi_\xi(\xi).
\]

Then we could derive the posterior of \(\theta\):

\[
P(\theta | Y_{obs}, R) = \int P(\theta, \xi | Y_{obs}, R) d\xi
\]
\[\propto P(Y_{obs} | \theta) \pi_\theta(\theta) \int h(R, Y_{obs}, \xi) d\xi
\]
\[\propto L(\theta | Y_{obs}) \pi_\theta(\theta),
\]

where \(h(R, Y_{obs}, \xi)\) is a function independent of \(\theta\) and \(L(\theta | Y_{obs})\) is the observed data likelihood. Therefore, the observed-data posterior:

\[
P(\theta | Y_{obs}, R) = P(\theta | Y_{obs}) \propto P(Y_{obs} | \theta) \pi_\theta(\theta).
\]

2. The EM algorithm and its properties

Reading: Schafer (1997), Section 3.2 and 3.3. Also see Dempster, Laird and Rubin (1977) and Wu (1983).

Recall that our goal is to find:

\[
\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \Theta} P(Y_{obs} | \theta) = \arg\max_{\theta \in \Theta} \int P(Y_{obs}, Y_{miss} | \theta) dY_{miss}.
\]
2.1. The algorithm

Definition 1 (EM Algorithm). First, start with an initial $\theta^{(0)}$. For the $(t+1)^{th}$ iteration:

- **E-step**: Calculate the expectation of complete-data log-likelihood:
 \[Q(\theta|\theta^{(t)}) := \mathbb{E}[\log P(Y_{\text{obs}}, Y_{\text{miss}}|\theta)|Y_{\text{obs}}, \theta^{(t)}]. \]

- **M-step**: Find $\theta^{(t+1)}$ by maximizing $Q(\theta|\theta^{(t)})$:
 \[\theta^{(t+1)} := \arg\max_{\theta \in \Theta} Q(\theta|\theta^{(t)}). \]

Iterate the above 2 steps until convergence.

Remark 1. The expectation in the E-step is taken with respect to $P(Y_{\text{miss}}|Y_{\text{obs}}, \theta^{(t)})$ (conditional distribution), but not $P(Y_{\text{miss}}|\theta^{(t)})$ (marginal distribution).

Example 1 (Bivariate binary data). Y_1 and Y_2 are correlated binary variables on \{1, 2\}. Missing values occur on either Y_1 or Y_2 in an i.i.d. sample of n units. We want to estimate $\theta = (\theta_{11}, \theta_{12}, \theta_{21}, \theta_{22})$, where $\theta_{ij} := P(Y_1 = i, Y_2 = j)$.

Complete data: $X = (x_{11}, x_{12}, x_{21}, x_{22})$ (2×2 contingency table), where x_{ij} is the number of units with $Y_1 = i$ and $Y_2 = j$. Complete data log-likelihood:

\[\ell(\theta|X) = \sum_{i,j=1}^{2} x_{ij} \log \theta_{ij}. \]

According to the missingness pattern, we partition the n units into three blocks:

A: Both observed

<table>
<thead>
<tr>
<th>$Y_1 \times Y_2$</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_{11}^A</td>
<td>x_{12}^A</td>
</tr>
<tr>
<td>2</td>
<td>x_{21}^A</td>
<td>x_{22}^A</td>
</tr>
</tbody>
</table>

B: Y_2 missing

<table>
<thead>
<tr>
<th>$Y_1 \times Y_2$</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_{11}^B</td>
<td>x_{1+}^B</td>
</tr>
<tr>
<td>2</td>
<td>x_{2+}^B</td>
<td></td>
</tr>
</tbody>
</table>

C: Y_1 missing

<table>
<thead>
<tr>
<th>$Y_1 \times Y_2$</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_{+1}^C</td>
<td>x_{+2}^C</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then we have:

\[(x_{11}^B, x_{12}^B)|Y_{\text{obs}}, \theta^{(t)} \sim \mathcal{M}\left(x_{1+}^B, \begin{pmatrix} \theta_{11}^{(t)} & \theta_{12}^{(t)} \\ \theta_{i+}^{(t)} & \theta_{i+}^{(t)} \end{pmatrix}\right), \quad i = 1, 2.\]
to get

\[(x_i^C, x_{2j}^C) | Y_{\text{obs}}, \theta^{(t)} \sim M \left(x_{i+}^C, \begin{pmatrix} \theta_{i1}^{(t)} & \theta_{i2}^{(t)} \\ \theta_{i1}^{(t)} & \theta_{i2}^{(t)} \end{pmatrix} \right), \quad j = 1, 2. \]

where \(\theta_{i+}^{(t)} = \theta_{i1}^{(t)} + \theta_{i2}^{(t)}, \quad \theta_{+j}^{(t)} = \theta_{1j}^{(t)} + \theta_{2j}^{(t)} \). Thus we derive the EM algorithm as follows:

- **E-step:** To calculate \(E[\ell(\theta | X) | Y_{\text{obs}}, \theta^{(t)}] \), let

 \[x_{ij}^{(t)} := E(x_{ij} | Y_{\text{obs}}, \theta^{(t)}) = x_{ij}^A + x_{i+}^B \frac{\theta_{ij}^{(t)}}{\theta_{i+}^{(t)}} + x_{+j}^C \frac{\theta_{ij}^{(t)}}{\theta_{i+}^{(t)}} \quad 1 \leq i, j \leq 2. \]

 Then

 \[Q(\theta | \theta^{(t)}) = E[\ell(\theta | X) | Y_{\text{obs}}, \theta^{(t)}] = \sum_{i,j} x_{ij}^{(t)} \log \theta_{ij}. \]

- **M-step:** Maximizing \(Q(\theta | \theta^{(t)}) \) subject to \(\sum_{i,j} \theta_{ij} = 1 \), we have

 \[\theta_{ij}^{(t+1)} = \frac{x_{ij}^{(t)}}{n} = \frac{1}{n} \left[x_{ij}^A + x_{i+}^B \frac{\theta_{ij}^{(t)}}{\theta_{i+}^{(t)}} + x_{+j}^C \frac{\theta_{ij}^{(t)}}{\theta_{i+}^{(t)}} \right]. \]

2.2. EM as MM Algorithm

MM Algorithm: Minorization-Maximization Algorithm. It was first proposed by Professor Jan de Leeuw at UCLA.

We start with a simple identity:

\[\log \mathbb{P}(Y_{\text{miss}}, Y_{\text{obs}} | \theta) = \ell(\theta | Y_{\text{obs}}) + \log \mathbb{P}(Y_{\text{miss}} | Y_{\text{obs}}, \theta). \]

Now denote by \(F \) any distribution for \(Y_{\text{miss}} \). Then re-arrange the above equation to get

\[\ell(\theta | Y_{\text{obs}}) = \log \mathbb{P}(Y_{\text{miss}}, Y_{\text{obs}} | \theta) - \log F(Y_{\text{miss}}) + \log \mathbb{P}(Y_{\text{miss}} | Y_{\text{obs}}, \theta). \]

Take expectation on both sides w.r.t. \(F \) (L.H.S. is a constant since it does not involve \(Y_{\text{miss}} \)):

\[\ell(\theta | Y_{\text{obs}}) \geq \log \mathbb{P}(Y_{\text{miss}}, Y_{\text{obs}} | \theta) + H(F) + D(F \| \mathbb{P}(Y_{\text{miss}} | Y_{\text{obs}}, \theta)), \]

where \(H(F) \) denotes the entropy of distribution \(F \) and \(D(\cdot \| \cdot) \) denotes the Kullback-Leibler divergence. Since \(D(\cdot \| \cdot) \geq 0 \), thus for any \(F \) we have:

\[\ell(\theta | Y_{\text{obs}}) \geq \mathbb{E}_F [\log \mathbb{P}(Y_{\text{miss}}, Y_{\text{obs}} | \theta)] + H(F) := L(\theta, F), \]

and equality holds when \(F = \mathbb{P}(Y_{\text{miss}} | Y_{\text{obs}}, \theta) \). Let \(F^{(t)} = \mathbb{P}(Y_{\text{miss}} | Y_{\text{obs}}, \theta^{(t)}) \). Then \(L(\theta, F^{(t)}) \), called a minorization function of \(\ell(\theta | Y_{\text{obs}}) \), satisfies the following two conditions:
EM iterates between two steps:

1. Minorization (E-step): Find \(L(\theta, F(t)) \) by calculating
 \[
 \mathbb{E}_{F(t)}[\log P(Y_{\text{miss}}, Y_{\text{obs}}|\theta)] = Q(\theta|\theta(t)).
 \]
 Note that \(L(\theta, F(t)) = Q(\theta|\theta(t)) + H(F(t)) \), where \(H(F(t)) \) is a constant w.r.t \(\theta \) and thus can be omitted.

2. Maximization (M-step): \[\max_{\theta} L(\theta, F(t)) \equiv \max_{\theta} Q(\theta|\theta(t)) \] to obtain \(\theta(t+1) \).

Then, we can show the ascent property (Proposition 1) of the EM:

\[
\ell(\theta(t+1)|Y_{\text{obs}}) \geq L(\theta(t+1), F(t)) \quad \text{by (i)}
\]
\[
\geq L(\theta(t), F(t)) \quad \text{M-step}
\]
\[
= \ell(\theta(t)|Y_{\text{obs}}). \quad \text{by (ii)}
\]

2.3. Properties of the EM

To establish the ascent property of the EM algorithm, we need the following inequality:

Lemma 1 (Jensen’s inequality). Assume that a random variable \(W \) is defined in the interval \((a, b)\). If \(h(W) \) is convex on \((a, b)\), then

\[
\mathbb{E}[h(W)] \geq h[\mathbb{E}(W)],
\]

provided that both expectations exist. For a strictly convex function, equality hold iff \(W = \mathbb{E}(W) \) a.s.

Proof. Use the supporting hyperplane theorem. Denote \(g(W) \) as the supporting hyperplane of \(h(W) \) at point \(w_0 = \mathbb{E}(W) \). By convexity, we have \(h(w) \geq g(w) \forall w \in (a, b) \), and thus,

\[
\mathbb{E}[h(W)] \geq \mathbb{E}[g(W)] = g[\mathbb{E}(W)] = h[\mathbb{E}(W)].
\]

The second equality is due to the linearity of \(\mathbb{E}(\cdot) \) and \(g(\cdot) \). \(\square \)
Proposition 1 (Ascent property of the EM). Let \(\ell(\theta|Y_{\text{obs}}) := \log P(Y_{\text{obs}}|\theta) \), which is the observed-data log-likelihood. Then the EM iterations satisfy
\[
\ell(\theta^{(t+1)}|Y_{\text{obs}}) \geq \ell(\theta^{(t)}|Y_{\text{obs}}).
\]

Proof. There are three crucial steps. First, write
\[
\ell(\theta|Y_{\text{obs}}) = \log P(Y_{\text{obs}}|\theta) = Q(\theta|\theta^{(t)}) - H(\theta|\theta^{(t)}),
\]
where
\[
H(\theta|\theta^{(t)}) = \int [\log P(Y_{\text{miss}}|Y_{\text{obs}}, \theta)] P(Y_{\text{miss}}|Y_{\text{obs}}, \theta^{(t)}) dY_{\text{miss}}.
\]

Note that \(-H(\theta^{(t)}|\theta^{(t)})\) is the entropy of the distribution \([Y_{\text{miss}}|Y_{\text{obs}}, \theta^{(t)}]\). Second, we have
\[
Q(\theta^{(t)}|\theta^{(t)}) \leq Q(\theta^{(t+1)}|\theta^{(t)})
\]
since \(\theta^{(t+1)}\) is a maximizer of \(Q(\cdot|\theta^{(t)})\). Third, note that by Jensen’s inequality and convexity of \(-\log(\cdot)\):
\[
H(\theta^{(t)}|\theta^{(t)}) - H(\theta^{(t+1)}|\theta^{(t)}) = \mathbb{E} \left\{ \log \frac{P(Y_{\text{miss}}|Y_{\text{obs}}, \theta^{(t)})}{P(Y_{\text{miss}}|Y_{\text{obs}}, \theta^{(t+1)})} | Y_{\text{obs}}, \theta^{(t)} \right\} \geq 0.
\]

Therefore,
\[
\ell(\theta^{(t)}|Y_{\text{obs}}) = Q(\theta^{(t)}|\theta^{(t)}) - H(\theta^{(t)}|\theta^{(t)}) \leq Q(\theta^{(t+1)}|\theta^{(t)}) - H(\theta^{(t+1)}|\theta^{(t)}) = \ell(\theta^{(t+1)}|Y_{\text{obs}}).
\]

\[\square \]

Theorem 1 (Convergence property of the EM). Under some conditions, the sequence \(\{\theta^{(t)}\}\) defined by the EM iterations converges to a stationary point of the observed-data log-likelihood \(\ell(\theta|Y_{\text{obs}})\).

2.4. Missing information and convergence rate

Recall that \(Q(\theta|\theta) = \ell(\theta|Y_{\text{obs}}) + H(\theta|\theta)\). Taking second derivatives on both sides:
\[
-\frac{\partial^2}{\partial \theta^2} Q(\theta|\theta) = -\frac{\partial^2}{\partial \theta^2} \ell(\theta|Y_{\text{obs}}) + (-\frac{\partial^2}{\partial \theta^2} H(\theta|\theta)).
\]

Thus, \(I_C(\theta) = I_O(\theta) + I_M(\theta)\). This is called missing information principle. For regular problems where \(\theta^{(t+1)} \Leftarrow \frac{\partial Q(\theta^{(t+1)}|\theta)}{\partial \theta} = 0\), we have
\[
(\theta^{(t+1)} - \hat{\theta}) \doteq D(\theta^{(t)} - \hat{\theta}),
\]
when \(\theta^{(t)}\) is close to the MLE \(\hat{\theta} = \arg\max_{\theta} \ell(\theta|Y_{\text{obs}})\). Here, \(D = I_C(\hat{\theta})^{-1} I_M(\hat{\theta})\) is called the fraction of missing information. Therefore after \(r\) iterations,
\[
(\theta^{(t+r)} - \hat{\theta}) \doteq D^r (\theta^{(t)} - \hat{\theta}),
\]
which shows that the convergence rate of EM is governed by the largest eigenvalue of \(D\).
2.5. Another example

Example 2. Multinomial distribution with cell probabilities

\[
(\pi_1, \pi_2, \pi_3, \pi_4) = \left(\frac{1}{2} + \frac{\theta}{4}, \frac{1 - \theta}{4}, \frac{1 - \theta}{4}, \frac{\theta}{4} \right),
\]

where \(\theta \in (0, 1) \) is the only unknown parameter. Given observations

\[
y = (y_1, y_2, y_3, y_4), \quad \sum_{i=1}^{4} y_i = n,
\]

we want to find the MLE of \(\theta \).

We could directly maximize the likelihood via numerical optimization, but we could also use EM algorithm, i.e., treat this as a missing data problem. Split the first category \(\pi_1 = \pi_{11} + \pi_{12} \), \(\pi_{11} = \frac{1}{2} \), \(\pi_{12} = \theta \). Therefore, the complete data is \(y_{cmp} = (y_{11}, y_{12}, y_2, y_3, y_4) \). The complete data log-likelihood is:

\[
\ell(\theta|y_{cmp}) = y_{11} \log \frac{1}{2} + (y_{12} + y_4) \log \frac{\theta}{4} + (y_2 + y_3) \log \frac{1 - \theta}{4} + \text{constant}.
\]

EM algorithm:

- E-step: Calculate

\[
E(y_{12} | y, \theta^{(t)}) = y_{11} \frac{\theta^{(t)} / 4}{1/2 + \theta^{(t)} / 4} := y_{12}^{(t)}.
\]

Then

\[
Q(\theta | \theta^{(t)}) = E[\ell(\theta|y_{cmp}) | y, \theta^{(t)}] = (y_{12}^{(t)} + y_4) \log \theta + (y_2 + y_3) \log (1 - \theta) + \text{constant}.
\]

- M-step: Maximizing \(Q(\theta | \theta^{(t)}) \) (binomial log-likelihood),

\[
\theta^{(t+1)} = \frac{y_{12}^{(t)} + y_4}{y_{12}^{(t)} + y_4 + y_2 + y_3}.
\]

3. EM for exponential families

3.1. Exponential families

Definition 2. A family of pdfs or pmfs is called an exponential family (EF) if it can be expressed as

\[
f(x | \theta) = h(x) c(\theta) \exp \left[\phi(\theta)^\top t(x) \right],
\]

where \(\theta = (\theta_m)_{1:d} \in \mathbb{R}^d \), \(\phi(\theta) = (\phi_j(\theta))_{1:k} \in \mathbb{R}^k \), \(t(x) = (t_j(x))_{1:k} \in \mathbb{R}^k \) and \(d \leq k \). If \(d < k \), the family is called a curved exponential family.
Theorem 2. Suppose that \(f(x \mid \theta) \) and its partial derivatives \(\partial f(x \mid \theta) / \partial \theta_m \) are continuous in \(x \) and \(\theta \). If \(X \) is a random variable with density \(f(x \mid \theta) \), then

\[
E \left[\sum_{j=1}^{k} \frac{\partial \phi_j(\theta)}{\partial \theta_m} t_j(X) \right] = -\frac{\partial \log c(\theta)}{\partial \theta_m} \quad \text{for } m = 1, \ldots, d.
\]

Theorem 3 (Sufficient statistic). Let \(Y_1, \ldots, Y_n \) be an iid sample of size \(n \) from \(f(\cdot \mid \theta) \). Then

\[
T(Y_1, \ldots, Y_n) = \left(\sum_{i=1}^{n} t_1(Y_i), \ldots, \sum_{i=1}^{n} t_k(Y_i) \right) := \sum_{i=1}^{n} t(Y_i)
\]

is a sufficient statistic for \(\theta \).

Proof. Let \(Y = (Y_1, \ldots, Y_n) \) and \(y_i \) be the observed value of \(Y_i \). Then

\[
f(y \mid \theta) = f(y_1, \ldots, y_n \mid \theta) = \left[\prod_{i=1}^{n} h(y_i) \right] [c(\theta)]^n \exp \left[\phi(\theta)^T \sum_{i=1}^{n} t(y_i) \right].
\]

Suppose \(\sum_{i=1}^{n} t(y_i) = t^* \). The conditional distribution \([Y \mid T(Y) = t^*, \theta] \) is given by

\[
p(y \mid t^*, \theta) \propto f(y \mid \theta) \cdot I(T(y) = t^*)
\]

\[
= \prod_{i=1}^{n} h(y_i) \cdot I(T(y) = t^*) \cdot [c(\theta)]^n \exp [\phi(\theta)^T t^*]
\]

\[
\propto \prod_{i=1}^{n} h(y_i) \cdot I(T(y) = t^*),
\]

which is independent of \(\theta \). \(\square \)

3.2. MLE for complete data

Let \(T_j(y) = \sum_{i=1}^{n} t_j(y_i) \), \(j = 1, \ldots, k \). The log-likelihood given complete data

\[
\ell(\theta \mid y) = n \log c(\theta) + \phi(\theta)^T \sum_{i=1}^{n} t(y_i)
\]

\[
= n \log c(\theta) + \sum_{j=1}^{k} \phi_j(\theta) T_j(y).
\]

The MLE is given by the solution to

\[
\frac{\partial \ell(\theta \mid y)}{\partial \theta_m} = n \frac{\partial \log c(\theta)}{\partial \theta_m} + \sum_{j=1}^{k} \frac{\partial \phi_j(\theta)}{\partial \theta_m} T_j(y) = 0, \quad m = 1, \ldots, d.
\]
From Theorem 2 and that $Y_i \sim f(\cdot \mid \theta)$, we have
\[
n \frac{\partial \log c(\theta)}{\partial \theta_m} = -n \mathbb{E} \left[\sum_{j=1}^{k} \frac{\partial \phi_j(\theta)}{\partial \theta_m} t_j(Y_1) \right],
\]
and therefore, the MLE is given by the solution to
\[
\sum_{j=1}^{k} \frac{\partial \phi_j(\theta)}{\partial \theta_m} T_j(y) = n \sum_{j=1}^{k} \frac{\partial \phi_j(\theta)}{\partial \theta_m} \mathbb{E}[t_j(Y_1)], \quad m = 1, \ldots, d.
\]
Assume that $d = k$ and the matrix
\[
\frac{\partial \phi}{\partial \theta} = \left(\frac{\partial \phi_j(\theta)}{\partial \theta_m} \right)_{k \times k}
\]
is invertible, where $\frac{\partial \phi_j(\theta)}{\partial \theta_m}$ is the $(m, j)^{th}$ element. Then the MLE $\hat{\theta} = (\hat{\theta}_1, \ldots, \hat{\theta}_k)$ is the solution to
\[
\frac{\partial \phi}{\partial \theta} \begin{pmatrix} T_1(y) \\ \vdots \\ T_k(y) \end{pmatrix} = n \frac{\partial \phi}{\partial \theta} \begin{pmatrix} \mathbb{E}t_1(Y_1) \\ \vdots \\ \mathbb{E}t_1(Y_1) \end{pmatrix} \iff T_j(y) = n\mathbb{E}_\theta[t_j(Y_1)], \quad j = 1, \ldots, k.
\]
That is,
\[
\sum_{i=1}^{n} t_j(y_i) = n\mathbb{E}_\theta[t_j(Y_1)] = \mathbb{E}_\theta \left[\sum_{i=1}^{n} t_j(Y_i) \right], \quad j = 1, \ldots, k.
\]
Note that the left-hand side is the observed value of the sufficient statistic and the right-hand side the expectation which depends on θ.

Example 3. $N(\mu, \sigma^2)$ and Bin(n, p).

3.3. EM for incomplete data

Let y_{obs} be the observed data.

- **E-step:**
 \[
 Q(\theta \mid \theta^{(t)}) = \mathbb{E} \left[\ell(\theta \mid Y) \mid y_{\text{obs}}, \theta^{(t)} \right] = n \log c(\theta) + \sum_{j=1}^{k} \phi_j(\theta) \mathbb{E} \left[T_j(Y) \mid y_{\text{obs}}, \theta^{(t)} \right] \quad (\text{due to } (3))
 \]
 \[
 = n \log c(\theta) + \sum_{j=1}^{k} \phi_j(\theta) \mathbb{E} \left[\sum_{i=1}^{n} t_j(Y_i) \mid y_{\text{obs}}, \theta^{(t)} \right].
 \]
Let Y_1, \ldots, Y_n be iid observations from $\mathcal{N}(\mu, 1)$, but only $\text{sgn}(y_i)$ are observed for $i = 1, \ldots, k$. Find the MLE of μ. Let $\phi(\cdot)$ and $\Phi(\cdot)$ be the pdf and cdf of $\mathcal{N}(0,1)$, respectively. Suppose that $\text{sgn}(y_i) = 1$ for $i = 1, \ldots, k_1$ and $\text{sgn}(y_i) = -1$ for $i = k_1 + 1, \ldots, k_1 + k_2 = k$.

Example 4. Let y_1, \ldots, y_n be iid observations from $\mathcal{N}(\mu, 1)$, but only $\text{sgn}(y_i)$ are observed for $i = 1, \ldots, k$. Find the MLE of μ.

1. By EM: Regard y_1, \ldots, y_k as missing. Sufficient statistic for μ is $T = \sum_{i=1}^n y_i$. In E-step, calculate $E(T | y_{\text{obs}}, \mu^{(t)}) = \sum_i E(Y_i | y_{\text{obs}}, \mu^{(t)})$.
 (a) For $i > k$, $E(Y_i | y_{\text{obs}}, \mu^{(t)}) = y_i$.
 (b) For $i = 1, \ldots, k_1$,
 \[
 E(Y_i | y_{\text{obs}}, \mu^{(t)}) = E(Y_i | Y_i > 0, \mu^{(t)}) = \mu^{(t)} + \frac{\phi(\mu^{(t)})}{\Phi(\mu^{(t)})}.
 \]
 (c) For $i = k_1 + 1, \ldots, k$,
 \[
 E(Y_i | y_{\text{obs}}, \mu^{(t)}) = E(Y_i | Y_i < 0, \mu^{(t)}) = \mu^{(t)} - \frac{\phi(\mu^{(t)})}{1 - \Phi(\mu^{(t)})}.
 \]

2. Direct approach: Since $P(Y_i > 0) = \Phi(\mu)$ and $P(Y_i < 0) = 1 - \Phi(\mu)$,
 \[
p(y_{\text{obs}} | \mu) \propto [\Phi(\mu)]^{k_1} [1 - \Phi(\mu)]^{k_2} \exp \left[-\frac{1}{2} \sum_{i > k} (y_i - \mu)^2 \right].
 \]
 Thus, observed data log-likelihood
 \[
 \ell(\mu | y_{\text{obs}}) = k_1 \log \Phi(\mu) + k_2 \log[1 - \Phi(\mu)] - \frac{1}{2} \sum_{i > k} (\mu - y_i)^2.
 \]
 Therefore, setting
 \[
 \frac{\partial \ell(\mu | y_{\text{obs}})}{\partial \mu} = \frac{k_1 \phi(\mu)}{\Phi(\mu)} - \frac{k_2 \phi(\mu)}{1 - \Phi(\mu)} - (n - k)\mu + \sum_{i > k} y_i = 0
 \]
shows that MLE $\hat{\mu}$ satisfies
\[
\hat{\mu} = \frac{1}{n} \left[\sum_{i>k} y_i + k\hat{\mu} + \left(\frac{k_1}{\Phi(\hat{\mu})} - \frac{k_2}{1 - \Phi(\hat{\mu})} \right) \phi(\hat{\mu}) \right].
\]
(5)

Compare (4) and (5): $\hat{\mu}$ is a fixed point of the EM iteration, i.e., $\mu^{(t+1)} = \hat{\mu}$ if $\mu^{(t)} = \hat{\mu}$.

4. Incomplete normal data

4.1. The complete-data model

Complete data: $Y = (y_{ij})_{n \times p}$, $y_i = (y_{i1}, y_{i2}, \ldots, y_{ip}) \in \mathbb{R}^p$, and $y_i | \theta \sim \mathcal{N}(\mu, \Sigma)$, $i = 1, \ldots, n$.

Put $\theta = (\mu, \Sigma)$. Complete-data likelihood is
\[
L(\theta | Y) \propto |\Sigma|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n (y_i - \mu)^T \Sigma^{-1} (y_i - \mu) \right\}.
\]

Let $S := \sum_{i=1}^n (y_i - \bar{y})(y_i - \bar{y})^T \in \mathbb{R}^{p \times p}$. The exponent
\[
\sum_{i=1}^n (y_i - \mu)^T \Sigma^{-1} (y_i - \mu) = \text{tr} \left[\sum_{i} (y_i - \mu)^T \Sigma^{-1} (y_i - \mu) \right]
= \text{tr} \left[\sum_{i} \Sigma^{-1} (y_i - \mu)(y_i - \mu)^T \right]
= \text{tr}(\Sigma^{-1} S) + \text{tr}[\Sigma^{-1} n(\bar{y} - \mu)(\bar{y} - \mu)^T]
= \text{tr}[\Sigma^{-1} S] + n(\bar{y} - \mu)^T \Sigma^{-1} (\bar{y} - \mu).
\]

Therefore,
\[
\ell(\theta | Y) = -\frac{n}{2} \log |\Sigma| - \frac{1}{2} \text{tr}[\Sigma^{-1} S] - \frac{1}{2} n(\bar{y} - \mu)^T \Sigma^{-1} (\bar{y} - \mu).
\]

This gives us the maximum likelihood estimate of θ:
\[
\hat{\mu}_{\text{MLE}} = \bar{y}, \quad \hat{\Sigma}_{\text{MLE}} = \frac{1}{n} S.
\]

4.2. Sufficient statistics and conditional distributions

We start with the log-likelihood given complete data,
\[
\ell(\theta | Y) = -\frac{n}{2} \log |\Sigma| - \frac{1}{2} \sum_{i=1}^n (\mu^T \Sigma^{-1} \mu - 2\mu^T \Sigma^{-1} y_i + y_i^T \Sigma^{-1} y_i)
= -\frac{n}{2} \log |\Sigma| - \frac{1}{2} \mu^T \Sigma^{-1} \mu + \mu^T \Sigma^{-1} \sum_{i} y_i - \frac{1}{2} \sum_{i} y_i^T \Sigma^{-1} y_i.
\]
Using properties of trace,
\[
\sum_i y_i^T \Sigma^{-1} y_i = \sum_i \text{tr} \left(y_i^T \Sigma^{-1} y_i \right) = \sum_i \text{tr} \left(\Sigma^{-1} y_i y_i^T \right) = \text{tr} \left(\Sigma^{-1} \sum_i y_i y_i^T \right).
\]

Letting
\[
T_1 := \sum_{i=1}^n y_i = n \bar{y}, \quad T_2 := \sum_{i=1}^n y_i y_i^T = Y^T Y,
\]
we arrive at
\[
\ell(\theta | Y) = -\frac{n}{2} \log |\Sigma| - \frac{n}{2} \mu^T \Sigma^{-1} \mu + \mu^T \Sigma^{-1} T_1 - \frac{1}{2} \text{tr}(\Sigma^{-1} T_2) \tag{6}
\]

Note that
\[
\mu^T \Sigma^{-1} T_1 = \langle \Sigma^{-1} \mu, T_1 \rangle,
\]
\[
\text{tr}(\Sigma^{-1} T_2) = \langle \text{vec}(\Sigma^{-1}), \text{vec}(T_2) \rangle.
\]

Therefore, (i) \(\mathcal{N}(\mu, \Sigma) \) is an exponential family and (ii) \((T_1, T_2)\) is a sufficient statistic for \(\theta = (\mu, \Sigma) \).

Also we have the following facts:
- \(\mathbb{E}_\theta(T_1) = n\mu; \)
- \(\mathbb{E}_\theta(T_2) = n(\Sigma + \mu \mu^T). \)

Now we can find the MLE by solving
\[
\sum_{i=1}^n y_i = n\mu,
\]
\[
\sum_{i=1}^n y_i y_i^T = n(\Sigma + \mu \mu^T),
\]
which leads to
\[
\hat{\mu}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^n y_i = \bar{y}, \quad \hat{\Sigma}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^n y_i y_i^T - \bar{y} \bar{y}^T = \frac{1}{n} S. \tag{7}
\]

Theorem 4 (Conditional distributions). Suppose \(x = (x_1, x_2) \sim \mathcal{N}(\mu, \Sigma) \), where \(\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}. \) Then
\[
x_1 | x_2 \sim \mathcal{N}(\mu_{1|2}(x_2), \Sigma_{1|2}),
\]
where \(\mu_{1|2}(x_2) := \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2) \) and \(\Sigma_{1|2} := \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}. \)
4.3. EM algorithm for incomplete normal data

Illustration of missing values

<table>
<thead>
<tr>
<th>Variables</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_i</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Let $O(i)$ index the observed data in ith observation, and $M(i)$ index the missing data in ith observation. By Theorem 4,

$$y_{i,M(i)} \mid y_{i,O(i)} \sim \mathcal{N} \left(\mu_{M(i)\mid O(i)}(y_{i,O(i)}), \Sigma_{M(i)\mid O(i)} \right),$$

which will be used in the E-step.

- **E-step:**

$$\mathbb{E}[\ell(\theta|Y)|Y_{obs}, \theta^{(t)}] = \mu^T \Sigma^{-1} \mathbb{E}(T_1|Y_{obs}, \theta^{(t)}) - \frac{1}{2} \text{tr}[\Sigma^{-1} \mathbb{E}(T_2|Y_{obs}, \theta^{(t)})]$$

$$- \frac{n}{2} \log |\Sigma| - \frac{n}{2} \mu^T \Sigma^{-1} \mu. \quad (8)$$

1) $* = \sum_i \mathbb{E}(y_i|Y_{obs}, \theta^{(t)})$ and

$$\mathbb{E}(y_{ij}|Y_{obs}, \theta^{(t)}) = \begin{cases} y_{ij} & \text{if } j \in O(i) \\ y_{ij}^* & \text{if } j \in M(i) \end{cases},$$

where $y_{ij,M(i)}^*: = \mathbb{E}(y_{i,M(i)}|y_{i,O(i)}, \theta^{(t)}) = \mu_{M(i)|O(i)}^{(t)}(y_{i,O(i)}).

2) $\mathbb{E} = \sum_i \mathbb{E}(y_{i}y_i^T|Y_{obs}, \theta^{(t)}).$ Note that

$$\mathbb{E}(y_{i}y_i^T|Y_{obs}, \theta^{(t)}) = [\mathbb{E}(y_{ij}y_{ik}|Y_{obs}, \theta^{(t)})]_{p\times p}.$$

We have

$$\mathbb{E}(y_{ij}y_{ik}|Y_{obs}, \theta^{(t)}) = \begin{cases} y_{ij}y_{ik} & \text{if } j, k \in O(i) \\ y_{ij}y_{ik}^* & \text{if } j \in O(i), k \in M(i) \\ y_{ij}^*y_{ik} & \text{if } j \in M(i), k \in O(i) \end{cases}.$$

The last case, i.e. $j, k \in M(i)$, is due to

$$\text{Cov}(y_{ij}, y_{ik}|y_{i,O(i)}, \theta^{(t)}) = \mathbb{E}(y_{ij}y_{ik}|y_{i,O(i)}, \theta^{(t)}) - y_{ij}^*y_{ik}^*.$$

- **M-step:**

Let $T_1^{(t)} : = \mathbb{E}(T_1|Y_{obs}, \theta^{(t)}), T_2^{(t)} : = \mathbb{E}(T_2|Y_{obs}, \theta^{(t)}).$ Max (8) over $\theta = (\mu, \Sigma)$ or solve the following equations for (μ, Σ)

$$T_1^{(t)} = \mathbb{E}_{\theta}(T_1) = n\mu$$

$$T_2^{(t)} = \mathbb{E}_{\theta}(T_2) = n(\Sigma + \mu\mu^T)$$
to update:
\[
\mu^{(t+1)} = \frac{1}{n} T_1^{(t)}, \quad \Sigma^{(t+1)} = \frac{1}{n} T_2^{(t)} - (\mu^{(t+1)})^T (\mu^{(t+1)})^T.
\]

Compare to (7).

5. Problem set

1. (a) Let \(f(x) \) and \(g(x) \) be probability densities defined on \(\mathbb{R}^n \). Suppose \(f(x) > 0 \) and \(g(x) > 0 \) for all \(x \). Show that \(\mathbb{E}_f(\log f) \geq \mathbb{E}_f(\log g) \) using Jensen's inequality, where \(\mathbb{E}_f(h) = \int h(x) f(x) dx \).

(b) The entropy of a probability distribution \(p(x) \) on \(\mathbb{R}^n \) is
\[
H(p) := -\mathbb{E}_p(\log p) = -\int p(x) \log p(x) dx.
\]

Among all distributions with mean \(\mu = \int xp(x) dx \) and covariance matrix \(\Sigma = \int (x - \mu)(x - \mu)^T p(x) dx \), prove that the multivariate normal distribution has the maximum entropy.

Hint: In fact, (b) is a special case of a more general result: Consider the Boltzmann distribution \(p_\beta(x) \propto \exp[-\beta h(x)] \) with energy function \(h(x) \) at inverse temperature \(\beta > 0 \). Define the average energy of a distribution \(q(x) \) by \(E_q(h) = \int h(x) q(x) dx \). Let \(U(\beta) \) be the average energy of \(p_\beta \). Then among all distributions with average energy \(U(\beta) \), the Boltzmann distribution \(p_\beta \) has the maximum entropy.

Proof outline: First show that the cross-entropy \(-\mathbb{E}_q(\log p_\beta) \) is a constant depending on \(\beta \) for any \(q \) with average energy \(U(\beta) \). Then apply (a).

2. In a genetic linkage experiment, 197 animals are randomly assigned to four categories according to the multinomial distribution with cell probabilities \(\pi_1 = \frac{1}{2} + \frac{\theta}{4}, \pi_2 = \frac{1-\theta}{4}, \pi_3 = \frac{1-\theta}{4}, \text{ and } \pi_4 = \frac{\theta}{4}. \) The corresponding observations are \(y = (y_1, y_2, y_3, y_4) = (125, 18, 20, 34). \)

(a) Derive and implement an EM algorithm to estimate \(\theta \).

(b) Plot the observed data log-likelihood function \(\ell(\theta \mid y) \) for \(\theta \in (0, 1) \). Compare the maximum of this function with your EM estimate.

3. Consider an i.i.d. sample drawn from a bivariate normal distribution with mean \(\mu = (\mu_1, \mu_2) \) and covariance matrix
\[
\Sigma = \begin{pmatrix}
\sigma_1^2 & \sigma_{12} \\
\sigma_{12} & \sigma_2^2
\end{pmatrix}.
\]

Suppose that the first \(k \) observations are missing their first component, the next \(m \) observations are missing their second component, and the last \(r \) observations are complete. Derive an EM algorithm for estimating the mean assuming that the covariance matrix \(\Sigma \) is known.
4. Prove the following propositions.
 (a) If $Y \sim \mathcal{N}(\mu, 1)$, then $E(Y \mid Y > 0) = \mu + \phi(\mu) / \Phi(\mu)$.

 (b) Under the assumptions of Theorem 2, if X is a random variable with pdf in an exponential family, then

 $$
 E \left[\sum_{j=1}^{k} \frac{\partial \phi_j(\theta)}{\partial \theta_m} t_j(X) \right] = -\frac{\partial \log c(\theta)}{\partial \theta_m} \quad \text{for } m = 1, \ldots, d.
 $$

 Hint: Start from the equality $\int f(x \mid \theta) dx = 1$ and differentiate both sides.

References

