Undirected Graphical Models

Qing Zhou

UCLA Department of Statistics

Stats 212 Graphical Models Lecture Notes

- 1 Review of graphoid
- 2 Undirected graphs
- 3 Markov properties
- 4 Gaussian graphical models
- 5 Discrete graphical models
- 6 Faithfulness
- 7 Markov blanket

Graphoid axioms (Pearl (1988), §3.1.2.)

CI statement defines a ternary relation: $\langle X, Y | Z \rangle$ for $X \perp Y | Z$. Suppose X, Y, Z, W are disjoint subsets of random variables from a joint distribution \mathbb{P} . Then the CI relation satisfies

(C1) symmetry:
$$\langle X, Y \mid Z \rangle \Rightarrow \langle Y, X \mid Z \rangle$$
;

- (C2) decomposition: $\langle X, YW \mid Z \rangle \Rightarrow \langle X, Y \mid Z \rangle$;
- (C3) weak union: $\langle X, YW \mid Z \rangle \Rightarrow \langle X, Y \mid ZW \rangle$;
- (C4) contraction: $\langle X, Y \mid Z \rangle \& \langle X, W \mid ZY \rangle \Rightarrow \langle X, YW \mid Z \rangle$.

If the joint density of $\ensuremath{\mathbb{P}}$ wrt a product measure is positive and continuous, then

(C5) intersection: $\langle X, Y \mid ZW \rangle \& \langle X, W \mid ZY \rangle \Rightarrow \langle X, YW \mid Z \rangle$. In the above, $YW := Y \cup W$. Any ternary relation $\langle A, B \mid C \rangle$ that satisfies (C1) to (C4) is called a *semi-graphoid*. If (C5) also holds, then it is called a *graphoid*.

Examples of graphoid:

- **1** Conditional independence of \mathbb{P} (positive and continous).
- 2 Graph separation in undirected graph: $\langle X, Y \mid Z \rangle$ means nodes Z separate X and Y, i.e. X Z Y.

Graph separation provides an intuitive graphical interpretation for the CI axioms.

Definition: A graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, p\}$ is a set of vertices (or nodes) and $E \subset V \times V$ is a set of edges.

- Undirected edge i j: $(i, j) \in E \Leftrightarrow (j, i) \in E$.
- Associate V to random variables X_i (i = 1,..., p) with joint distribution P. Then (G, P) is called a graphical model. Often use node i and X_i interchangeably.
- Use graph separation to represent conditional independence among X₁,..., X_p.

Reference: Lauritzen (1996), chapters 2 and 3.

Terminology for undirected graph $\mathcal{G} = (V, E)$

- *i* and *j* are *neighbors* if (*i*, *j*) ∈ *E*; ne(*i*) denotes the set of neighbors of *i*.
- A path of length n from i to j is a sequence a₀ = i,..., a_n = j of distinct vertices so that (a_{k-1}, a_k) ∈ E for all k = 1,..., n.
- A subset $C \subset V$ separates *a* and *b* if all paths from *a* to *b* intersect *C*.
- C separates A and B if C separates a and b for every $a \in A$ and $b \in B$. Write A - C - B.

Markov properties on undirected graphs

Consider undirected graphical model ($\mathcal{G},\mathbb{P}).$ We say \mathbb{P} satisfies

• (P) the pairwise Markov property wrt \mathcal{G} if

$$(i,j) \notin E \Rightarrow i \perp j \mid V \setminus \{i,j\} := [V]_{ij};$$

• (L) the local Markov property wrt \mathcal{G} if

$$(i,j) \notin E \Rightarrow i \perp j \mid \operatorname{ne}(i);$$

■ (G) the global Markov property wrt *G* if for any disjoint (*A*, *B*, *C*),

$$A-C-B \Rightarrow A \perp B \mid C.$$

Factorization via cliques

- Complete subset and clique: A subset of C ⊂ V is complete if the subgraph on C is complete. A complete subset that is maximal (wrt ⊂) is called a clique.
- (F) Factorization: \mathbb{P} factorizes according to \mathcal{G} if for every clique A, there exists $\psi_A(x_A) \ge 0$, such that the joint density of \mathbb{P} has the form

$$f(\mathbf{x}) = \prod_{\mathbf{A}\in\mathcal{C}} \psi_{\mathbf{A}}(\mathbf{x}_{\mathbf{A}}),$$

where C is the set of cliques of G.

• Relations: $(F) \Rightarrow (G) \Rightarrow (L) \Rightarrow (P)$.

Markov properties

Examples.

Markov chain

Cliques: $\{i, i + 1\}, i = 1, ..., n - 1$. (F) holds:

$$\mathbb{P}(X_1,\ldots,X_n) = \mathbb{P}(X_1)\mathbb{P}(X_2 \mid X_1)\cdots\mathbb{P}(X_n \mid X_{n-1})$$
$$= \psi_1(X_1,X_2)\cdots\psi_{n-1}(X_{n-1},X_n).$$

Thus, (G) holds: For any i < j < k,

$$i-j-k \Rightarrow X_i \perp X_k \mid X_j.$$

Markov properties

Cliques: $\{Z_t, Z_{t+1}\}, t = 1, ..., n - 1, \{Z_t, Y_t\}, t = 1, ..., n.$

(F) holds: $\mathbb{P}(Y, Z) = \mathbb{P}(Z_1)\mathbb{P}(Y_1 \mid Z_1)\mathbb{P}(Z_2 \mid Z_1)\mathbb{P}(Y_2 \mid Z_2)$ $\cdots \mathbb{P}(Z_n \mid Z_{n-1})\mathbb{P}(Y_n \mid Z_n)$ $= \prod_{t=1}^{n-1} f_t(Z_t, Z_{t+1}) \prod_{t=1}^n g_t(Z_t, Y_t)$

Thus, (G) holds: V_{t-i} , Y_t and V_{t+j} are mutually independent conditional on Z_t for $i, j \ge 1$, where $V_k = \{Y_k, Z_k\}$.

When does (F) \Leftrightarrow (G) \Leftrightarrow (L) \Leftrightarrow (P)?

Theorem 1

If \mathbb{P} has a positive and continuous density f with respect to a product measure, then (F) \Leftrightarrow (P).

- Product measure: (1) $X_j \in \mathbb{R}$, use Lebesgue measure; (2) X_j finite discrete, use counting measure.
- Conclusion implies (F) \Leftrightarrow (G) \Leftrightarrow (L) \Leftrightarrow (P).
- Counter example. Let p = 5, $X_1, X_5 \sim_{iid} \text{Bern}(0.5)$, $X_2 = X_1$, $X_4 = X_5$, and $X_3 = X_2X_4$. This defines \mathbb{P} . Let \mathcal{G} be a chain $E = \{(i, i + 1) : i = 1, \dots, 4\}$. Then (L) holds but not (G). Because density (probability mass function) is not positive on all possible values of X_i 's. (L): $X_2 \perp X_4 \mid (X_1, X_3)$ true; (G): $X_2 \perp X_4 \mid X_3$ false!

Conditional independence graph (CIG):

■ Definition: A CIG is a graphical model (G, P) such that (P) holds. That is,

$$(i,j) \notin E \Rightarrow i \perp j \mid V \setminus \{i,j\} := [V]_{ij}.$$

- Sparser graph G implies more conditional independence (CI) relations.
- One can always choose the minimal G such that (P) holds to be the CIG, i.e., replace ⇒ by ⇔.
- Estimate the structure of \mathcal{G} to detect CI relations, assuming we have observed iid data from \mathbb{P} .

Gaussian graphical models

A CIG with
$$\mathbb{P} = \mathcal{N}_{\rho}(0, \Sigma)$$
, $\Sigma > 0$ (positive definite).

Lemma 1

Suppose
$$(X_1, \ldots, X_p) \sim \mathcal{N}_p(0, \Sigma)$$
 with $\Sigma > 0$ and let $\Theta = (\theta_{jk})_{p \times p} = \Sigma^{-1}$. Then

$$\theta_{jk} = 0 \Leftrightarrow X_j \perp X_k \mid X_{-\{j,k\}}.$$
 (1)

- Θ is called the precision matrix.
- According to (1), construct a graph $\mathcal G$ as

$$\theta_{jk} \neq 0 \Leftrightarrow (j,k) \in E,$$
(2)

i.e. (P) holds. Since $\mathbb P$ has a continuous and positive density, (L), (G) and (F) hold.

One can verify (F) directly as well.

Example: Given the following Θ , construct \mathcal{G} by (2).

- Find all S such that $X_1 \perp X_5 \mid S$. By (G), find all S that separates nodes 1 and 5: $S = \{2, 3\}, \{4\}, \{2, 4\}, \{3, 4\}, \{2, 3, 4\}.$
- Cliques: {1,2,3}, {2,3,4}, {4,5}; directly verify (F).

Partial correlation and neighborhood regression

Partial correlation between j and k given $[V]_{jk}$: $\rho_{jk} = -\theta_{jk}/\sqrt{\theta_{jj}\theta_{kk}}$. Correlation calculated from $\Sigma_{(j,k)|[V]_{jk}} = \operatorname{Var}(j, k \mid [V]_{jk})$.

■ Neighborhood regression, regress X_j on X_{-j}:

$$X_j = \sum_{i \neq j} \beta_{ij} X_i + \varepsilon_j.$$
(3)

Then $\beta_{kj} = -\theta_{jk}/\theta_{jj}$. (By symmetry $\beta_{jk} = -\theta_{kj}/\theta_{kk}$.) Thus, we have

$$(j,k) \notin E \Leftrightarrow \theta_{jk} = 0 \Leftrightarrow \rho_{jk} = 0 \Leftrightarrow \beta_{kj} = \beta_{jk} = 0.$$
 (4)

Learning GGMs: Given $x_i \sim_{iid} \mathcal{N}_p(0, \Sigma)$, i = 1, ..., n, estimate

the structure of $\mathcal{G} \Leftrightarrow \text{supp}(\Theta) = \{(j, k) : \theta_{jk} \neq 0\}.$

Also called covariance selection (Dempster 1972).

Log-likelihood

$$\ell(\Sigma) = -rac{n}{2}\log\det(\Sigma) - rac{1}{2}\operatorname{tr}(S\Sigma^{-1}),$$

where $S = \sum_{i} x_{i}x_{i}^{T}$ is a $p \times p$ matrix (sufficient statistic). • $\hat{\Sigma}^{MLE} = S/n$ (always exists).

■ If n > p, inverte $\hat{\Sigma}^{MLE} \Rightarrow \hat{\Theta}^{MLE} = (\hat{\Sigma}^{MLE})^{-1}$. Then obtain $\hat{\mathcal{G}}$ by thresholding: $\hat{E} = \{(j, k) : |\hat{\theta}_{jk}^{MLE}| > \tau\}$. Regularized estimation under ℓ_1 penalty (Yuan and Lin 2007; Friedman et al. 2008; Banerjee et al. 2008)

- Element-wise ℓ_1 norm $\|\Theta\|_1 := \sum_{j < k} |\theta_{jk}|$.
- ℓ_1 regularized estimate $\hat{\Theta} = \operatorname{argmin}_{\Theta > 0} f(\Theta)$,

$$\begin{split} f(\Theta) &= -\frac{2}{n} \ell(\Theta^{-1}) + \lambda \|\Theta\|_1 \\ &= -\log \det(\Theta) + \operatorname{tr}(\hat{\Sigma}^{\mathsf{MLE}}\Theta) + \lambda \|\Theta\|_1. \end{split}$$

- *f* is convex, efficient algorithm.
- Well-defined for p > n.

1

• Sparse solution, $\hat{\theta}_{jk} = 0$ for some (j, k).

Gaussian graphical models

Estimate \mathcal{G} from $\hat{\Theta}$

Ê = {(*j*, *k*) : *θ̂_{jk}* ≠ 0}, but needs very strong assumptions
 (irrepresentability) for P(*Ê* = *E*₀) → 1.

Operator norm error:

$$\|\hat{\Theta} - \Theta_0\|_2 \lesssim \sqrt{d^2 \log p/n}.$$
 (5)

d: Maximum degree of G.

Thresholding Θ̂: Ê = {(j, k) : |θ̂_{jk}| > τ}. Weaker assumptions (RE, beta-min) for P(Ê = E₀) → 1.

Choosing λ by cross-validation, λ_{CV}^* , then $\mathbb{P}(\widehat{E}(\lambda_{CV}^*) \supset E_0) \rightarrow 1$ under certain conditions (RE, beta-min). Estimate \mathcal{G} by neighborhood regression (Meinshausen and Bühlmann 2006)

• Apply model selection (e.g. lasso) for each neighborhood regression (3) $\Rightarrow \hat{\beta}_{jk}$ $(j, k = 1, \dots, p)$.

• Combine results to define $\widehat{\mathcal{G}}$, e.g.,

$$\widehat{E} = \{(j,k) : \widehat{\beta}_{jk} \neq 0, \widehat{\beta}_{kj} \neq 0\}.$$

Approximate $\hat{\Theta}$ if lasso is used in neighborhood regression.

Reference: Hastie et al. (2015), Ch 9. Ising model:

- $X_i \in \{-1, +1\}, i \in V = [p].$
- Given an undirected graph $\mathcal{G} = (V, E)$, define a joint distribution

$$\mathbb{P}(x_1,\ldots,x_p;\theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{i\in V} \theta_i x_i + \sum_{(j,k)\in E} \theta_{jk} x_j x_k\right\}.$$
(6)

- Easy to verify (F) holds \Rightarrow (G), (L), (P).
- Example application: model social networks.

Example: Given the following \mathcal{G} , define $\mathbb{P}(x_1, \ldots, x_6)$ as in (6).

- Cliques: {1,2,3}, {1,2,6}, {1,4}, {1,5}.
- Verify (F) \Rightarrow (G), (L), (P).
- Example CI statements by (G): $X_4 \perp X_5 \mid X_1$ $X_3 \perp X_6 \mid \{X_1, X_2\}$ $\{X_2, X_3, X_6\} \perp \{X_4, X_5\} \mid X_1$

Generalization:

- $X_i \in \{1, ..., m\}, i \in V = [p].$
- Given an undirected graph $\mathcal{G} = (V, E)$, define a joint distribution

$$\mathbb{P}(x_1, \dots, x_p; \theta) = \frac{1}{Z(\gamma, \theta)} \exp\left\{\sum_{i \in V} \sum_{z=1}^m \gamma_{iz} I(x_i = z) + \sum_{(j,k) \in E} \theta_{jk} I(x_j = x_k)\right\}$$

Learning graphs from data:

- Full likelihood-based learning is difficult: $Z(\theta)$ no closed-form.
- More practical to do neighborhood regression. From (6), get [X_i | X_{-i}] which leads to a logistic regression model:

$$\log\left[\frac{\mathbb{P}(X_i=1\mid X_{-i})}{\mathbb{P}(X_i=-1\mid X_{-i})}\right] = 2\theta_i + \sum_{j\in \mathsf{ne}(i)} 2\theta_{ij}X_j,$$

where $ne(i) = \{j \in V : (i,j) \in E\}$ is the set of neighbors of node *i* in *G*.

Learning graphs from data:

- For each $i \in [p]$, apply logistic regression X_i on X_{-i} with variable selection to estimate $\widehat{N}(i)$ (estimated neighbor set).
- For example, ℓ_1 -regularized logistic regression or BIC stepwise selection.
- Combine $\{\widehat{N}(i) : i \in V\}$ to construct $\widehat{\mathcal{G}}$.

Given a graphical model $(\mathcal{G}, \mathbb{P})$ where \mathbb{P} satisfies, say (G). Then graph separation \Rightarrow condition independence, but not \Leftarrow . If \mathbb{P} is faithful to \mathcal{G} then \Leftarrow holds as well. In this case, we have \Leftrightarrow (perfectness).

Definition 1

For a graphical model $(\mathcal{G}, \mathbb{P})$, we say the distribution \mathbb{P} is faithful to the graph \mathcal{G} if for every triple of disjoint sets $A, B, S \subset V$,

 $A \perp B \mid S \Leftrightarrow S$ separates A and B.

How likely is \mathbb{P} faithful?

Gaussian graphical models, \mathbb{P} is Gaussian $\mathcal{N}(0, \Sigma) = \mathcal{N}(0, \Theta^{-1})$.

- Given G, consider all positive-definite Θ such that supp(Θ) = E ∪ {(i, i) : i ∈ [p]}. Then for almost all such Θ, the distribution N(0, Θ⁻¹) is faithful to G.
- Counterexamples: The parameters in Θ satisfy additional equality constraints that define CI in \mathbb{P} not implied by any separation in \mathcal{G} .

Definition 2 (Markov blanket)

A *Markov blanket* of $i \in V$ is any subset $S \subset V_{-i}$ such that

$$X_i \perp V_{-i} \setminus S \mid S. \tag{7}$$

A *Markov boundary* is a minimal Markov blanket, i.e., none of its proper subset satisfies (7).

- For an undirected graph model (G, P), ne(i) is a Markov blanket of i (by local Markov property) and it is a Markov boundary if P is faithful.
- Neighborhood regression: find Markov boundary (MB) of *i*.

<u>The grow-shrink algorithm</u> (Margaritis and Thrun 1999) Find MB of $i \in V$:

- 1: $S \leftarrow \emptyset$.
- 2: while there is $j \in V_{-i}$ such that $j \not\perp i \mid S$ do
- 3: $S \leftarrow S \cup \{j\}$. \triangleright Growing phase

4: end while

- 5: while there is $j \in S$ such that $j \perp i \mid S \setminus \{j\}$ do
- 6: $S \leftarrow S \setminus \{j\}$. \triangleright Shrinking phase
- 7: end while
- 8: $MB(i) \leftarrow S$.

Notes:

1 After growing phase, S is a Markov blanket.

2 Line 6:

Suppose j has been removed from S. Consider $k \notin S \cup \{j\}$. By (C4) contraction of CI axioms,

 $i \perp k \mid \{S, j\}$ & $i \perp j \mid S \Rightarrow i \perp \{k, j\} \mid S$.

This means that S is still a Markov blanket of i.

3 Growing phase can be replaced by lasso or ℓ_1 -regularized logistic regression.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. *The Journal of Machine Learning Research*, 9:485–516, 2008.

Arthur P Dempster. Covariance selection. *Biometrics*, 28(1): 157–175, 1972.

- Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the Graphical Lasso. *Biostatistics*, 9(3):432–441, 2008.
- T. Hastie, R. Tibshirani, and M. Wainwright. *Statistical Learning with Sparsity.* CRC Press, Boca Raton, FL, 2015.
- Steffen L. Lauritzen. *Graphical Models*. Oxford University Press, 1996. ISBN 0-19-852219-3.

References II

- Dimitris Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. *Advances in Neural Information Processing Systems (NIPS)*, pages 505–511, 1999.
- Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the Lasso. *The Annals of Statistics*, 34(3):1436–1462, 2006.
- Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, 1988.
- Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model. *Biometrika*, 94(1):19–35, 2007.