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DAGs and terminology

Terminology for directed acyclic graph (DAG) G = (V, E)
m E={(i,j):i—j} (all edges are directed).
m If i — j, then i is a parent of j and j is a child of /;
pa(j) is the set of parents of j; ch(i) is the set of children of /.

m A path of length n from i to j is a sequence ag = i,...,an =J
of distinct vertices so that (ax_1,ax) € E forall k=1,...,n,
ie.i—ag — - —ap_1—J.

m An n-cycle is a path of length n with the modification that
i =j. A cycle is directed if it contains a directed edge.

m DAG: (i) all edges are directed; (ii) has no directed cycles.
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DAGs and terminology

m If there is a path from i to j, we say i leads to j and write
[ .
The ancestors an(j) = {i : i — j}.
The descendants de(i) = {j : i — j}.
The non-descendants nd(i) = V' \ (de(i) U {i}).

m A topological sort of G over p vertices is an ordering o, i.e., a
permutation of {1,...,p}, such that j € an(/) implies j < i in
o. Due to acyclicity, every DAG has at least one sort.
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DAGs and terminology

Example:

a‘: ©

Zhou, Q

m pa(l) ={2,3,6}, ch(1) = {4,5}.

m Path: 2—+6—-1—4,3—1—5.
2—6— 1+ 3is not a path.

m an(4)={2,6,3,1}
de(6)= {1,4,5}, nd(6)= {2,3}.

m topological sorts: (2,6,3,1,4,5),
(3,2,6,1,5,4), etc.
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m A chain of length n from j to j is a sequence ag = i,...,an = J
of distinct vertices so that ax_1; — ax or ax — ax_1 for all
k=1,....,n Example: i <—a; > ap — -+ — ap_1 < J.

m d-separation: A chain 7 from a to b is said to be blocked by
S C V, if the chain contains a vertex « such that either (1) or
(2) holds:

v € S and the arrows of m do not meet at v (i = v — j or
i<~ —j). (v is a non-collider.)

~vUde() not in S and arrows of ™ meet at v (i — 7 < j).
(v is a collider.)

m Two subsets A and B are d-separated by S is all chains from
A to B are blocked by S.
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Example:

m chain 2 —+ 6 — 1 — 4 has no collider
and is blocked by {1}, {6}, or {1,6}.

e m chain 2 =+ 6 — 1 < 3 has a collider
(node 1), and thus is blocked by @.
G‘ e But this chain is not blocked by {1} or
e any node in de(1)= {4,5}, i.e. the chain
is d-connected given {1}, {4} or {5}.
m Find S to d-separate 2 and 4: S = {1},

5 @& s={Le}

m Find S to d-separate 3 and 6: S = &,
S = {2}, S # any subset of {1,4,5}.
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Example (flip the edge between 1 and 6)

Find S to d-separate 3 and 6:
To block 3 — 1 — 6, must include

e l1eS.
G‘ e But 1 is a collider in
(1)

3— 1+ 2— 6, given node 1 this
chain is d-connected.

Thus, to block 3 -1+ 2 — 6,
a e must include 2 € S.

S ={1,2} d-separates 3 and 6.
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Markov properties

Markov properties on DAGs: We say a joint distribution P

m (DF) admits a recursive factorization according to G if P has a
density f such that

f(x) =] fix | pai)). (1)

Jjev
where f; is the density for [j | pa(j)].

m (DG) satisfies the directed global Markov property if for any
disjoint (A, B, S),

S d-separates Aand B= A1 B | S.
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Markov properties

m (DL) satisfies the directed local Markov property if
i L nd(i) | pa(i) for all i € V.
m (DP) satisfies the directed pairwise Markov property if for any
(i,j) ¢ E with j € nd(i), i Lj|nd(i)\ {j}
Relations: (DF) = (DG) = (DL) = (DP).

Theorem 1

If P has a density f with respect to a product measure, then (DF),
(DG), and (DL) are equivalent.
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Markov properties

Example: Markov chain

O-O-@ O

pa(i)=i—1,i=2,...,n.
(DF) holds:

P(X1,.... Xn) = P(X))P(Xo | X1) -+ P(Xn | Xoo1)-

Thus, (DG) holds: For any i < j < k, j d-separates i and k and
therefore,

Xi L X | X;.
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Markov properties

Example: Suppose f(xi,...,Xp) factorizes according to G.

(DG): {1,2} d-separates 3 and 6
= X3 1L Xp ‘ {Xl,XQ}.
e (DL): pa(6)= {1,2} and 3 € nd(6)
= X3 1L Xp ‘ {Xl,Xg}.
G‘ e (DG): 2 and 3 are d-separated by &,
0 thus X5 1L Xjs.
Xy L X3 | X5? False, because 5 is a
descendant of a collider 1.
Q e (DL): pa(4)= {1} and node 4 has
no descendant. Thus
Xy L {Xo, X3, X6, X5} | X1.
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Markov properties

Connections to Markov properties on undirected graphs:

m Moral graph G™: add edges between all parents of a node in a
DAG G and then ignoring edge orientations. The resulting
undirected graph is the moral graph of G.

m If P admits a recursive factorization according to G, then it
factorizes according to G™.

That is, (DF) wrt G = (F) wrt g™ = (G), (L), (P) wrt G™.

m S d-separates A and B in G < S separates A and B in
(Gan(auBus))™-

If pa(i) C Aforall i € A, then the subset A is an ancestral set.
For a subset A of nodes, An(A) is the smallest ancestral set

containing A.
For a DAG, An(A) is A and the ancestors of A.
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Markov properties

DAG and its moral graph:

DAG ¢ Moral graph G™

©) (2)
(6) (3) @“Q
o T

5—® 6‘0

In the moral graph G™, red edges added between all parents of
node 1.
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Markov properties

d-separation from moral graphs:

DAG G m 2 and 3 are d-separated by &.
An({2,3}) = {2,3}

©)
(6) (3) (Gra3)" HORNE)

0 m 2 and 3 are not d-separated by 5.
An({27 3, 5}) = {17 2,3,4,5, 6}

a e In G, 2 and 3 are not separated by
5.
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Markov properties

Markov equivalence:

Definition 1 (Markov equivalence)

Two DAGs are called Markov equivalent if they imply the same set
of d-separations.

A v-structure is a triplet {/,j, k} C V of the form i — k < j: i
and j are nonadjacent; k is called an uncovered collider.

Theorem 2 (Verma and Pearl (1990))

Two DAGs are Markov equivalent if and only if they have the same
skeleton and the same v-structures.
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Markov properties

Markov equivalence, examples: G1, G2, G3 are equivalent DAGs.

Red: compelled edges, same orientation in all equivalent DAGs.
Black: reversible edges, either direction occurs in at least one
equivalent DAG.
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Markov properties

m Definition of Bayesian networks: Given [P with density f and
an ordering (c(1),...,0(p)), we factorize f

p

F(x) =TT ot | %) -2 Xo(=1))
j=1

P

=11 060) | xa), (2)
j=1

where A; C {0(1),...,0(j — 1)} is the minimum subset such

that (2) holds. Then the DAG G with pa(c(j)) = A; for all

Jj € V is a Bayesian network of P.

m Cl: If G is a BN of P, then (DF) holds, so (DG), (DL), (DP)
also hold.
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Parameterizations

Parameterization: Given G, to parameterize [X; | pa(j)] as in (1).

(1) Gaussian BNs

m Structural equations:

%= 3 GXtg  i=l..p
iepa(j)
Assume ¢; ~ N(0,w?) and ¢; L pa()).
m Put B = () and Q = diag(w3, ...,w3). Then
X=B"X+e,  e~Ny0,9).

= X ~ N,(0,071), where © = (I, — B)Q (I, — B)T
(Cholesky decomposition of ©); see van de Geer and
Biihlmann (2013); Aragam and Zhou (2015).
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Parameterizations

=1[4,1,3,2
g @ X, Xo Xy Xy m=041372
X, ,0 0 0 0
By = Xy gl 0 #333 0
X0 0 0 % p_
0 0 0 0 T

X, Xi X3 X,

Xs/0 0 0 0
B.—pPBpP = X1|0 0 0 0
oo g, 0 0 0

0 8% % 0

Ye et al. (2021)
m An example DAG G and its coefficient matrix By = (58-)4X4.
m 7 is a reversed topological sort: (2,3,1,4) is a sort.

m B, permutes columns and rows of By according to 7, and is
strictly lower triangular. Similarly define ©, and €.

m O, = (I — B;)Q;1(/ — B;)": Cholesky decomposition.
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Parameterizations

(2) Discrete BNs

= Multinomial distribution: 6Y) = P(X; = m | pa(j) = k).
Parameter for [X; | pa(j)] is a K x M table:

{ 290)_1 k=1,. szl,...,M}.

K: number of all possible combinations of pa(j). (Too many
parameters if a node has many parents.)

m Multi-logit regression model (Gu et al. 2019): Use generalized
linear model for [X; | pa(j)].
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Parameterizations

Faithfulness:

Given a DAG model (G, P) where P satisfies, say (DG).

Then graph separation = condition independence, but not <. If P
is faithful to G then <= holds as well. In this case, we have <.

Definition 2

For a DAG model (G, P), we say the distribution P is faithful to the
DAG g if for every triple of disjoint sets A, B,S C V,

Al B|S < S d-separates A and B.
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Parameterizations

How likely is P faithful?
Gaussian DAGs.

m Given a DAG G, consider all B = (3jj) such that
Bij # 0 < i — j. Almost all such B and 2 will define a joint
distribution P that is faithful to G.

m Counterexamples: The parameters () satisfy additional
equality constraints that define Cl in P not implied by any
d-separation in G.

m For example, path coefficients cancel from i to j. Then
Xi L X; but the nodes i and j are not d-separated by @.
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Overview of topics

Causal inference

m Model causal relations among nodes: If i — j, then j is a
causal parent of ;.

m Causal relation defined by experimental intervention (Pearl
2000).

m If pa(i) is fixed by intervention, then i will not be affected by
interventions on V \ {pa(i) U {i}}.

m If j € M are under intervention, then modify factorization

= [T 664 1p20)) ] &%) (3)

Jj¢M JEM

where gj(e) is the density of X; under intervention.
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Overview of topics

Structure learning

Given x; ~jiq P defined by a DAG G, estimate the DAG 3
The sparser the G, the more Cl relations learned from data.
m Score-based methods: Minimize a scoring function over DAGs;
regularization to obtain sparse solutions.
m Constraint-based methods: Condition independence tests
against X; L Xj | Xs forall i,/,S.
m Hybrid methods: First use constraint-based method to prune
the search space, and then apply a score-based method to
search for the optimal DAG.

See, e.g. Aragam and Zhou (2015) Section 1.2.
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Chain graphs

Reference: Lauritzen (1996) §3.2.3
A chain graph on V may contain two types of edges, undirected
(i —j) and directed i — j.
m Partition V=ViU---U V7.
m All edges between vertices in the same V; are undirected.
m All edges between two different subsets Vs, V; (s < t) are
directed and pointing from V; to V.

Special cases: undirected graphs (T = 1) and DAGs (| V| =1 for
all t).

Applications:
m Represent a larger class of distributions.

m Represent Markov equivalence class of a DAG.
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Chain graphs

Connectivity components:

Zhou, Q

m A path from j to j is a sequence ag = /,...,a, = j of distinct
vertices so that (ax_1,ax) € E forall k=1,...,n.

m If there is a path from / to j, we say i leads to j and write
i—J.

m If i— jand j +— i, then we say i and j connect, write i/ <> J.

m The equivalence class [i]:={j € V : i <> j} defined by
connectivity is a connectivity component of G.

m Examples:

If i—j— k, then i < k and i,j, k € [i].

For a DAG, every connectivity component consists of a single
node.
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Chain graphs

Characterizations of a chain graph:
m Have no directed cycles.

m Its connectivity components (called chain components) induce
undirected subgraphs.

To find chain components:
Remove all directed edges;
Take connectivity components.
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Chain graphs

Markov properties on chain graphs:

Zhou, Q

Boundary bd(i) = pa(i) U ne(i).

Ancestors an(j) = {i : i+ j,j /% i}.

Descendants de(i) = {j : i — j,j v~ i}.
Non-descendants nd(i) = V' \ (de(i) U {i}).

If bd(i) C A for all i € A, then A is an ancestral set.

Moral graph:

(1) For each chain component C, add undirected edges
between pa(C) = Ujecpa(i);

(2) ignore all edge directions.
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Chain graphs

Markov properties on a chain graph G: A joint distribution P

m satisfies the local chain Markov property if i L nd(/) | bd(/)
forall i e V.

m satisfies the global chain Markov property if for any disjoint
(A, B,S),

S separates A and B in (Ganausus))” = AL B|S.

Unify Markov properties for undirected graphs and DAGs.
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Chain graphs

Zhou, Q

Example chain graph:

Vi = {1,2,3}, Vb = {4}, Vs = {5,6).

m Chain components: Vi, V,, V3.

m Paths: 2—3,3—2,1—5, 54 1.

m bd(1) = {2,3}, bd(4) = {1,2},
bd(5) = {4,6}

m de(3) = {4,5,6}, de(5) = @.

m Local Markov property:
51{1,2,3} | {4,6}.

m Global Markov property:
213 | 1, from (9{17273})’" =2-1-3
2 £ 3|{1,6}, from g™
116]|{3,4}, from g™
G™M: add 3 — 4.
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Chain graphs

Example application: Factor analysis.

mV=LUX =
L=(Ly,...,Ly) (latent factors) QQ Q

X = (X1,...,Xp) (observed variables)
m L~ N(0,®) (oblique factor analysis)
] Xj:ﬁj-rL—kej,j: 1,...,p.

Other applications, see Lauritzen and Richardson (2002).
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