Outline

1. Network data
2. Latent space models
3. Stochastic block models
4. Variational EM
5. Community detection
6. Extensions and discussions
Network Data

Examples & applications

- Social networks.
- Protein-protein interaction networks.
- Biomedical data with family history.

Figure sources: (left) forbes.com; (right) UW Madison.
Network Data

Observed data: A network (graph) among \(n\) nodes.

- Each node corresponds to an individual \(i \in \{1, \ldots, n\} := V\).
- Connections among the nodes are given by an adjacency matrix, \(A = (Y_{ij})_{n \times n}\) (symmetric):

 \[
 Y_{ij} = 0 : \text{no edge between } i \text{ and } j; \quad Y_{ij} = 1 : \text{there is edge between } i \text{ and } j.
 \]

 If \(Y_{ij} \in \mathbb{R} \setminus \{0\}\) when there is an edge, weighted graph.
 - Build a probabilistic model on the random graph \(A\); an observed network \((y_{ij})\) is a realization of \(A\).

 Modeling heterogeneity: nodes that share a large number of connections form a community (Matias and Robin 2014).
Each node $i \in V$ is associated with an independent latent variable $Z_i \in \mathbb{R}^q$. The space for Z_i is the latent space.

The distribution of the edge Y_{ij} depends on $\|Z_i - Z_j\|$ (distance between Z_i and Z_j in the latent space).

Conditional distribution $[Y_{ij}|Z_i, Z_j]$ (assuming binary graph):

$$Y_{ij} = Y_{ji} \sim \text{Bern}(\gamma_{ij})$$

$$\text{logit}\{\gamma_{ij}\} = \alpha - \|Z_i - Z_j\|.$$

If $\|Z_i - Z_j\|$ is small, then $\mathbb{P}(Y_{ij} = 1|Z_i, Z_j)$ is large (more likely to connect i and j).

Predict Z_i and cluster them to detect communities.
Other related models:

- **Graphon**: latent variables $U_i \sim \text{Unif}(0, 1)$.

 $$
 Y_{ij} \sim \text{Bern}(\gamma_{ij})
 $$

 $$
 \gamma_{ij} = g(U_i, U_j),
 $$

 g is a symmetric function, called a graphon: Nonparametric estimation.

- **Stochastic block model (SBM)**: $Z_i \in \{1, \ldots, K\}$.
Model structure:

- Assume K communities (clusters) among the n nodes.
- Latent cluster labels $Z_i = (Z_{i1}, \ldots, Z_{iK}) \in \{0, 1\}^K$

$$Z_i = (Z_{i1}, \ldots, Z_{iK}) \sim iid \ M(1, \pi),$$

where $\pi = (\pi_1, \ldots, \pi_K)$ are cell probabilities.

- Given Z_i and Z_j, the edge $Y_{ij} = Y_{ji}$ is drawn independently:

$$Y_{ij} \mid Z_{im} = 1, Z_{j\ell} = 1 \sim f(\cdot; \gamma_{m\ell}).$$

The matrix $\gamma = (\gamma_{m\ell})_{K \times K}$ contains all connection probabilities among the K communities.
Formulate as a hidden variable model:

- Parameters: \(\theta = (\pi, \gamma) \).
- Hidden variables (missing data): \(Z = (Z_1, \ldots, Z_n) \).
- Observed data: \(A = (Y_{ij})_{n \times n} \).
- To be concrete, assume

\[
Y_{ij} \mid Z_{im} = 1, Z_{j\ell} = 1 \sim \text{Bern}(\gamma_{m\ell})
\]

\[
f(y; \gamma_{m\ell}) = \gamma_{m\ell}^y (1 - \gamma_{m\ell})^{1-y}, \quad y \in \{0, 1\}.
\]
Stochastic block models

Using EM for MLE:

■ MLE $\hat{\theta}$ is the solution to:

$$\max_{\theta} \left\{ \log P(Y; \theta) = \log \left[\sum_{Z_1} \ldots \sum_{Z_n} P(Y, Z_1, \ldots, Z_n; \theta) \right] \right\}.$$

■ Complete-data log-likelihood

$$\ell(\theta \mid Y, Z) = \log P(Y, Z; \theta) = \sum_{i=1}^{n} \sum_{m} Z_{im} \log \pi_m + \frac{1}{2} \sum_{i \neq j} \sum_{m, \ell} Z_{im} Z_{j\ell} \log f(Y_{ij}; \gamma_{m\ell}). \quad (1)$$

■ E-step needs $\mathbb{E}(Z_{im} \mid Y; \theta^{(t)})$ and $\mathbb{E}(Z_{im} Z_{j\ell} \mid Y; \theta^{(t)})$.
Stochastic block models

Difficulty:

- E-step is intractable, since $\mathbb{P}(Z_1, \ldots, Z_n \mid Y; \theta^{(t)})$ does not factorize in any way.
- Z_i, Z_j are dependent given Y_{ij} for all $i, j \Rightarrow Z_1, \ldots, Z_n$ are all dependent given $A = (Y_{ij})$.
- Compare:
 1. Mixture modeling, $Z_i \perp Z_j \mid Y$.
 2. HMM, $(Z_1, \ldots, Z_n \mid Y)$ is a Markov chain.
An iterative maximization view of EM:

$$\ell(\theta|Y) := \log \mathbb{P}(Y; \theta) = \log \mathbb{P}(Y, Z; \theta) - \log \mathbb{P}(Z | Y; \theta).$$

Take expectation wrt a distribution F over Z:

$$\ell(\theta|Y) = \mathbb{E}_F \{ \log \mathbb{P}(Y, Z; \theta) \} + H(F) + KL(F || \mathbb{P}(Z | Y; \theta)), \quad (2)$$

where $H(F) = \mathbb{E}_F \{-\log F(Z)\}$ is the entropy of F and $KL \geq 0$ is the Kullback-Leibler divergence. Thus, for any F

$$\ell(\theta|Y) \geq \mathbb{E}_F \{ \log \mathbb{P}(Y, Z; \theta) \} + H(F) := L(\theta, F).$$
EM iterates between two maximization steps to

$$\max_{F,\theta} \{ L(\theta, F) = \mathbb{E}_F \{ \log \mathbb{P}(Y, Z; \theta) \} + H(F) \}.$$

- **E-step:** Given $\theta^{(t)}$, $\max_F L(\theta^{(t)}, F)$, due to (2), \iff

 $$\min_F KL(F \| \mathbb{P}(Z \mid Y; \theta^{(t)})) \Rightarrow F^{(t)} = \mathbb{P}(Z \mid Y; \theta^{(t)}).$$

- **M-step:** Given $F^{(t)}$, $\max_{\theta} L(\theta, F^{(t)}) \iff$

 $$\max_{\theta} \mathbb{E}_{F^{(t)}} \{ \log \mathbb{P}(Y, Z; \theta) \} = \max_{\theta} \mathbb{E} \left\{ \log \mathbb{P}(Y, Z; \theta) \mid Y; \theta^{(t)} \right\}$$

 $$= \max_{\theta} Q(\theta \mid \theta^{(t)}) \Rightarrow \theta^{(t+1)}.$$

Note that $L(\theta, F^{(t)})$ is the minorization function in the MM view of EM.
Variational EM maximizes $L(\theta, F)$ within a restricted class of $F \in \mathcal{F}$ so that E-step is tractable.

- **E-step:** Given $\theta^{(t)}$
 \[
 \max_{F \in \mathcal{F}} \mathbb{E}_F \left\{ \log \mathbb{P}(Y, Z; \theta^{(t)}) \right\} + H(F) \Rightarrow F^{(t)} \in \mathcal{F}.
 \]

- **M-step:** Given $F^{(t)}$
 \[
 \max_\theta \mathbb{E}_{F^{(t)}} \left\{ \log \mathbb{P}(Y, Z; \theta) \right\} \Rightarrow \theta^{(t+1)}.
 \]

Note that $L(\theta, F)$ always a lower bound of $\ell(\theta \mid Y)$ for any F.

Reference Daudin et al. (2008).
Assume \(F(Z) = \prod_{i=1}^{n} h(Z_i; \tau_i) \), and \(Z_i \sim M(1, \tau_i) \) under \(h \).

- \[\mathbb{E}_F(Z_{im}Z_{j\ell}) = \mathbb{E}_F(Z_{im})\mathbb{E}_F(Z_{j\ell}) = \tau_{im}\tau_{j\ell}. \]

- Then plug into complete-date log-likelihood (1) and \(H(F) \):

\[
L(\theta, F) = \sum_{i=1}^{n} \sum_{m} \tau_{im} \log \pi_m + \frac{1}{2} \sum_{i \neq j} \sum_{m, \ell} \tau_{im}\tau_{j\ell} \log f(Y_{ij}; \gamma_{m\ell}) \\
- \sum_{i=1}^{n} \sum_{m} \tau_{im} \log \tau_{im} := L(\theta, \tau).
\]

- Variational EM iteratively maximize \(L(\theta, \tau) \) over \(\tau \) (E-step) and \(\theta \) (M-step).
Variational EM algorithm

E-step:

- Given $\theta(t)$, $\max_{\tau} L(\theta(t), \tau)$ subject to $\sum_m \tau_{im} = 1$ for all i.

$$\max_{\tau} L(\theta(t), \tau) + \sum_{i=1}^{n} \lambda_i \left(1 - \sum_m \tau_{im} \right)$$

$$\Rightarrow \log \pi_{m}^{(t)} - \log \tau_{im} + \sum_{j \neq i} \sum_{\ell} \tau_{j\ell} \log f(Y_{ij}; \gamma_{m\ell}^{(t)}) = \lambda_i + 1,$$

by taking derivative wrt τ_{im}.

- No closed form, $\tau^{(t)}$ is given by the fixed point of

$$\tau_{im} \propto \pi_{m}^{(t)} \prod_{j \neq i} \prod_{\ell} \left\{ f(Y_{ij}; \gamma_{m\ell}^{(t)}) \right\}^{\tau_{j\ell}}.$$

Use this as an iterative algorithm to obtain $\tau^{(t)}$.

Zhou, Q
M-step:

- Given \(\tau^{(t)} \), max\(\tau \) \(L(\theta, \tau^{(t)}) \) subject to \(\sum_m \pi_m = 1 \).

\[
\pi_m^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \tau_{im}^{(t)}
\]

\[
\gamma_{m\ell}^{(t+1)} = \frac{\sum_{i \neq j} \tau_{im}^{(t)} \tau_{j\ell}^{(t)} Y_{ij}}{\sum_{i \neq j} \tau_{im}^{(t)} \tau_{j\ell}^{(t)}}.
\]

- \(\tau_{im}^{(t)} \) approximates \(\mathbb{P}(Z_{im} = 1 \mid Y, \theta^{(t)}) \), weight of node \(i \) in cluster \(m \).
Consistency of variational estimator (Bickel et al. 2013):

- MLE $\hat{\theta}^{\text{ML}} = \arg\max_{\theta} \ell(\theta \mid Y)$.
- Variational estimator $\hat{\theta}^{\text{VR}} = \arg\max_{\theta} \max_{\tau} L(\theta, \tau)$.
- Bound $\max_{\tau} L(\theta, \tau)$ by two log-likelihood functions:

$$\log \mathbb{P}(Y, Z; \theta) \leq \max_{\tau} L(\theta, \tau) \leq \ell(\theta \mid Y),$$

(3)

for any Z.

- Asymptotic normality for both estimators as $n \to \infty$.
Logit transformation of parameters:

\[\omega_m = \log \left\{ \pi_m / \pi_K \right\}, \quad m = 1, \ldots, K - 1, \]
\[\nu_{m\ell} = \log \left\{ \gamma_{m\ell} / (1 - \gamma_{m\ell}) \right\}, \quad m, \ell = 1, \ldots, K. \]

Theorem 1

Assume the true parameter is \(\theta^* = (\pi^*, \gamma^*) \), where \(\gamma^* \) has no identical columns. Let \(\lambda_n = \mathbb{E}(\text{degree}) = n \mathbb{P}_{\theta^*}(Y_{ij} = 1) \). If \(\lambda_n / \log n \to \infty \), then

\[\sqrt{n}(\hat{\omega} - \omega^*) \xrightarrow{d} \mathcal{N}(0, \Sigma_1), \]
\[\sqrt{n\lambda_n}(\hat{\nu} - \nu^*) \xrightarrow{d} \mathcal{N}(0, \Sigma_2), \]

for both \(\hat{\theta}^{\text{VR}} \) and \(\hat{\theta}^{\text{ML}} \), where \(\Sigma_1 \) and \(\Sigma_2 \) are functions of \(\theta^* \).
Community detection

Clustering nodes: predict Z.

- Posterior distribution $\mathbb{P}(Z \mid Y, \hat{\theta})$. Celisse et al. (2012) establish

$$
\sum_{z \neq z^*} \frac{\mathbb{P}(Z = z \mid Y; \hat{\theta})}{\mathbb{P}(Z = z^* \mid Y; \hat{\theta})} \overset{p}{\rightarrow} 0.
$$

- Spectral clustering (von Luxburg 2007) also achieves vanishing clustering error rate (Rohe et al. 2011):

$$
\frac{\text{# of misclustered nodes}}{n} \rightarrow 0, \quad \text{a.s.}
$$
Spectral clustering of $A = (Y_{ij})_{n \times n}$ (Rohe et al. 2011):

Define normalized graph Laplacian $L = D^{-1/2}AD^{-1/2}$, where $D = \text{diag}(d_1, \ldots, d_n)$ and $d_i = \sum_j Y_{ij}$ is the degree of node i.

1. Find $X = [X_1 | \cdots | X_K] \in \mathbb{R}^{n \times K}$, X_j’s are the orthogonal eigenvectors corresponding to the largest K eigenvalues of L (in absolute value).

2. Treat each row of X as a data point in \mathbb{R}^K, apply k-means to cluster the n rows into K clusters, C_1, \ldots, C_K (partition of $\{1, \ldots, n\}$).

Output: $\hat{Z}_{im} = 1$ if $i \in C_m$.
Community detection

Why does spectral clustering work?

- Define population version of A: $A = (A_{ij})_{n \times n}$,

 $$A_{ij} = \mathbb{E}(Y_{ij} \mid Z) = \mathbb{P}(Y_{ij} = 1 \mid Z).$$

- Let $B = (\gamma_{m\ell})_{K \times K}$ and $Z = (Z_{im})_{n \times K}$, then $A = ZBZ^T$.

- Define the graph Laplacian of A similarly:

 $$L = D^{-1/2}AD^{-1/2},$$

 where $D_{ii} = \sum_j A_{ij}$.

- Then the eigenvectors of L converge to the eigenvectors of L.

- L has K nonzero eigenvalues, the associated eigenvectors

 $$U = (u_{ij}) = [U_1 \mid \cdots \mid U_K] \in \mathbb{R}^{n \times K}$$

 satisfies:

 $$u_i = u_j \iff Z_i = Z_j,$$

 where u_i is the ith row of U.
Community detection

Example of \mathcal{L} and \mathcal{U}:

```r
> B
 [,1] [,2]
[1,]  0.8  0.1
[2,]  0.1  0.7

> Z
 [,1] [,2]
[1,]  1  0
[2,]  1  0
[3,]  0  1
[4,]  0  1

> A
[1,]  0.8  0.8  0.1  0.1
[2,]  0.8  0.8  0.1  0.1
[3,]  0.1  0.1  0.7  0.7
[4,]  0.1  0.1  0.7  0.7

> L
[1,] 0.4444444 0.4444444 0.05892557 0.05892557
[2,] 0.4444444 0.4444444 0.05892557 0.05892557
[3,] 0.05892557 0.05892557 0.43750000 0.43750000
[4,] 0.05892557 0.05892557 0.43750000 0.43750000

> eigen(L)
$values
[1] 1.0000000 0.7638889 0.0000000 0.0000000

$vectors
[1,] -0.5144958 0.4850713 0.0000000 7.071068e-01
[2,] -0.5144958 0.4850713 0.0000000 -7.071068e-01
[3,] -0.4850713 -0.5144958 -0.7071068 -1.665335e-16
[4,] -0.4850713 -0.5144958 0.7071068 -1.387779e-16
```
Extensions and discussions

- Weighted graphs, e.g., $Y_{ij} \mid Z_{im} = 1, Z_{j\ell} = 1 \sim \text{Poiss}(\gamma_{m\ell})$.

- Degree-corrected block model:

 $$Y_{ij} \mid Z_{im} = 1, Z_{j\ell} = 1 \sim \text{Poiss}(\gamma_{m\ell} \kappa_i \kappa_j),$$

 κ_i controls expected degree of node i.

- Accounting for covariates
 1. Nodewise covariates x_i, $i = 1, \ldots, n$:

 $$Z_i \sim M(1, \pi(x_i)).$$

 2. Edgewise covariates x_{ij}, $i \neq j$. Bernoulli model:

 $$\logit\{\mathbb{P}(Y_{ij} = 1 \mid Z_{im} = 1, Z_{j\ell} = 1)\} = x_{ij}^T \beta + \gamma_{m\ell}.$$

 Poisson model:

 $$Y_{ij} \mid Z_{im} = 1, Z_{j\ell} = 1 \sim \text{Poiss}(\exp(x_{ij}^T \beta + \gamma_{m\ell})).$$
Graphons

Hereafter, consider simple graphs: unweighted and symmetric.

Recall the definition of a graphon, \(g : [0, 1]^2 \to [0, 1] \). We define a random simple graph \((Y_{ij}) \in \{0, 1\}^{n \times n}\) given a graphon \(g\):

1. Draw \(U_i \sim \text{Unif}(0, 1) \) for \(i = 1, \ldots, n \).
2. Draw \(Y_{ij} = Y_{ji} \sim \text{Bern}(g(U_i, U_j)) \) for all \(i \neq j \).
SBM as a graphon model:

- Partition \((0, 1)\) into \(K\) intervals, \(J_m\) for \(m = 1, \ldots, K\), so that \(|J_m| = \pi_m\).

- Let \(g(u, v) = \gamma_{m\ell}\) if \(u \in J_m\) and \(v \in J_\ell\) (block-wise constant).

- Then the graphon is equivalent to the SBM.

Let \(Z_{im} = I(U_i \in J_m)\). If \(Z_{im} = 1, Z_{j\ell} = 1\), then

\[
g(U_i, U_j) = \gamma_{m\ell}
\]

\[
Y_{ij} \sim \text{Bern}(g(U_i, U_j)) = \text{Bern}(\gamma_{m\ell}).
\]
Exchangeable graphs: A random graph G is said to be exchangeable if its distribution is invariant to any relabeling (or permutation) of its vertex set.

An equivalent definition is that its adjacency matrix $(Y_{ij})_{n \times n}$ is a jointly exchangeable random array, i.e.

$$
\mathbb{P}(Y_{ij} \in A_{ij}, \forall i, j \in [n]) = \mathbb{P}(Y_{\pi(i)\pi(j)} \in A_{ij}, \forall i, j \in [n]) \quad (4)
$$

for every permutation π of $\{1, \ldots, n\}$ and every collection of sets $\{A_{ij}\}$. We write $(Y_{ij}) \overset{d}{=} (Y_{\pi(i)\pi(j)})$ when (4) holds.
Theorem 2 (Aldous-Hoover)

A random array \((X_{ij}), X_{ij} \in \Omega, i, j \in \mathbb{N}\), is jointly exchangeable if and only if there is a random function \(F : [0, 1]^3 \rightarrow \Omega\) such that

\[
(X_{ij}) \overset{d}{=} (F(U_i, U_j, U_{ij})),
\]

where \((U_i)_{i \in \mathbb{N}}\) and \((U_{ij})_{i, j \in \mathbb{N}}\) are, respectively, an infinite sequence and array of i.i.d. \text{Unif}[0, 1] independent of \(F\).

A few remarks:

1. \((X_{ij})_{i, j \in \mathbb{N}}\) is an infinite two-way array, \(i = 1, 2, \ldots\) and \(j = 1, 2, \ldots\). Exchangeability of \(X\) is an assumption on the data source.

2. A exchangeable graph \(G\) on \(n\) nodes is regarded as a sample of finite size from this data source.
Apply Theorem 2 to \((Y_{ij})_{\mathbb{N} \times \mathbb{N}}\) with \(\Omega = \{0, 1\}\): \(F(x, y, u) \in \{0, 1\}\) for all \(x, y, u \in [0, 1]\). Assume \(F\) is symmetric in \((x, y)\).

Define a function \(g : [0, 1]^2 \to [0, 1]\) by \(g(x, x) = 0\) and

\[
g(x, y) := \mathbb{P}(F(x, y, U) = 1 \mid F),
\]

where \(U \sim \text{Unif}[0, 1]\) and is independent of \(F\).

Then \(g\) is a random symmetric function and

\[
(Y_{ij}) \overset{d}{=} (F(U_i, U_j, U_{ij})) \overset{d}{=} (I(U_{ij} < g(U_i, U_j))) \quad (6)
\]

This is because \((Y_{ij})\) are independent given \((U_i)\) and \(F\) and

\[
\mathbb{P}(Y_{ij} = 1 \mid U_i, U_j, F) = g(U_i, U_j) \quad \text{(by definition of } g) \\
= \mathbb{P}(U_{ij} < g(U_i, U_j) \mid U_i, U_j, F).
\]
Graphons

Corollary 1

A random simple graph G with vertex set \mathbb{N} is exchangeable if and only if there is a random function $g : [0, 1]^2 \rightarrow [0, 1]$ such that its adjacency matrix

$$(Y_{ij}) \overset{d}{=} (I(U_{ij} < g(U_i, U_j))),$$

(7)

where (U_i) and (U_{ij}) are i.i.d. Unif[0, 1] and independent of g.

The random function g is called a graphon.
Graphons

Every exchangeable random simple graph G on \mathbb{N} is represented by a random graphon g:

1. Draw g from a distribution ν (over functions $[0, 1]^2 \rightarrow [0, 1]$).
2. Draw $U_i, i \in \mathbb{N}$ independently from Unif$[0, 1]$.
3. For every pair $i < j \in \mathbb{N}$, draw

$$Y_{ij} \mid g, U_i, U_j \sim \text{Bern}(g(U_i, U_j)).$$

Remarks:

1. The distribution of G is determined by ν.
2. Statistical modeling of exchangeable simple graphs is parameterized by graphons g.

A review article: Orbanz and Roy (2015).
References I

