Undirected Graphical Models

Qing Zhou

UCLA Department of Statistics

Stats 212 Graphical Models
Lecture Notes

Outline

1 Review of graphoid
2 Undirected graphs
3 Markov properties
4 Gaussian graphical models
5 Discrete graphical models
6 Faithfulness
7 Markov blanket

Graphoid

Graphoid axioms (Pearl (1988), §3.1.2.)
Cl statement defines a ternary relation: $\langle X, Y \mid Z\rangle$ for $X \perp Y \mid Z$. Suppose X, Y, Z, W are disjoint subsets of random variables from a joint distribution \mathbb{P}. Then the Cl relation satisfies
(C1) symmetry: $\langle X, Y \mid Z\rangle \Rightarrow\langle Y, X \mid Z\rangle$;
(C2) decomposition: $\langle X, Y W \mid Z\rangle \Rightarrow\langle X, Y \mid Z\rangle$;
(C3) weak union: $\langle X, Y W \mid Z\rangle \Rightarrow\langle X, Y \mid Z W\rangle$;
(C4) contraction: $\langle X, Y \mid Z\rangle \&\langle X, W \mid Z Y\rangle \Rightarrow\langle X, Y W \mid Z\rangle$.
If the joint density of \mathbb{P} wrt a product measure is positive and continuous, then
(C5) intersection: $\langle X, Y \mid Z W\rangle \&\langle X, W \mid Z Y\rangle \Rightarrow\langle X, Y W \mid Z\rangle$. In the above, $Y W:=Y \cup W$.

Graphoid

Any ternary relation $\langle A, B \mid C\rangle$ that satisfies (C1) to (C4) is called a semi-graphoid. If (C5) also holds, then it is called a graphoid.

Examples of graphoid:
1 Conditional independence of \mathbb{P} (positive and continous).
2 Graph separation in undirected graph: $\langle X, Y \mid Z\rangle$ means nodes Z separate X and Y, i.e. $X-Z-Y$.
Graph separation provides an intuitive graphical interpretation for the Cl axioms.

Undirected graphs

Definition: A graph $\mathcal{G}=(V, E), V=\{1, \ldots, p\}$ is a set of vertices (or nodes) and $E \subset V \times V$ is a set of edges.

■ Undirected edge $i-j:(i, j) \in E \Leftrightarrow(j, i) \in E$.

- Associate V to random variables $X_{i}(i=1, \ldots, p)$ with joint distribution \mathbb{P}. Then $(\mathcal{G}, \mathbb{P})$ is called a graphical model. Often use node i and X_{i} interchangeably.
- Use graph separation to represent conditional independence among X_{1}, \ldots, X_{p}.

Undirected graphs

Reference: Lauritzen (1996), chapters 2 and 3.
Terminology for undirected graph $\mathcal{G}=(V, E)$

- i and j are neighbors if $(i, j) \in E$; ne (i) denotes the set of neighbors of i.
- A path of length n from i to j is a sequence $a_{0}=i, \ldots, a_{n}=j$ of distinct vertices so that $\left(a_{k-1}, a_{k}\right) \in E$ for all $k=1, \ldots, n$.
■ A subset $C \subset V$ separates a and b if all paths from a to b intersect C.
- C separates A and B if C separates a and b for every $a \in A$ and $b \in B$. Write $A-C-B$.

Markov properties

Markov properties on undirected graphs
Consider undirected graphical model $(\mathcal{G}, \mathbb{P})$. We say \mathbb{P} satisfies

- (P) the pairwise Markov property wrt \mathcal{G} if

$$
(i, j) \notin E \Rightarrow i \perp j \mid V \backslash\{i, j\}:=[V]_{i j} ;
$$

- (L) the local Markov property wrt \mathcal{G} if

$$
(i, j) \notin E \Rightarrow i \perp j \mid \mathrm{ne}(i)
$$

- (G) the global Markov property wrt \mathcal{G} if for any disjoint (A, B, C),

$$
A-C-B \Rightarrow A \perp B \mid C
$$

Markov properties

Factorization via cliques
■ Complete subset and clique: A subset of $C \subset V$ is complete if the subgraph on C is complete. A complete subset that is maximal (wrt \subset) is called a clique.

- (F) Factorization: \mathbb{P} factorizes according to \mathcal{G} if for every clique A, there exists $\psi_{A}\left(x_{A}\right) \geq 0$, such that the joint density of \mathbb{P} has the form

$$
f(x)=\prod_{A \in \mathcal{C}} \psi_{A}\left(x_{A}\right)
$$

where \mathcal{C} is the set of cliques of \mathcal{G}.

- Relations: $(F) \Rightarrow(G) \Rightarrow(L) \Rightarrow(P)$.

Markov properties

Examples.

- Markov chain

Cliques: $\{i, i+1\}, i=1, \ldots, n-1$.
(F) holds:

$$
\begin{aligned}
\mathbb{P}\left(X_{1}, \ldots, X_{n}\right) & =\mathbb{P}\left(X_{1}\right) \mathbb{P}\left(X_{2} \mid X_{1}\right) \cdots \mathbb{P}\left(X_{n} \mid X_{n-1}\right) \\
& =\psi_{1}\left(X_{1}, X_{2}\right) \cdots \psi_{n-1}\left(X_{n-1}, X_{n}\right)
\end{aligned}
$$

Thus, (G) holds: For any $i<j<k$,

$$
i-j-k \Rightarrow X_{i} \perp X_{k} \mid X_{j} .
$$

Markov properties

$■$ Hidden Markov model $\left\{\left(Z_{t}, Y_{t}\right): t=1, \ldots, n\right\}$.

Cliques: $\left\{Z_{t}, Z_{t+1}\right\}, t=1, \ldots, n-1,\left\{Z_{t}, Y_{t}\right\}, t=1, \ldots, n$.
(F) holds: $\mathbb{P}(Y, Z)=\mathbb{P}\left(Z_{1}\right) \mathbb{P}\left(Y_{1} \mid Z_{1}\right) \mathbb{P}\left(Z_{2} \mid Z_{1}\right) \mathbb{P}\left(Y_{2} \mid Z_{2}\right)$ $\cdots \mathbb{P}\left(Z_{n} \mid Z_{n-1}\right) \mathbb{P}\left(Y_{n} \mid Z_{n}\right)$

$$
=\prod_{t=1}^{n-1} f_{t}\left(Z_{t}, Z_{t+1}\right) \prod_{t=1}^{n} g_{t}\left(Z_{t}, Y_{t}\right)
$$

Thus, (G) holds: V_{t-i}, Y_{t} and V_{t+j} are mutually independent conditional on Z_{t} for $i, j \geq 1$, where $V_{k}=\left\{Y_{k}, Z_{k}\right\}$.

Markov properties

$$
\text { When does }(F) \Leftrightarrow(G) \Leftrightarrow(L) \Leftrightarrow(P) \text { ? }
$$

Theorem 1

If \mathbb{P} has a positive and continuous density f with respect to a product measure, then $(F) \Leftrightarrow(P)$.

■ Product measure: (1) $X_{j} \in \mathbb{R}$, use Lebesgue measure; (2) X_{j} finite discrete, use counting measure.
■ Conclusion implies (F) $\Leftrightarrow(\mathrm{G}) \Leftrightarrow(\mathrm{L}) \Leftrightarrow(\mathrm{P})$.

- Counter example. Let $p=5, X_{1}, X_{5} \sim_{i i d} \operatorname{Bern}(0.5), X_{2}=X_{1}$, $X_{4}=X_{5}$, and $X_{3}=X_{2} X_{4}$. This defines \mathbb{P}. Let \mathcal{G} be a chain $E=\{(i, i+1): i=1, \ldots, 4\}$.
Then (L) holds but not (G). Because density (probability mass function) is not positive on all possible values of X_{i} 's.
(L): $X_{2} \perp X_{4} \mid\left(X_{1}, X_{3}\right)$ true; (G): $X_{2} \perp X_{4} \mid X_{3}$ false!

Markov properties

Conditional independence graph (CIG):

- Definition: A CIG is a graphical model $(\mathcal{G}, \mathbb{P})$ such that (P) holds. That is,

$$
(i, j) \notin E \Rightarrow i \perp j \mid V \backslash\{i, j\}:=[V]_{i j} .
$$

■ Sparser graph \mathcal{G} implies more conditional independence (CI) relations.

- One can always choose the minimal \mathcal{G} such that (P) holds to be the CIG, i.e., replace \Rightarrow by \Leftrightarrow.
■ Estimate the structure of \mathcal{G} to detect Cl relations, assuming we have observed iid data from \mathbb{P}.

Gaussian graphical models

A CIG with $\mathbb{P}=\mathcal{N}_{p}(0, \Sigma), \Sigma>0$ (positive definite).

Lemma 1

Suppose $\left(X_{1}, \ldots, X_{p}\right) \sim \mathcal{N}_{p}(0, \Sigma)$ with $\Sigma>0$ and let $\Theta=\left(\theta_{j k}\right)_{p \times p}=\Sigma^{-1}$. Then

$$
\begin{equation*}
\theta_{j k}=0 \Leftrightarrow X_{j} \perp X_{k} \mid X_{-\{j, k\}} \tag{1}
\end{equation*}
$$

- Θ is called the precision matrix.
- According to (1), construct a graph \mathcal{G} as

$$
\begin{equation*}
\theta_{j k} \neq 0 \Leftrightarrow(j, k) \in E \tag{2}
\end{equation*}
$$

i.e. (P) holds. Since \mathbb{P} has a continuous and positive density,
$(\mathrm{L}),(\mathrm{G})$ and (F) hold.

- One can verify (F) directly as well.

Gaussian graphical models

Example: Given the following Θ, construct \mathcal{G} by (2).

$$
\Theta=\left[\begin{array}{lllll}
* & * & * & 0 & 0 \\
* & * & * & * & 0 \\
* & * & * & * & 0 \\
0 & * & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right]
$$

- Find all S such that $X_{1} \perp X_{5} \mid S$.

By (G), find all S that separates nodes 1 and 5:
$S=\{2,3\},\{4\},\{2,4\},\{3,4\},\{2,3,4\}$.
■ Cliques: $\{1,2,3\},\{2,3,4\},\{4,5\}$; directly verify (F).

Gaussian graphical models

Partial correlation and neighborhood regression
■ Partial correlation between j and k given $[V]_{j k}$:
$\rho_{j k}=-\theta_{j k} / \sqrt{\theta_{j j} \theta_{k k}}$.
Correlation calculated from $\Sigma_{(j, k)\left[[V]_{j k}\right.}=\operatorname{Var}\left(j, k \mid[V]_{j k}\right)$.

- Neighborhood regression, regress X_{j} on X_{-j} :

$$
\begin{equation*}
X_{j}=\sum_{i \neq j} \beta_{i j} X_{i}+\varepsilon_{j} \tag{3}
\end{equation*}
$$

Then $\beta_{k j}=-\theta_{j k} / \theta_{j j}$. (By symmetry $\beta_{j k}=-\theta_{k j} / \theta_{k k}$.)

- Thus, we have

$$
\begin{equation*}
(j, k) \notin E \Leftrightarrow \theta_{j k}=0 \Leftrightarrow \rho_{j k}=0 \Leftrightarrow \beta_{k j}=\beta_{j k}=0 . \tag{4}
\end{equation*}
$$

Gaussian graphical models

Learning GGMs: Given $x_{i} \sim_{i i d} \mathcal{N}_{p}(0, \Sigma), i=1, \ldots, n$, estimate

$$
\text { the structure of } \mathcal{G} \Leftrightarrow \operatorname{supp}(\Theta)=\left\{(j, k): \theta_{j k} \neq 0\right\} .
$$

Also called covariance selection (Dempster 1972).
■ Log-likelihood

$$
\ell(\Sigma)=-\frac{n}{2} \log \operatorname{det}(\Sigma)-\frac{1}{2} \operatorname{tr}\left(S \Sigma^{-1}\right)
$$

where $S=\sum_{i} x_{i} x_{i}^{\top}$ is a $p \times p$ matrix (sufficient statistic).

- $\hat{\Sigma}^{\mathrm{MLE}}=S / n$ (always exists).
- If $n>p$, inverte $\hat{\Sigma}^{\mathrm{MLE}} \Rightarrow \hat{\Theta}^{\mathrm{MLE}}=\left(\hat{\Sigma}^{\mathrm{MLE}}\right)^{-1}$.

Then obtain $\widehat{\mathcal{G}}$ by thresholding: $\widehat{E}=\left\{(j, k):\left|\hat{\theta}_{j k}^{\mathrm{MLE}}\right|>\tau\right\}$.

Gaussian graphical models

Regularized estimation under ℓ_{1} penalty (Yuan and Lin 2007; Friedman et al. 2008; Banerjee et al. 2008)

- Element-wise ℓ_{1} norm $\|\Theta\|_{1}:=\sum_{j<k}\left|\theta_{j k}\right|$.
- ℓ_{1} regularized estimate $\hat{\Theta}=\operatorname{argmin}_{\Theta>0} f(\Theta)$,

$$
\begin{aligned}
f(\Theta) & =-\frac{2}{n} \ell\left(\Theta^{-1}\right)+\lambda\|\Theta\|_{1} \\
& =-\log \operatorname{det}(\Theta)+\operatorname{tr}\left(\hat{\Sigma}^{\mathrm{MLE}} \Theta\right)+\lambda\|\Theta\|_{1}
\end{aligned}
$$

- f is convex, efficient algorithm.
- Well-defined for $p>n$.
- Sparse solution, $\hat{\theta}_{j k}=0$ for some (j, k).

Gaussian graphical models

Estimate \mathcal{G} from $\hat{\Theta}$
■ $\widehat{E}=\left\{(j, k): \hat{\theta}_{j k} \neq 0\right\}$, but needs very strong assumptions (irrepresentability) for $\mathbb{P}\left(\widehat{E}=E_{0}\right) \rightarrow 1$.

- Operator norm error:

$$
\begin{equation*}
\left\|\hat{\Theta}-\Theta_{0}\right\|_{2} \lesssim \sqrt{d^{2} \log p / n} \tag{5}
\end{equation*}
$$

d: Maximum degree of G.

- Thresholding $\hat{\Theta}: \widehat{E}=\left\{(j, k):\left|\hat{\theta}_{j k}\right|>\tau\right\}$. Weaker assumptions (RE, beta-min) for $\mathbb{P}\left(\widehat{E}=E_{0}\right) \rightarrow 1$.
Choosing λ by cross-validation, $\lambda_{C V}^{*}$, then $\mathbb{P}\left(\widehat{E}\left(\lambda_{C V}^{*}\right) \supset E_{0}\right) \rightarrow 1$ under certain conditions (RE, beta-min).

Gaussian graphical models

Estimate \mathcal{G} by neighborhood regression (Meinshausen and Bühlmann 2006)

■ Apply model selection (e.g. lasso) for each neighborhood regression $(3) \Rightarrow \hat{\beta}_{j k}(j, k=1, \ldots, p)$.

- Combine results to define $\widehat{\mathcal{G}}$, e.g.,

$$
\widehat{E}=\left\{(j, k): \hat{\beta}_{j k} \neq 0, \hat{\beta}_{k j} \neq 0\right\} .
$$

- Approximate $\hat{\Theta}$ if lasso is used in neighborhood regression.

Discrete graphical models

Reference: Hastie et al. (2015), Ch 9.
Ising model:
■ $X_{i} \in\{-1,+1\}, i \in V=[p]$.

- Given an undirected graph $\mathcal{G}=(V, E)$, define a joint distribution

$$
\begin{equation*}
\mathbb{P}\left(x_{1}, \ldots, x_{p} ; \theta\right)=\frac{1}{Z(\theta)} \exp \left\{\sum_{i \in V} \theta_{i} x_{i}+\sum_{(j, k) \in E} \theta_{j k} x_{j} x_{k}\right\} . \tag{6}
\end{equation*}
$$

■ Easy to verify (F) holds $\Rightarrow(G),(L),(P)$.

- Example application: model social networks.

Discrete graphical models

Example: Given the following \mathcal{G}, define $\mathbb{P}\left(x_{1}, \ldots, x_{6}\right)$ as in (6).

- Cliques:
$\{1,2,3\},\{1,2,6\},\{1,4\},\{1,5\}$.
- Verify $(F) \Rightarrow(G),(L),(P)$.
- Example Cl statements by (G) :

$$
\begin{aligned}
& X_{4} \perp X_{5} \mid X_{1} \\
& X_{3} \perp X_{6} \mid\left\{X_{1}, X_{2}\right\} \\
& \left\{X_{2}, X_{3}, X_{6}\right\} \perp\left\{X_{4}, X_{5}\right\} \mid X_{1}
\end{aligned}
$$

Discrete graphical models

Generalization:
■ $X_{i} \in\{1, \ldots, m\}, i \in V=[p]$.

- Given an undirected graph $\mathcal{G}=(V, E)$, define a joint distribution

$$
\begin{aligned}
& \mathbb{P}\left(x_{1}, \ldots, x_{p} ; \theta\right)= \\
& \quad \frac{1}{Z(\gamma, \theta)} \exp \left\{\sum_{i \in V} \sum_{z=1}^{m} \gamma_{i z} I\left(x_{i}=z\right)+\sum_{(j, k) \in E} \theta_{j k} I\left(x_{j}=x_{k}\right)\right\} .
\end{aligned}
$$

Discrete graphical models

Learning graphs from data:

- Full likelihood-based learning is difficult: $Z(\theta)$ no closed-form.

■ More practical to do neighborhood regression. From (6), get [$X_{i} \mid X_{-i}$] which leads to a logistic regression model:

$$
\log \left[\frac{\mathbb{P}\left(X_{i}=1 \mid X_{-i}\right)}{\mathbb{P}\left(X_{i}=-1 \mid X_{-i}\right)}\right]=2 \theta_{i}+\sum_{j \in \operatorname{ne}(i)} 2 \theta_{i j} X_{j}
$$

where ne $(i)=\{j \in V:(i, j) \in E\}$ is the set of neighbors of node i in G.

Discrete graphical models

Learning graphs from data:

- For each $i \in[p]$, apply logistic regression X_{i} on X_{-i} with variable selection to estimate $\widehat{N}(i)$ (estimated neighbor set).
■ For example, ℓ_{1}-regularized logistic regression or BIC stepwise selection.
- Combine $\{\widehat{N}(i): i \in V\}$ to construct $\widehat{\mathcal{G}}$.
- Sample size $n=\Omega\left(d^{2} \log p\right)$ sufficient for $\widehat{\mathcal{G}}=\mathcal{G}$ with high probability.

Faithfulness

Given a graphical model $(\mathcal{G}, \mathbb{P})$ where \mathbb{P} satisfies, say (G). Then graph separation \Rightarrow condition independence, but not \Leftarrow. If \mathbb{P} is faithful to \mathcal{G} then \Leftarrow holds as well. In this case, we have \Leftrightarrow (perfectness).

Definition 1

For a graphical model $(\mathcal{G}, \mathbb{P})$, we say the distribution \mathbb{P} is faithful to the graph \mathcal{G} if for every triple of disjoint sets $A, B, S \subset V$,

$$
A \perp B \mid S \Leftrightarrow S \text { separates } A \text { and } B
$$

Faithfulness

How likely is \mathbb{P} faithful?
Gaussian graphical models, \mathbb{P} is Gaussian $\mathcal{N}(0, \Sigma)=\mathcal{N}\left(0, \Theta^{-1}\right)$.

- Given \mathcal{G}, consider all positive-definite Θ such that $\operatorname{supp}(\Theta)=E \cup\{(i, i): i \in[p]\}$. Then for almost all such Θ, the distribution $\mathcal{N}\left(0, \Theta^{-1}\right)$ is faithful to \mathcal{G}.
■ Counterexamples: The parameters in Θ satisfy additional equality constraints that define Cl in \mathbb{P} not implied by any separation in \mathcal{G}.

Markov blanket

Definition 2 (Markov blanket)

A Markov blanket of $i \in V$ is any subset $S \subset V_{-i}$ such that

$$
\begin{equation*}
X_{i} \perp V_{-i} \backslash S \mid S \tag{7}
\end{equation*}
$$

A Markov boundary is a minimal Markov blanket, i.e., none of its proper subset satisfies (7).

■ For an undirected graph model $(\mathcal{G}, \mathbb{P})$, ne (i) is a Markov blanket of i (by local Markov property) and it is a Markov boundary if \mathbb{P} is faithful.

- Neighborhood regression: find Markov boundary (MB) of i.

Markov blanket

The grow-shrink algorithm (Margaritis and Thrun 1999)
Find MB of $i \in V$:
1: $S \leftarrow \varnothing$.
2: while there is $j \in V_{-i}$ such that $j \not \perp i \mid S$ do
3: $S \leftarrow S \cup\{j\}$. \quad Growing phase
4: end while
5: while there is $j \in S$ such that $j \perp i \mid S \backslash\{j\}$ do
6: $\quad S \leftarrow S \backslash\{j\}$.
\triangleright Shrinking phase
7: end while
8: $\mathrm{MB}(i) \leftarrow S$.

Markov blanket

Notes:
1 After growing phase, S is a Markov blanket.
2 Line 6:
Suppose j has been removed from S. Consider $k \notin S \cup\{j\}$. By (C4) contraction of Cl axioms,

$$
i \perp k|\{S, j\} \quad \& \quad i \perp j| S \quad \Rightarrow \quad i \perp\{k, j\} \mid S
$$

This means that S is still a Markov blanket of i.
3 Growing phase can be replaced by lasso or ℓ_{1}-regularized logistic regression.

References I

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. The Journal of Machine Learning Research, 9:485-516, 2008.
Arthur P Dempster. Covariance selection. Biometrics, 28(1): 157-175, 1972.
Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the Graphical Lasso.
Biostatistics, 9(3):432-441, 2008.
T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity. CRC Press, Boca Raton, FL, 2015.
Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996. ISBN 0-19-852219-3.

References II

Dimitris Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. Advances in Neural Information Processing Systems (NIPS), pages 505-511, 1999.
Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34(3):1436-1462, 2006.
Judea Pearl. Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan Kaufmann, 1988.
Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19-35, 2007.

