Chapter 6 Introduction to Graphical Models

Qing Zhou

UCLA Department of Statistics

Stats 201C Advanced Modeling and Inference Lecture Notes

Outline

- 1 Conditional independence (CI)
- 2 Undirected graphical models
- 3 Directed acyclic graphs
- 4 Faithfulness

Definition: If X, Y, Z are three random variables, we say $X \perp Y \mid Z$ if $\mathbb{P}(X \in A \mid Y, Z)$ is a function of Z only for any measurable set A.

If they admit a joint density (or mass function) f, then

$$X \perp Y \mid Z \Leftrightarrow f_{XY|Z}(x,y|z) = f_{X|Z}(x|z)f_{Y|Z}(y|z).$$

Other equivalent conditions (f as a generic symbol for densities):

- f(x,y,z) = f(x,z)f(y,z)/f(z).
- f(x|y,z) = f(x|z).
- f(x,z|y) = f(x|z)f(z|y).
- f(x, y, z) = h(x, z)k(y, z) for some h, k.
- f(x, y, z) = f(x|z)f(y, z).

CI in statistical inference (Dawid 1979):

- Sufficient and ancillary statistics: Suppose $X \mid \Theta \sim P_{\Theta}$.
 - **1** T = T(X) is a sufficient statistic for Θ if $X \perp \Theta \mid T$.
 - 2 S = S(X) is an ancillary statistic if $S \perp \Theta$.

Example: $X = (X_1, \dots, X_n) \mid \mu, \sigma^2 \sim \mathcal{N}(\mu, \sigma^2)$. Then $T_1 = \sum_i X_i$ is sufficient for μ ; $T_2 = \sum_i (X_i - \bar{X})^2$ is ancillary for μ .

- Model selection: $Y = X\beta + \varepsilon$. If supp $(\beta) = S$, then $Y \perp (X \setminus X_S) \mid X_S$.
- Parameter identification: $X \mid \Theta, \Phi \sim P_{(\Theta,\Phi)}$. If $X \perp \Phi \mid \Theta$, then Φ is not identifiable.

Example: Gaussian linear model $Y = X\beta + \varepsilon$ with X not having full column rank. Let $\Theta = X\beta \in \operatorname{col}(X)$ and $\Phi = \beta - X^- X\beta$ (X^- is a g-inverse of X; $XX^- X = X$). Then $X\Phi = 0$, i.e. $\Phi \in \operatorname{null}(X)$. Thus $Y \perp \Phi \mid (\Theta, \sigma^2)$, i.e. Φ is not identifiable. Note $\dim(\Theta) + \dim(\Phi) = \dim(\beta)$.

Graphoid axioms (Pearl (1988), §3.1.2.)

CI statement defines a ternary relation: $\langle X,Y\mid Z\rangle$ for $X\perp Y\mid Z$. Suppose X,Y,Z,W are disjoint subsets of random variables from a joint distribution \mathbb{P} . Then the CI relation satisfies

- (C1) symmetry: $\langle X, Y \mid Z \rangle \Rightarrow \langle Y, X \mid Z \rangle$;
- (C2) decomposition: $\langle X, YW \mid Z \rangle \Rightarrow \langle X, Y \mid Z \rangle$;
- (C3) weak union: $\langle X, YW \mid Z \rangle \Rightarrow \langle X, Y \mid ZW \rangle$;
- (C4) contraction: $\langle X, Y \mid Z \rangle \& \langle X, W \mid ZY \rangle \Rightarrow \langle X, YW \mid Z \rangle$.

If the joint density of $\ensuremath{\mathbb{P}}$ wrt a product measure is positive and continuous, then

(C5) intersection: $\langle X, Y \mid ZW \rangle \& \langle X, W \mid ZY \rangle \Rightarrow \langle X, YW \mid Z \rangle$. In the above, $YW := Y \cup W$.

Any ternary relation $\langle A, B \mid C \rangle$ that satisfies (C1) to (C4) is called a *semi-graphoid*. If (C5) also holds, then it is called a *graphoid*.

Examples of graphoid:

- **I** Conditional independence of \mathbb{P} (positive and continous).
- 2 Graph separation in undirected graph: $\langle X, Y \mid Z \rangle$ means nodes Z separate X and Y, i.e. X Z Y.
- 3 Partial orthogonality: Let X, Y, Z be disjoint sets of linearly independent vectors in \mathbb{R}^n . $\langle X, Y \mid Z \rangle$ means $P_Z^{\perp}X$ is orthogonal to $P_Z^{\perp}Y$. Here $P_Z^{\perp}X = (I_n P_Z)X$ is the residual after projecting X onto span(Z).

Graph separation provides an intuitive graphical interpretation for the CI axioms.

Example application of CI in causal inference:

- Treatment X, outcome Y. Let I indicates each individual, I = 1, ..., n. Want to test if $Y \perp X \mid I$ (untestable).
- Suppose Z = Z(I) is a set of sufficient covariates such that $Y \perp I \mid (X, Z)$. Then

$$Y \perp X \mid I \Leftrightarrow Y \perp X \mid Z$$
 (testable based on data) (1)

■ Proof outline:

Note $Y \perp X \mid I \Leftrightarrow Y \perp X \mid (I, Z)$ because Z = Z(I). \Leftarrow : Sufficient set and RHS of (1) imply $Y \perp (I, X) \mid Z$ by (C4) and thus $Y \perp X \mid (I, Z)$ by (C3). \Rightarrow : Sufficient set and LHS $(Y \perp X \mid (I, Z))$ imply $Y \perp (X, I) \mid Z$ by (C5) and thus $Y \perp X \mid Z$ by (C2).

Definition: A graph $\mathcal{G} = (V, E)$, $V = \{1, ..., p\}$ is a set of vertices (or nodes) and $E \subset V \times V$ is a set of edges.

- Undirected edge i j: $(i, j) \in E \Leftrightarrow (j, i) \in E$.
- Directed edge $i \rightarrow j$: $(i,j) \in E \Rightarrow (j,i) \notin E$.
- Associate V to random variables X_i (i = 1, ..., p) with joint distribution \mathbb{P} . Then $(\mathcal{G}, \mathbb{P})$ is called a graphical model. Often use node i and X_i interchangeably.
- Use graph separation to represent conditional independence among X_1, \ldots, X_p .

Reference: Lauritzen (1996), chapters 2 and 3.

Terminology for undirected graph G = (V, E)

- i and j are *neighbors* if $(i,j) \in E$; ne(i) denotes the set of neighbors of i.
- A path of length n from i to j is a sequence $a_0 = i, \ldots, a_n = j$ of distinct vertices so that $(a_{k-1}, a_k) \in E$ for all $k = 1, \ldots, n$.
- A subset $C \subset V$ separates a and b if all paths from a to b intersect C.
- C separates A and B if C separates a and b for every $a \in A$ and $b \in B$. Write A C B.

Markov properties on undirected graphs

Consider undirected graphical model $(\mathcal{G}, \mathbb{P})$. We say \mathbb{P} satisfies

lacksquare (P) the pairwise Markov property wrt $\mathcal G$ if

$$(i,j) \notin E \Rightarrow i \perp j \mid V \setminus \{i,j\} := [V]_{ij};$$

 \blacksquare (L) the local Markov property wrt $\mathcal G$ if

$$(i,j) \notin E \Rightarrow i \perp j \mid ne(i);$$

lacksquare (G) the global Markov property wrt $\mathcal G$ if

$$A - C - B \Rightarrow A \perp B \mid C$$
;

Factorization via cliques

- Clique and maximal clique: A subset of $C \subset V$ is a clique if the subgraph on C is complete. A clique that is maximal (wrt \subset) is called a maximal clique.
- (F) Factorization: $\mathbb P$ factorizes according to $\mathcal G$ if for every maximal clique A, there exists $\psi_A(x_A) \geq 0$, such that the joint density of $\mathbb P$ has the form

$$f(x) = \prod_{A \in \mathcal{C}} \psi_A(x_A),$$

where C is the set of cliques of G.

■ Relations: $(F) \Rightarrow (G) \Rightarrow (L) \Rightarrow (P)$.

Examples.

When does $(F) \Leftrightarrow (G) \Leftrightarrow (L) \Leftrightarrow (P)$?

Theorem 1

If \mathbb{P} has a positive and continuous density f with respect to a product measure, then $(F) \Leftrightarrow (P)$.

- Product measure: (1) $X_j \in \mathbb{R}$, use Lebesgue measure; (2) X_j finite discrete, use counting measure.
- Conclusion implies $(F) \Leftrightarrow (G) \Leftrightarrow (L) \Leftrightarrow (P)$.
- Counter example. Let p=5, $X_1, X_5 \sim_{iid} \text{Bern}(0.5)$, $X_2=X_1$, $X_4=X_5$, and $X_3=X_2X_4$. This defines \mathbb{P} . Let \mathcal{G} be a chain $E=\{(i,i+1):i=1,\ldots,4\}$. Then (L) holds but not (G). Because density (probability mass function) is not positive on all possible values of X_i 's.

(L): $X_2 \perp X_4 \mid (X_1, X_3)$ true; (G): $X_2 \perp X_4 \mid X_3$ false!

Conditional independence graph (CIG).

■ Definition: A CIG is a graphical model $(\mathcal{G}, \mathbb{P})$ such that (P) holds. That is,

$$(i,j) \notin E \Rightarrow i \perp j \mid V \setminus \{i,j\} := [V]_{ij}$$
.

- Sparser graph \mathcal{G} implies more conditional independence (CI) relations.
- One can always choose the minimal \mathcal{G} such that (P) holds to be the CIG, i.e., replace \Rightarrow by \Leftrightarrow .
- Estimate the structure of \mathcal{G} to detect CI relations, assuming we have observed iid data from \mathbb{P} .

Gaussian graphical models (GGMs)

A CIG with $\mathbb{P} = \mathcal{N}_p(0, \Sigma)$, $\Sigma > 0$ (positive definite).

Lemma 1

Suppose $(X_1,\ldots,X_p)\sim \mathcal{N}_p(0,\Sigma)$ with $\Sigma>0$ and let $\Theta=(\theta_{jk})_{p\times p}=\Sigma^{-1}$. Then

$$\theta_{jk} = 0 \Leftrightarrow X_j \perp X_k \mid X_{-\{j,k\}}. \tag{2}$$

- Θ is called the precision matrix.
- (2) shows that GGM is constructed as

$$\theta_{jk} = 0 \Leftrightarrow (j,k) \notin E. \tag{3}$$

Partial correlation and neighborhood regression

- Partial correlation between j and k given $[V]_{jk}$: $\rho_{jk} = -\theta_{jk}/\sqrt{\theta_{jj}\theta_{kk}}.$ Correlation calculated from $\Sigma_{(j,k)|[V]_{jk}} = \text{Var}(j,k \mid [V]_{jk}).$
- Neighborhood regression, regress X_j on X_{-j} :

$$X_j = \sum_{i \neq j} \beta_{ij} X_i + \varepsilon_j. \tag{4}$$

Then $\beta_{kj} = -\theta_{jk}/\theta_{jj}$. (By symmetry $\beta_{jk} = -\theta_{kj}/\theta_{kk}$.)

Thus, we have

$$(j,k) \notin E \Leftrightarrow \theta_{jk} = 0 \Leftrightarrow \rho_{jk} = 0 \Leftrightarrow \beta_{kj} = \beta_{jk} = 0.$$
 (5)

Learning GGMs: Given $x_i \sim_{iid} \mathcal{N}_p(0,\Sigma)$, $i=1,\ldots,n$, estimate the structure of $\mathcal{G} \Leftrightarrow \operatorname{supp}(\Theta) = \{(j,k): \theta_{jk} \neq 0\}$.

Also called covariance selection (Dempster 1972).

Log-likelihood

$$\ell(\Sigma) = -\frac{n}{2}\log\det(\Sigma) - \frac{1}{2}\operatorname{tr}(S\Sigma^{-1}),$$

where $S = \sum_{i} x_{i}x_{i}^{\mathsf{T}}$ is a $p \times p$ matrix (sufficient statistic).

- $\hat{\Sigma}^{\mathsf{MLE}} = S/n$ (always exists).
- If n > p, inverte $\hat{\Sigma}^{\mathsf{MLE}} \Rightarrow \hat{\Theta}^{\mathsf{MLE}} = (\hat{\Sigma}^{\mathsf{MLE}})^{-1}$. Then obtain $\hat{\mathcal{G}}$ by thresholding: $\hat{E} = \{(j, k) : |\hat{\theta}^{\mathsf{MLE}}_{jk}| > \tau\}$.

Regularized estimation under ℓ_1 penalty (Yuan and Lin 2007; Friedman et al. 2008; Banerjee et al. 2008)

- Element-wise ℓ_1 norm $\|\Theta\|_1 := \sum_{j < k} |\theta_{jk}|$.
- ℓ_1 regularized estimate $\hat{\Theta} = \operatorname{argmin}_{\Theta > 0} f(\Theta)$,

$$\begin{split} f(\Theta) &= -\frac{2}{n} \ell(\Theta^{-1}) + \lambda \|\Theta\|_1 \\ &= -\log \det(\Theta) + \operatorname{tr}(\hat{\Sigma}^{\mathsf{MLE}}\Theta) + \lambda \|\Theta\|_1. \end{split}$$

- f is convex, efficient algorithm.
- Well-defined for p > n.
- Sparse solution, $\hat{\theta}_{jk} = 0$ for some (j, k).

Estimate $\mathcal G$ from $\hat \Theta$

- $\widehat{E} = \{(j,k) : \widehat{\theta}_{jk} \neq 0\}$, but needs very strong assumptions (irrepresentability) for $\mathbb{P}(\widehat{E} = E_0) \rightarrow 1$.
- Thresholding $\hat{\Theta}$: $\hat{E} = \{(j,k) : |\hat{\theta}_{jk}| > \tau\}$. Weaker assumptions (RE, beta-min) for $\mathbb{P}(\hat{E} = E_0) \to 1$.

Choosing λ by cross-validation, λ_{CV}^* , then $\mathbb{P}(\widehat{E}(\lambda_{CV}^*) \supset E_0) \to 1$ under certain conditions (RE, beta-min).

Estimate \mathcal{G} by neighborhood regression (Meinshausen and Bühlmann 2006)

- Apply model selection (e.g. lasso) for each neighborhood regression (4) $\Rightarrow \hat{\beta}_{ik}$ (j, k = 1, ..., p).
- Combine results to define $\widehat{\mathcal{G}}$, e.g.,

$$\widehat{E} = \{(j,k) : \widehat{\beta}_{jk} \neq 0, \widehat{\beta}_{kj} \neq 0\}.$$

Approximate Ô if lasso is used in neighborhood regression.

Terminology for directed acyclic graph (DAG) $\mathcal{G} = (V, E)$

- If $i \rightarrow j$, then i is a parent of j and j is a child of i; pa(j) is the set of parents of j; ch(i) is the set of children of i.
- If there is a path from i to j, we say i leads to j and write $i \longmapsto j$.

```
The ancestors \operatorname{an}(j) = \{i : i \longmapsto j\}.
The descendants \operatorname{de}(i) = \{j : i \longmapsto j\}.
The non-descendants \operatorname{nd}(i) = V \setminus (\operatorname{de}(i) \cup \{i\}).
```

■ A chain of length n from i to j is a sequence $a_0 = i, \ldots, a_n = j$ of distinct vertices so that $a_{k-1} \to a_k$ or $a_k \to a_{k-1}$ for all $k = 1, \ldots, n$.

- *d*-separation: A chain π from *a* to *b* is said to be *blocked* by $S \subset V$, if the chain contains a vertex γ such that either (1) or (2) holds:
 - 1 $\gamma \in S$ and the arrows of π do *not* meet at γ ($i \rightarrow \gamma \rightarrow j$ or $i \leftarrow \gamma \rightarrow j$).
 - 2 $\gamma \cup de(\gamma)$ not in S and arrows of π meet at γ $(i \rightarrow \gamma \leftarrow j)$

Two subsets A and B are d-separated by S is all chains from A to B are blocked by S.

- A topological sort of \mathcal{G} is an ordering σ , i.e., a permutation of $\{1,\ldots,p\}$, such that $j\in \operatorname{an}(i)$ implies $j\prec i$ in σ . Due to acyclicity, every DAG has at least one sort.
- Example $\mathcal{G}: 1 \rightarrow 2 \rightarrow 3 \leftarrow 4$. {2} d-separates 1 and 4; \varnothing d-separates 1 and 4. $\sigma = (1, 2, 4, 3)$ or (4, 1, 2, 3) or (1, 4, 2, 3) are topological sorts.

Markov properties on DAGs: We say a joint distribution \mathbb{P}

• (DF) admits a recursive factorization according to $\mathcal G$ if $\mathbb P$ has a density f such that

$$f(x) = \prod_{j \in V} f_j(x_j \mid pa(j)), \tag{6}$$

where f_j is the density for $[j \mid pa(j)]$.

• (DG) satisfies the directed global Markov property if

S d-separates A and
$$B \Rightarrow A \perp B \mid S$$
;

- (DL) satisfies the directed local Markov property if $i \perp nd(i) \mid pa(i)$.
- (DP) satisfies the directed pairwise Markov property if for any $(i,j) \notin E$ with $j \in \operatorname{nd}(i)$, $i \perp j \mid \operatorname{nd}(i) \setminus \{j\}$.

Relations: $(DF) \Rightarrow (DG) \Rightarrow (DL) \Rightarrow (DP)$.

Theorem 2

If \mathbb{P} has a density f with respect to a product measure, then (DF), (DG), and (DL) are equivalent.

Markov equivalence: Two DAGs are called Markov equivalent if they induce the same set of CI restrictions.

⇔ Same skeleton and same v-structures (Verma and Pearl 1990).

Connections to Markov properties on undirected graphs:

- Moral graph \mathcal{G}^m : add edges between all parents of a node in a DAG \mathcal{G} and delete directions.
- If \mathbb{P} admits a recursive factorization according to \mathcal{G} , then it factorizes according to \mathcal{G}^m . That is, (DF) wrt $\mathcal{G} \Rightarrow$ (F) wrt $\mathcal{G}^m \Rightarrow$ (G), (L), (P) wrt \mathcal{G}^m .

■ Definition of Bayesian networks: Given \mathbb{P} with density f and an ordering $(\sigma(1), \ldots, \sigma(p))$, we factorize f

$$f(x) = \prod_{j=1}^{p} f(x_{\sigma(j)} \mid x_{\sigma(1)}, \dots, x_{\sigma(j-1)})$$

$$= \prod_{j=1}^{p} f(x_{\sigma(j)} \mid x_{A_{j}}), \qquad (7)$$

where $A_j \subset \{\sigma(1), \ldots, \sigma(j-1)\}$ is the minimum subset such that (7) holds. Then the DAG \mathcal{G} with $pa(\sigma(j)) = A_j$ for all $j \in V$ is a Bayesian network of \mathbb{P} .

- CI: If \mathcal{G} is a BN of \mathbb{P} , then (DF) holds, so (DG), (DL), (DP) also hold.
- Examples: Markov chains, HMMs, etc.

Parameterization: Given \mathcal{G} , to parameterize $[X_j \mid pa(j)]$ as in (6).

- (1) Gaussian BNs
 - Linear structural equation model (SEM):

$$X_{j} = \sum_{i \in pa(j)} \beta_{ij} X_{i} + \varepsilon_{j}, \qquad j = 1, \dots, p.$$
(8)

Assume $\varepsilon_j \sim \mathcal{N}(0,\omega_j^2)$ and $\varepsilon_j \perp \mathsf{pa}(j)$.

■ Put $B = (\beta_{ij})$ and $\Omega = \operatorname{diag}(\omega_1^2, \dots, \omega_p^2)$. Then

$$X = B^{\mathsf{T}}X + \varepsilon, \qquad \varepsilon \sim \mathcal{N}_{p}(0, \Omega).$$

 $\Rightarrow X \sim \mathcal{N}_p(0, \Theta^{-1})$, where $\Theta = (I_p - B)\Omega^{-1}(I_p - B)^{\mathsf{T}}$ (Cholesky decomposition of Θ); see van de Geer and Bühlmann (2013); Aragam and Zhou (2015).

(2) Discrete BNs

■ Multinomial distribution: $\theta_{km}^{(j)} = \mathbb{P}(X_j = m \mid \mathsf{pa}(j) = k)$. Parameter for $[X_j \mid \mathsf{pa}(j)]$ is a $K \times M$ table:

$$\left\{ \theta_{km}^{(j)} : \sum_{m} \theta_{km}^{(j)} = 1, k = 1, \dots, K, m = 1, \dots, M \right\}.$$

K: number of all possible combinations of pa(j). (Too many parameters if a node has many parents.)

■ Multi-logit regression model (Gu et al. 2019): Use generalized linear model for $[X_i \mid pa(j)]$.

Structure learning

Given $x_i \sim_{iid} \mathbb{P}$, i = 1, ..., n, estimate a BN $\widehat{\mathcal{G}}$ for \mathbb{P} . The sparser the $\widehat{\mathcal{G}}$, the more CI relations learned from data.

- Score-based methods: Minimize a scoring function over DAGs; regularization to obtain sparse solutions.
- Constraint-based methods: Condition independence tests against $X_i \perp X_j \mid X_S$ for all i, j, S.
- Hybrid methods: First use constraint-based method to prune the search space, and then apply a score-based method to search for the optimal DAG.

See, e.g. Aragam and Zhou (2015) Section 1.2.

Causal DAG model:

- Model causal relations among nodes: If $i \rightarrow j$, then i is a causal parent (direct cause) of j.
- Causal relation defined by experimental intervention (Pearl 2000): Force X to some fixed value x, which we denote by do(X = x) or do(x) for short.
- Effect of $do(x_i)$: to replace the SEM for X_i by $X_i = x_i$ and substitute $X_i = x_i$ in the other SEMs for X_j , $j \neq i$. See Eq (8).
- The causal effect of X on Y is defined by the mapping $x \mapsto \mathbb{P}[Y \mid do(X = x)] \equiv \mathbb{P}(Y \mid do(x))$.
 - 1 linear SEM: Causal effect $\frac{\partial \mathbb{E}(Y|do(x))}{\partial x}$.
 - Treatment (X = 1) vs control (X = 0): Causal effect $\mathbb{E}(Y \mid do(X = 1)) \mathbb{E}(Y \mid do(X = 0))$.

Faithfulness

Given a graphical model $(\mathcal{G}, \mathbb{P})$ where \mathbb{P} satisfies, say (G) or (DG). Then graph separation \Rightarrow condition independence, but not \Leftarrow . If \mathbb{P} is faithful to \mathcal{G} then \Leftarrow holds as well. In this case, we have \Leftrightarrow .

Definition 1

For a graphical model $(\mathcal{G}, \mathbb{P})$, we say the distribution \mathbb{P} is faithful to the graph \mathcal{G} if for every triple of disjoint sets $A, B, S \subset V$,

 $A \perp B \mid S \Leftrightarrow S$ separates (*d*-separates) A and B.

How likely is \mathbb{P} faithful?

Example: Gaussian graphs (undirected or DAGs), $\mathbb P$ is Gaussian.

- Given \mathcal{G} , almost all parameter values will define a faithful \mathbb{P} .
- Counterexamples: The parameters, Θ or (β_{ij}) , satisfy additional equality constraints that define CI in $\mathbb P$ not implied by any separation in $\mathcal G$.

References I

- Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse Gaussian Bayesian networks. *Journal of Machine Learning Research*, 16:2273–2328, 2015.
- Onureena Banerjee, Laurent El Ghaoui, and Alexandre d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. *The Journal of Machine Learning Research*, 9:485–516, 2008.
- A.P. Dawid. Conditional independence in statistical theory. *Journal* of the Royal Statistical Society: Series B (Statistical Methodology), 41:1–31, 1979.
- Arthur P Dempster. Covariance selection. *Biometrics*, 28(1): 157–175, 1972.

References II

- Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the Graphical Lasso. *Biostatistics*, 9(3):432–441, 2008.
- Fei Fu and Qing Zhou. Learning sparse causal Gaussian networks with experimental intervention: Regularization and coordinate descent. *Journal of the American Statistical Association*, 108 (501):288–300, 2013.
- Jiaying Gu, Fei Fu, and Qing Zhou. Penalized estimation of directed acyclic graphs from discrete data. *Statistics and Computing*, 29:161–176, 2019.
- Steffen L. Lauritzen. *Graphical Models*. Oxford University Press, 1996. ISBN 0-19-852219-3.

References III

- Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the Lasso. *The Annals of Statistics*, 34(3):1436–1462, 2006.
- Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, 1988.
- Judea Pearl. *Causality: Models, reasoning and inference.* Cambridge Univ Press, 2000.
- Sara van de Geer and Peter Bühlmann. ℓ_0 -penalized maximum likelihood for sparse directed acyclic graphs. The Annals of Statistics, 41(2):536–567, 2013.
- T. Verma and J. Pearl. Equivalence and synthesis of causal models. In *Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence*, pages 220–227, 1990.
- Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model. *Biometrika*, 94(1):19–35, 2007.