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Graphoid

Graphoid axioms (Pearl (1988), §3.1.2.)

CI statement defines a ternary relation: ⟨X ,Y | Z ⟩ for X ⊥ Y | Z .
Suppose X ,Y ,Z ,W are disjoint subsets of random variables from
a joint distribution P. Then the CI relation satisfies

(C1) symmetry: ⟨X ,Y | Z ⟩ ⇒ ⟨Y ,X | Z ⟩;
(C2) decomposition: ⟨X ,YW | Z ⟩ ⇒ ⟨X ,Y | Z ⟩;
(C3) weak union: ⟨X ,YW | Z ⟩ ⇒ ⟨X ,Y | ZW ⟩;
(C4) contraction: ⟨X ,Y | Z ⟩&⟨X ,W | ZY ⟩ ⇒ ⟨X ,YW | Z ⟩.
If the joint density of P wrt a product measure is positive and
continuous, then

(C5) intersection: ⟨X ,Y | ZW ⟩&⟨X ,W | ZY ⟩ ⇒ ⟨X ,YW | Z ⟩.
In the above, YW :=Y ∪W .
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Graphoid

Any ternary relation ⟨A,B | C ⟩ that satisfies (C1) to (C4) is called
a semi-graphoid. If (C5) also holds, then it is called a graphoid.

Examples of graphoid:

1 Conditional independence of P (positive and continous).

2 Graph separation in undirected graph: ⟨X ,Y | Z ⟩ means
nodes Z separate X and Y , i.e. X − Z − Y .

Graph separation provides an intuitive graphical interpretation for
the CI axioms.
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Undirected graphs

Definition: A graph G = (V ,E ), V = {1, . . . , p} is a set of vertices
(or nodes) and E ⊂ V × V is a set of edges.

Undirected edge i − j : (i , j) ∈ E ⇔ (j , i) ∈ E .

Associate V to random variables Xi (i = 1, . . . , p) with joint
distribution P. Then (G,P) is called a graphical model. Often
use node i and Xi interchangeably.

Use graph separation to represent conditional independence
among X1, . . . ,Xp.
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Undirected graphs

Reference: Lauritzen (1996), chapters 2 and 3.

Terminology for undirected graph G = (V ,E )

i and j are neighbors if (i , j) ∈ E ; ne(i) denotes the set of
neighbors of i .

A path of length n from i to j is a sequence a0 = i , . . . , an = j
of distinct vertices so that (ak−1, ak) ∈ E for all k = 1, . . . , n.

A subset C ⊂ V separates a and b if all paths from a to b
intersect C .

C separates A and B if C separates a and b for every a ∈ A
and b ∈ B. Write A− C − B.
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Markov properties

Markov properties on undirected graphs

Consider undirected graphical model (G,P). We say P satisfies

(P) the pairwise Markov property wrt G if

(i , j) /∈ E ⇒ i ⊥ j | V \ {i , j} :=[V ]ij ;

(L) the local Markov property wrt G if

(i , j) /∈ E ⇒ i ⊥ j | ne(i);

(G) the global Markov property wrt G if for any disjoint
(A,B,C ),

A− C − B ⇒ A ⊥ B | C .

Zhou, Q Graphical Models 6/30



Markov properties

Factorization via cliques

Complete subset and clique: A subset of C ⊂ V is complete if
the subgraph on C is complete. A complete subset that is
maximal (wrt ⊂) is called a clique.

(F) Factorization: P factorizes according to G if for every
clique A, there exists ψA(xA) ≥ 0, such that the joint density
of P has the form

f (x) =
∏
A∈C

ψA(xA),

where C is the set of cliques of G.
Relations: (F) ⇒ (G) ⇒ (L) ⇒ (P).
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Markov properties

Examples.

Markov chain

X1 X2 X3 · · · Xn−1 Xn

Cliques: {i , i + 1}, i = 1, . . . , n − 1.
(F) holds:

P(X1, . . . ,Xn) = P(X1)P(X2 | X1) · · ·P(Xn | Xn−1)

= ψ1(X1,X2) · · ·ψn−1(Xn−1,Xn).

Thus, (G) holds: For any i < j < k ,

i − j − k ⇒ Xi ⊥ Xk | Xj .
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Markov properties

Hidden Markov model {(Zt ,Yt) : t = 1, . . . , n}.

Y1

Z1 · · ·

Yt−1

Zt−1

Yt

Zt

Yt+1

Zt+1 · · ·

Yn

Zn

Cliques: {Zt ,Zt+1}, t = 1, . . . , n − 1, {Zt ,Yt}, t = 1, . . . , n.

(F) holds: P(Y ,Z ) = P(Z1)P(Y1 | Z1)P(Z2 | Z1)P(Y2 | Z2)

· · ·P(Zn | Zn−1)P(Yn | Zn)

=
n−1∏
t=1

ft(Zt ,Zt+1)
n∏

t=1

gt(Zt ,Yt)

Thus, (G) holds: Vt−i , Yt and Vt+j are mutually independent
conditional on Zt for i , j ≥ 1, where Vk = {Yk ,Zk}.
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Markov properties

When does (F) ⇔ (G) ⇔ (L) ⇔ (P)?

Theorem 1

If P has a positive and continuous density f with respect to a
product measure, then (F) ⇔ (P).

Product measure: (1) Xj ∈ R, use Lebesgue measure; (2) Xj

finite discrete, use counting measure.

Conclusion implies (F) ⇔ (G) ⇔ (L) ⇔ (P).

Counter example. Let p = 5, X1,X5 ∼iid Bern(0.5), X2 = X1,
X4 = X5, and X3 = X2X4. This defines P. Let G be a chain
E = {(i , i + 1) : i = 1, . . . , 4}.
Then (L) holds but not (G). Because density (probability mass
function) is not positive on all possible values of Xi ’s.
(L): X2 ⊥ X4 | (X1,X3) true; (G): X2 ⊥ X4 | X3 false!
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Markov properties

Conditional independence graph (CIG):

Definition: A CIG is a graphical model (G,P) such that (P)
holds. That is,

(i , j) /∈ E ⇒ i ⊥ j | V \ {i , j} :=[V ]ij .

Sparser graph G implies more conditional independence (CI)
relations.

One can always choose the minimal G such that (P) holds to
be the CIG, i.e., replace ⇒ by ⇔.

Estimate the structure of G to detect CI relations, assuming
we have observed iid data from P.

Zhou, Q Graphical Models 11/30



Gaussian graphical models

A CIG with P = Np(0,Σ), Σ > 0 (positive definite).

Lemma 1

Suppose (X1, . . . ,Xp) ∼ Np(0,Σ) with Σ > 0 and let
Θ = (θjk)p×p = Σ−1. Then

θjk = 0⇔ Xj ⊥ Xk | X−{j ,k}. (1)

Θ is called the precision matrix.

According to (1), construct a graph G as

θjk ̸= 0⇔ (j , k) ∈ E , (2)

i.e. (P) holds. Since P has a continuous and positive density,
(L), (G) and (F) hold.

One can verify (F) directly as well.
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Gaussian graphical models

Example: Given the following Θ, construct G by (2).

Θ =


∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗

 4

1

3

5

2

Find all S such that X1 ⊥ X5 | S .
By (G), find all S that separates nodes 1 and 5:
S = {2, 3}, {4}, {2, 4}, {3, 4}, {2, 3, 4}.
Cliques: {1, 2, 3}, {2, 3, 4}, {4, 5}; directly verify (F).

Zhou, Q Graphical Models 13/30



Gaussian graphical models

Partial correlation and neighborhood regression

Partial correlation between j and k given [V ]jk :
ρjk = −θjk/

√
θjjθkk .

Correlation calculated from Σ(j ,k)|[V ]jk = Var(j , k | [V ]jk).

Neighborhood regression, regress Xj on X−j :

Xj =
∑
i ̸=j

βijXi + εj . (3)

Then βkj = −θjk/θjj . (By symmetry βjk = −θkj/θkk .)
Thus, we have

(j , k) /∈ E ⇔ θjk = 0⇔ ρjk = 0⇔ βkj = βjk = 0. (4)
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Gaussian graphical models

Learning GGMs: Given xi ∼iid Np(0,Σ), i = 1, . . . , n, estimate

the structure of G ⇔ supp(Θ) = {(j , k) : θjk ̸= 0}.

Also called covariance selection (Dempster 1972).

Log-likelihood

ℓ(Σ) = −n

2
log det(Σ)− 1

2
tr(SΣ−1),

where S =
∑

i xix
T
i is a p × p matrix (sufficient statistic).

Σ̂MLE = S/n (always exists).

If n > p, inverte Σ̂MLE ⇒ Θ̂MLE = (Σ̂MLE)−1.
Then obtain Ĝ by thresholding: Ê = {(j , k) : |θ̂MLE

jk | > τ}.
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Gaussian graphical models

Regularized estimation under ℓ1 penalty (Yuan and Lin 2007;
Friedman et al. 2008; Banerjee et al. 2008)

Element-wise ℓ1 norm ∥Θ∥1 :=
∑

j<k |θjk |.

ℓ1 regularized estimate Θ̂ = argminΘ>0 f (Θ),

f (Θ) = −2

n
ℓ(Θ−1) + λ∥Θ∥1

= − log det(Θ) + tr(Σ̂MLEΘ) + λ∥Θ∥1.

f is convex, efficient algorithm.

Well-defined for p > n.

Sparse solution, θ̂jk = 0 for some (j , k).
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Gaussian graphical models

Estimate G from Θ̂

Ê = {(j , k) : θ̂jk ̸= 0}, but needs very strong assumptions

(irrepresentability) for P(Ê = E0)→ 1.

Operator norm error:

∥Θ̂−Θ0∥2 ≲
√

d2 log p/n. (5)

d : Maximum degree of G .

Thresholding Θ̂: Ê = {(j , k) : |θ̂jk | > τ}. Weaker assumptions

(RE, beta-min) for P(Ê = E0)→ 1.

Choosing λ by cross-validation, λ∗CV , then P(Ê (λ∗CV ) ⊃ E0)→ 1
under certain conditions (RE, beta-min).
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Gaussian graphical models

Estimate G by neighborhood regression (Meinshausen and
Bühlmann 2006)

Apply model selection (e.g. lasso) for each neighborhood
regression (3) ⇒ β̂jk (j , k = 1, . . . , p).

Combine results to define Ĝ, e.g.,

Ê = {(j , k) : β̂jk ̸= 0, β̂kj ̸= 0}.

Approximate Θ̂ if lasso is used in neighborhood regression.
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Discrete graphical models

Reference: Hastie et al. (2015), Ch 9.
Ising model:

Xi ∈ {−1,+1}, i ∈ V = [p].

Given an undirected graph G = (V ,E ), define a joint
distribution

P(x1, . . . , xp; θ) =
1

Z (θ)
exp

∑
i∈V

θixi +
∑

(j ,k)∈E

θjkxjxk

 .

(6)

Easy to verify (F) holds ⇒ (G), (L), (P).

Example application: model social networks.
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Discrete graphical models

Example: Given the following G, define P(x1, . . . , x6) as in (6).

1

2

3

45

6

Cliques:
{1, 2, 3}, {1, 2, 6}, {1, 4}, {1, 5}.
Verify (F) ⇒ (G), (L), (P).

Example CI statements by (G):
X4 ⊥ X5 | X1

X3 ⊥ X6 | {X1,X2}
{X2,X3,X6} ⊥ {X4,X5} | X1
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Discrete graphical models

Generalization:

Xi ∈ {1, . . . ,m}, i ∈ V = [p].

Given an undirected graph G = (V ,E ), define a joint
distribution

P(x1, . . . , xp; θ) =

1

Z (γ, θ)
exp

∑
i∈V

m∑
z=1

γiz I (xi = z) +
∑

(j ,k)∈E

θjk I (xj = xk)

 .
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Discrete graphical models

Learning graphs from data:

Full likelihood-based learning is difficult: Z (θ) no closed-form.

More practical to do neighborhood regression. From (6), get
[Xi | X−i ] which leads to a logistic regression model:

log

[
P(Xi = 1 | X−i )

P(Xi = −1 | X−i )

]
= 2θi +

∑
j∈ne(i)

2θijXj ,

where ne(i) = {j ∈ V : (i , j) ∈ E} is the set of neighbors of
node i in G .
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Discrete graphical models

Learning graphs from data:

For each i ∈ [p], apply logistic regression Xi on X−i with
variable selection to estimate N̂(i) (estimated neighbor set).

For example, ℓ1-regularized logistic regression or BIC stepwise
selection.

Combine {N̂(i) : i ∈ V } to construct Ĝ.
Sample size n = Ω(d2 log p) sufficient for Ĝ = G with high
probability.
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Faithfulness

Given a graphical model (G,P) where P satisfies, say (G).
Then graph separation ⇒ condition independence, but not ⇐.
If P is faithful to G then ⇐ holds as well. In this case, we have ⇔
(perfectness).

Definition 1

For a graphical model (G,P), we say the distribution P is faithful
to the graph G if for every triple of disjoint sets A,B,S ⊂ V ,

A ⊥ B | S ⇔ S separates A and B.
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Faithfulness

How likely is P faithful?
Gaussian graphical models, P is Gaussian N (0,Σ) = N (0,Θ−1).

Given G, consider all positive-definite Θ such that
supp(Θ) = E ∪ {(i , i) : i ∈ [p]}. Then for almost all such Θ,
the distribution N (0,Θ−1) is faithful to G.
Counterexamples: The parameters in Θ satisfy additional
equality constraints that define CI in P not implied by any
separation in G.

Zhou, Q Graphical Models 25/30



Markov blanket

Definition 2 (Markov blanket)

A Markov blanket of i ∈ V is any subset S ⊂ V−i such that

Xi ⊥ V−i \ S | S . (7)

A Markov boundary is a minimal Markov blanket, i.e., none of its
proper subset satisfies (7).

For an undirected graph model (G,P), ne(i) is a Markov
blanket of i (by local Markov property) and it is a Markov
boundary if P is faithful.

Neighborhood regression: find Markov boundary (MB) of i .
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Markov blanket

The grow-shrink algorithm (Margaritis and Thrun 1999)

Find MB of i ∈ V :

1: S ← ∅.
2: while there is j ∈ V−i such that j ̸⊥ i | S do
3: S ← S ∪ {j}. ▷ Growing phase
4: end while
5: while there is j ∈ S such that j ⊥ i | S \ {j} do
6: S ← S \ {j}. ▷ Shrinking phase
7: end while
8: MB(i)← S .
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Markov blanket

Notes:

1 After growing phase, S is a Markov blanket.

2 Line 6:
Suppose j has been removed from S . Consider k /∈ S ∪ {j}.
By (C4) contraction of CI axioms,

i ⊥ k | {S , j} & i ⊥ j | S ⇒ i ⊥ {k, j} | S .

This means that S is still a Markov blanket of i .

3 Growing phase can be replaced by lasso or ℓ1-regularized
logistic regression.
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