Chapter 5

Random Graphs for Modeling Network Data

Qing Zhou
UCLA Department of Statistics

Stats 201C Advanced Modeling and Inference
Lecture Notes



Network data

Latent space models
Stochastic block models
Variational EM
Community detection

@ Extensions and discussions

Zhou, Q Random Graphs 1/32



Examples & applications
m Social networks.
m Protein-protein interaction networks.

m Biomedical data with family history.

Figure sources: (left) forbes.com; (right) UW Madison.
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Observed data: A network (graph) among n nodes.
m Each node corresponds to an individual i € {1,...,n} := V.

m Connections among the nodes are given by an adjacency
matrix, A = (Yjj)nxn (Symmetric):

Yii = 0: no edge between / and j;

Yij = 1 : there is edge between / and ;.

If Y;j € R\ {0} when there is an edge, weighted graph.

m Build a probabilistic model on the random graph A; an
observed network (y;;) is a realization of A.

Modeling heterogeneity: nodes that share a large number of
connections form a community (Matias and Robin 2014).
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Latent space models

Reference: Hoff et al. (2002).

m Each node / € V is associated with an independent latent
variable Z; € R9. The space for Z; is the latent space.

m The distribution of the edge Yj; depends on || Z; — Z;|
(distance between Z; and Z; in the latent space).

m Conditional distribution [Yjj|Z;, Z;] (assuming binary graph):
Yjj = Yji ~ Bern(v;)
logit{;} = a —[|Zi — Z]|.

If |Z; — Zj|| is small, then P(Yj; = 1|Z;, Z;) is large (more
likely to connect i and j).

m Predict Z; and cluster them to detect communities.
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Latent space models

Other related models:
m Graphon: latent variables U; ~ Unif(0, 1).

Yjj ~ Bern(vj)
i = &(Ui, Uj),

g is a symmetric function, called a graphon: Nonparametric
estimation.

m Stochastic block model (SBM): Z; € {1,...,K}.
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Stochastic block models

Model structure:
m Assume K communities (clusters) among the n nodes.
m Latent cluster labels Z; = (Zj1,...,Zik) € {e1,...,ex}

Zi = (Zn, ..., Zik) ~iid M(1,7),

where m = (71, ...,mk) are cell probabilities.
m Given Z; and Z;, the edge Yj; = Yj; is drawn independently:

Yij | Zim=1,Zjg =1~ f(:; yme)-

The matrix v = (Yme)k xk contains all parameters for
connection probabilities among the K communities.
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Stochastic block models

Formulate as a hidden variable model:
m Parameters: 0 = (7,7).
m Hidden variables (missing data): Z = (Z1,...,2Z,).
m Observed data: A = (Yjj)nxn.
m To be concrete, assume

Yi | Zim=1,Zjy =1~ Bern(ypm)
F(yivme) =70 (1L = vme)t ™,y € {0,1}.
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Stochastic block models

Using EM for MLE:
m MLE § is the solution to:

{IogIP’YH Iog|:z Z}P’(Yzl,..., )”

m Complete-data log-likelihood

UWO|Y,Z)=logP(Y, 2-9)

= Z Z Zimlog mm + 2 Z Z f |Og f U 7mﬁ) (1)

i=1 m i#j mt

m E-step needs E(Zim | Y;601) and E(ZimZie | Y;0).
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Stochastic block models

Difficulty:

m E-step is intractable, since P(Zi,...,Z, | Y;0(®) does not
factorize in any way.

m Z;, Z;j are dependent given Yj; for all i,j = Z;,...,Z, are all
dependent given A = (Y}).

m Compare:
(1) Mixture modeling, Z; 1. Z; | Y.
(2) HMM, (Zi,...,2Z,| Y) is a Markov chain.
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Variational EM algorithm

An iterative maximization view of EM:
L0lY) = logP(Y;0) =logP(Y,Z;0) —logP(Z | Y;0).
Take expectation wrt a distribution F over Z:
LO0lY)=Er{logP(Y,Z;0)} + H(F)+ KL(F||P(Z | Y;0)), (2)

where H(F) = Ef{—log F(Z)} is the entropy of F and KL >0 is
the Kullback-Leibler divergence. Thus, for any F

00|Y) > Er{logP(Y,Z;0)} + H(F) := L(6, F).
L(6, F): evidence lower bound (ELBO),

F: variational distribution.
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Variational EM algorithm

EM iterates between two maximization steps to

rr,]_aex{L(H7 F)=Egr{logP(Y,Z;0)} + H(F)}.

m E-step: Given (), maxg L(6(), F), due to (2), &
min KL(F||P(Z | Y;00)) = FO =p(Z | Y;00).
m M-step: Given F(t), maxy L(0, F!)) &
max Ep) {log P(Y, Z;0)} = maxE {IogIP’(Y,Z; 0) | Y;a(f)}

= max Q(¢ | 0(t)) = g(t+1),

Note that L(6, F(!)) is the minorization function in the MM view
of EM.
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Variational EM algorithm

Variational EM maximizes L(6, F) within a restricted class of
F € F so that E-step is tractable.

m E-step: Given §(t)
(1) (1)
maxEr {IogP(Y,Z,G )} +H(F)= FY e F.
m M-step: Given F(t)

maxEp {logP(Y, Z;0)} = e+,

Note that L(6, F) always a lower bound of ¢(6 | Y) for any F.
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Variational EM algorithm

Reference Daudin et al. (2008).
Assume F(Z) =T[i_; h(Z;; 7i), and Z; ~ M(1,7;) under h.
8 Er(ZimZie) = Er(Zim)ErF(Zj¢) = TimTje.
m Then plug into complete-date log-likelihood (1) and H(F):

L(6,F)= Z ZT,‘m log 7Tm + % Z ZT;,,,TJ-g log £ ( Yij; Yme)

i=1 m i#j md

- zr': > Tim log Tim == L(0, 7).

=1 m

m Variational EM iteratively maximize L(6,7) over 7 (E-step)
and 6 (M-step).
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Variational EM algorithm

E-step:
m Given 0(Y), max, L(O(t),T) subject to Y Tim = 1 for all /.

max L e(t —|‘ Z Aj ( Z'ﬂm)

:>|og7rm |OgT,m—|-ZZTJg|ng it fyr(rfg)_)\,-+1,
J#i L
by taking derivative wrt 7.

m No closed form, 7(t) is given by the fixed point of

7—lmO('f"m HH{ Urymg}jea

JFi =1

subject to ), Tim = 1 for each i. Use this as an iterative
algorithm to obtain 7(t).
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Variational EM algorithm

Some intuition behind the update

T,mocwm)HH{ U’ymz}je.

J#£i 4=1

Consider a Gibbs sampler for [Z | Y] by iteratively sampling from
[Zi | Y,Z j]fori=1,....,n

P(Zim=1|Y,Z_}) x P(Zim =1 | Z_))P(Y | Zim =1, Z_))

=iy HH{ Vit } JZ’

J#i =1

given the current parameter (1),
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Variational EM algorithm

M-step:
m Given 7(), max, L(0,7(9) subject to 3, mm = 1.

n
e 15 0

n 4 im
i=1

(t+1) Zi;éj Ti(r:J)Tj(Kt) Yii

me (t)_(t)
Zi;«éj Tim Tje
n T,-(ntq) approximates P(Z;, = 1| Y, 60("), weight of node i in
cluster m.
(1) (1)

® 7, T, approximates P(Zi; =1,Z;;=1]Y, (1)), weight of
node / in cluster m and j in cluster ¢ (Y}; indicates an edge
between the two clusters).
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Variational EM algorithm

Consistency of variational estimator (Bickel et al. 2013):

m MLE ML = argmax, £(6 | Y).

m Variational estimator YR = argmax, max, L(0, 7).

m Bound max; L(6, ) by two log-likelihood functions:
logP(Y,Z = z;0) < maxL(0,7) < 40]Y), (3)

for any z.

m Asymptotic normality for both estimators as n — oc.
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Variational EM algorithm

Logit transformation of parameters:

Wm = log{mm/mk}, m=1....K—-1,
Vmg:|0g{’ymg/(1—’ymg)}, m,le,...,K.

Theorem 1

Assume the true parameter is 0* = (7*,v*), where v* has no
identical columns. Let A\, = E(degree) = nPyp-(Yj; =1). If
An/ log n — oo, then

V(& — w*) S N(0, 1),
V(D — v*) S N(0, ),
for both VR and éML, where > 1 and %5 are functions of 0*.
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Community detection

Clustering nodes: predict Z.

m Posterior distribution P(Z | Y,#). Celisse et al. (2012)
establish

P(Z=z|Y;0
Zz#z ( Z‘,\ )£>O
P(Z=2z*|Y;0)

i

where z* is the true cluster labels.

m Spectral clustering (von Luxburg 2007) also achieves
vanishing clustering error rate (Rohe et al. 2011):

# of misclustered nodes

— 0, a.s.
n
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Community detection

Spectral clustering of A = (Y}j)nxn (Rohe et al. 2011):

Define normalized graph Laplacian L = D~1/2AD~1/2 where
D = diag(di,...,d,) and d; = Zj Yjj is the degree of node i.
Find X = [X1 | -+ | Xk] € R™K X;'s are the orthogonal

eigenvectors corresponding to the largest K eigenvalues of L
(in absolute value).

Treat each row of X as a data point in R¥, apply k-means to
cluster the n rows into K clusters, Ci, ..., Cx (partition of

{1,...,n}).

Output: 2,-,,, =1ifie Cy.
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Community detection

Why does spectral clustering work?
m Define population version of A: A = (Ajj)nxn,

Aj =E(Yj | Z2) =P(Y; =1]2).

mlet B= (’ymg)KXK and Z = (Zim)nXKv then A= ZBZT.
m Define the graph Laplacian of A similarly:
L =D 12 AD"1/2 where D; = Zj- Ajj.
m Then the eigenvectors of L converge to the eigenvectors of L.

m L has K nonzero eigenvalues, the associated eigenvectors
U= (u,-j) =[Ui|-- ] Uk] € R™K satisfies:

Ui = uj < Zi = Zj,
where u; is the ith row of /.
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Community detection

Example of £ and U:

[,11 [,2]
[1,] 0.8 0.1
[2,1 0.1 o.7
>Z

[,11 [,2]
1

[1,] 0
[2,1] 1 0
[3,1] 0 1
[4,1 0 1
> A

[,11 [,2]1 [,3] [,4]
[1,] 0.8 0.8 0.1 0.1
[2,] 0.8 0.8 0.1 0.1
[3,1] 0.1 0.1 0.7 0.7
[4,]1 0.1 0.1 0.7 0.7
> L

[,11 [,21 [,31 [,4]
[1,] 0.44444444 0.44444444 0.05892557 0.05892557
[2,] 0.44444444 0.44444444 0.05892557 0.05892557
[3,]1 0.05892557 0.05892557 0.43750000 0.43750000
[4,]1 0.05892557 0.05892557 0.43750000 0.43750000
> eigen(L)
$values
[1] 1.0000000 0.7638889 0.0000000 0.0000000

$vectors

[,11 [,2] [,31] [,4]
[1,] -0.5144958 0.4850713 0.0000000 7.071068e-01
[2,] -0.5144958 0.4850713 0.0000000 -7.071068e-01
[3,] -0.4850713 -0.5144958 -0.7071068 -1.665335e-16
[4,] -0.4850713 -0.5144958 ©.7071068 -1.387779%e-16
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Extensions and discussions

m Weighted graphs, e.g., Yjj | Zim =1, Zjy = 1 ~ Poiss(Vme).
m Degree-corrected block model:
Y,'J' | Z,'m = ].7 ij =1~ POiSS(’ymglﬂ,‘Hj),

Kj controls expected degree of node i.
m Accounting for covariates
Nodewise covariates x;, i = 1,...,n:

Z; ~ M(1,7(x;)).
Edgewise covariates x;j;, i # j. Bernoulli model:
logit {P(Yj = 1| Zim =1, Zi¢ = 1)} = x} B+ Yme-
Poisson model:

YilZim=1,Zy=1~ Poiss(exp(x,-JT-ﬁ + Yme))-
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Hereafter, consider simple graphs: unweighted and symmetric.

Recall the definition of a graphon, g : [0,1]? — [0,1]. We define a
random simple graph (Yj) € {0,1}"*" given a graphon g:

Draw U; ~ Unif(0,1) for i=1,...,n.

Draw Yj = Yji ~ Bern(g(U;, U;)) for all i # j.

Zhou, Q Random Graphs PLYKY



SBM as a graphon model:
m Partition (0,1) into K intervals, J,, for m=1,..., K, so that
|[Im| = Tm.
m Let g(u,v) = yme if u € Jyy and v € Jy (block-wise constant).

m Then the graphon is equivalent to the SBM.
Let Z;, = /(U, S Jm) If Zim = 1,Zj[ =1, then

g(Ui, Uj) = vme
Yij ~ Bern(g(U;, U;)) = Bern(vme).
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m Exchangeable graphs: A random graph G is said to be
exchangeable if its distribution is invariant to any relabeling
(or permutation) of its vertex set.

m An equivalent definition is that its adjacency matrix (Yjj)nxn
is a jointly exchangeable random array, i.e.

P(Yj € Ay, Vi j € [n]) = P(Yr(iye() € Aij, Visj € [n])  (4)

for every permutation 7 of {1,...,n} and every collection of

measurable sets {A;j}. We write ( i) = ( +(i)=(j)) When (4)
holds.
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Graphons

Theorem 2 (Aldous-Hoover)

A random array (Xj;), Xjj € Q,i,j € N, is jointly exchangeable if
and only if there is a random function F : [0,1]> — Q such that

(Xi) Z(F(U;, U, Uy)), (5)

where (U;)ien and (Uj)ijen are, respectively, an infinite sequence
and array of i.i.d. Unif[0, 1] independent of F.
A few remarks:

(Xij)ijen is an infinite two-way array, i = 1,2,... and
j=1,2,.... Exchangeability of X is an assumption on the
data source.

A exchangeable graph G on n nodes is regarded as a sample
of finite size from this data source.
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m Apply Theorem 2 to (Yj)nxwy with Q = {0,1}:
F(x,y,u) € {0,1} for all x,y,u € [0,1]. Assume F is
symmetric in (x,y).

m Define a function g : [0, 1] — [0, 1] by g(x, x) = 0 and

g(x,y) =P(F(x,y,U)=1]|F),

where U ~ Unif[0, 1] and is independent of F.
m Then g is a random symmetric function and

d d
(Yy) =(F(Ui, U;, Up)) =(I(U; < g(U;, Up)). - (6)
This is because (Yj;) are independent given (U;) and F and

P(Y;=1|U;, U, F)=g(Ui,U;) (by definition of g)
=P(Uj < g(U;, Uj) | Uj, U, F).
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Graphons

Corollary 1

A random simple graph G with vertex set N is exchangeable if and
only if there is a random function g : [0,1]? — [0, 1] such that its
adjacency matrix

d
(Yy) =(1(U5 < &(U;, Uy))), (7)
where (U;) and (Uj) are i.i.d. Unif[0, 1] and independent of g.

The random function g is called a graphon.
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Every exchangeable random simple graph G on N is represented by
a random graphon g:
Draw g from a distribution v (over functions [0, 1]* — [0, 1]).
Draw U;, i € N independently from Unif|0, 1].
For every pair i < j € N, draw

Yii | g, Ui, U ~ Bern(g(U;, U;)).

Remarks:
The distribution of G is determined by v.
Statistical modeling of exchangeable simple graphs is
parameterized by graphons g.
A review article: Orbanz and Roy (2015).
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