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Causal DAGs and intervention

(Reference: Pearl (2000) §3.1 and §3.2; Pearl (1995))
Definition: A causal model among Xi, ..., X, is defined by a DAG
G and a distribution P(¢) = P(e1,...,€p).
m Each child-parent relationship in G, (X, PA;), represents a
functional relationship (structural equation model, SEM):
X = f(PALE).  J=1..p. &

m The background (error) variables are jointly independent:

P(e1,...,ep) = Hp(gj). 2)

m (18) and (2) imply that P(Xq,..., X,) is Markovian with
respect to the DAG G:

P
P(X1,..., Xp) = [[B(X; | PA)). (3)
j=1
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Causal DAGs and intervention

Causal effect defined via external intervention:
m Consider an atomic intervention that forces X; to some fixed
value x;, which we denote by do(X; = x;) or do(x;) for short.

m Effect of do(x;): to replace the SEM for X; by X; = x; and
substitute X; = x; in the other SEMs.

m For two distinct sets of variables X and Y, the causal effect of
X on Y is determined by the mapping

x = P[Y | do(X = x)] = P(Y | do(x)).

Examples of causal effects.

linear SEM: Causal effect w.
Treatment (X = 1) vs control (X = 0): Causal effect
E(Y | do(X =1)) —E(Y | do(X = 0)).
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Causal DAGs and intervention

Model interventions as variables:

m Treat intervention as additional variable in the DAG: F; for
intervention on X;.

m SEM for X; change to

f:(PA;.e;), if F; =idl
X, = hi(PA;, ;) — { PR 1T Fy = idle "
X, if F; = do(x)
m Augment the parents of X; to PA; U {F;}:
P(X; = x; | PA), if Fj = idle
P(X; = x; | PA;j, Fj) = J_ / J ) J_
I(xj = x), if F; = do(x),

assuming all X; are discrete for convenience.
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Causal DAGs and intervention

Computing causal effect (of interventions): To simplify notation,
consider discrete X; and write P(X = x) = P(x).

m Truncated factorization of P(xy,...,Xp) given do(X; = x}'):
P(x1,- s xp | do(x)) = I(xi = xF) [ [ POy | pa),  (5)
J#i
where pa; = (xx : k € PA;j).
m Multiple interventions do(Xs = x*), S C {1,...,p}:
P(xt,..., % | do(x*)) = I(xs =x*) [ P(x | paj).  (6)
JgSs
m Graph structure change when do(X; = x7): delete edges

Xj — X; for all j € PA;, i.e. change G to gxl_.
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Causal DAGs and intervention

Difference between P(y | do(x)) and P(y | x).
m Two DAGs G; and G, on Xi, Xo:

Manipulated

=« O—0O ONNO)

Manipulated

o O—0O O—O

m Find P(x1 | do(x2)) with respect to Gy and G,.

G1 . P(Xl ’ dO(Xz)) = P(Xl),
Gy P(x1 | do(x2)) = P(x1 | x2).
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Causal DAGs and intervention

From (5), putting x; = x*:

Pl | do) = [T Pl | p3) - o222
J#i i !
~ P(x, ., xp0)
P(x; | paj)
= P(xj,j € B | xj', pai)P(pai), (7)

where B = [p] \ {/, PA;} and [p] :={1,..., p}.
m Intervention event (do-operator) not on the right-hand side.

m Compute causal effect (intervention probability) by conditional
probabilities (pre-intervention probabilities) that can be
estimated from observational data.
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Causal DAGs and intervention

Theorem 1 (Adjustment for direct causes)

Let PA; be the parents of X; and Y be any set of other variables in
a causal DAG G. Then the causal effect of do(X; = x;) on Y is
given by

P(y | do(x)) = 3 P(y | xi, pai)P(pa). (8)

pai

where P(y | x;, pa;) and P(pa;) are pre-intervention probabilities.

Proof.
Marginalize out X; ¢ Y U {X;} on both sides of (7).
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Causal DAGs and intervention

A simple implication of Theorem 1:

If Y is a set of non-descendants of X;, then
Y L Xi | PA;.
By Theorem 1

y | dO XI ZP y | anal (Pa,‘)

pPaj

= Z P(y | pai)P(pai) = P(y),

which is independent of the intervention on X;. Thus, X; has no
causal effect on Y.
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Linear structural equation models

A causal model (G, P.) with linear SEMs:
m A linear model for each child-parent relationship:
Xi= > BiXi+e, j=1,....p. (9)
iEPA;
m ¢;'s are independent and E(¢;) = 0;

m Usually assume ¢; ~ N(O,wf). In this case, the DAG is called
a Gaussian DAG and the graphical model is called a Gaussian
Bayesian network.
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Linear structural equation models

Causal effect:
m The causal effect of Xj on X;
_ OE(X; | do(Xi = ))
ki = Ox
=E(Xj | do(Xi = ¢ + 1)) = E(X; | do(Xx = ¢)), (10)

for any ¢ € R, due to the linear model assumption.

m Using modified DAG gxk after intervention,
E(Xj | Xk = x;Gg,) = 7%,

where E(e; Gx ) takes expectation with respect to Gg, .
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Linear structural equation models

Apply Theorem 1 to find ;:
m Let Z = PA, and z denote the value of PAg,

Py | do(Xic = x1)) = [ Pl | xc.2)p(2)dz.

z

where the p on the right side is given by the pre-intervention
distribution (that of G).

m Let (3, ) be the regression coefficient of X; on (X, PAx),
that is, E(X; | Xk, Z) = BXk + ' Z, which can be estimated
from observational data.

m Then the causal effect

0
(9x

= a(zk / {ﬁxk + aTz} p(z)dz = j.

z

'ij (X | dO(Xk = Xk))
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Estimation of causal effect

Reference: Pearl (2000) §3.3.

Problem setup:

m Given a causal DAG G, if P(y | do(x)) can be uniquely
computed from the (pre-intervention) distributions of
observed variables in G, then we say the causal effect of X on
Y is identifiable.

m Note that we allow unobserved nodes in G.

m Only observational data are collected.
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Estimation of causal effect

Example: Observed nodes X — Z — Y/; hidden node U, a
common parent of X and Y (sometimes called a confounder).

Can we estimate the causal effect of X on Y or of Z on Y from
observational data collected for (X, Y, Z)?
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Estimation of causal effect

Back-door adjustment:

m Theorem 1 implies: If X, PAx, Y are observed, then
P(y | do(x)) is identifiable by (8).

m Theorem 1 is a special case of back-door adjustment: PAx
satisfies the back-door criterion relative to X and Y.

m Back-door criterion: A set of variables Z satisfies the
back-door criterion relative to an ordered pair of variables
(X,Y) in a DAG G if

no nodes in Z is a descendant of X;
Z blocks every chain between X and Y that contains an arrow
into X (backdoor path).
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Estimation of causal effect

Theorem 2 (Back-door adjustment)

If Z satisfies the back-door criterion relative to (X, Y). Then the
causal effect of X on Y is given by

P(y | do(x)) = Y P(y | x,2)P(2). (11)

Proof
Add intervention variable Fx — X to G:

P(y | do(x)) = ZPy|do ,2)P(z | do(x))

= Z P(y | Fx = do(x), x, z)P(2).

Invoke that (X, Z) d-separates Fx and Y. O
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Estimation of causal effect

Linear SEM: By (11), the causal effect can be identified by
regressing Y on (X, Z):

oy = SE(Y | do(x)) = Bx(Y ~ X +2)

Suppose we have data observed for the three random variables
X,Y,Z. Then to estimate the causal effect X on Y:

Discrete data: estimate P(y | x,z) and P(z) from data. Then
plug into (11).
Linear SEM: least-squares regression Y on (X, Z), then

Fxoy = Bx(Y ~ X + 2).
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Estimation of causal effect

Example:

e ,
l" \\
" .
, .
e ‘ss
% \,

By Theorem 2,

P(y | do(2)) = 3" P(y | x,2)P(x),  P(z | do(x)) = P(z | x),
' (12)

without observing U.
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Estimation of causal effect

Is P(y | do(x)) identifiable? Yes, because:
y | do(x Z P(y,z | do(x
= Z P(z | do(x))P(y | z, do(x))
= Z P(z | do(x))P(y | do(z)). (13)
Last step uses Y L Fz | {Z,do(x)}:

P(y | z,do(x)) = P(y | do(2), do(x)) = P(y | do(z)).

Then, plug (12) into (13) to get

P(y | do(x ZP x)Y Py |X,2)P(x).  (14)
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Estimation of causal effect

Eq. (14) is an example of front-door adjustment.
m Front-door criterion: Z satisfies the front-door criterion
relative to (X, Y) if
Z intercepts all directed paths from X to Y/
there is no back-door path from X to Z; and
all back-door paths from Z to Y are blocked by X.

Theorem 3 (Front-door adjustment)

If Z satisfies the front-door criterion relative to (X, Y), then
P(y | do(x)) = sz|x ZP | X', Z)P(x').  (15)

m Linear SEMs:

VXY = VX7 X VZoy = Bx(Z ~ X) x pz(Y ~ Z + X).
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Estimation of causal effect

Proof of Theorem 3.

(i) Condition 1 implies
P(y [ do(x)) = >_, P(z | do(x))P(y | do(2))-

(ii) Backdoor adjustment with Condition 2 shows that
P(z | do(x)) = P(z | x).

(iii) Backdoor adjustment with Condition 3 shows that

P(y | do(2)) = >, P(y | X', 2)P(X). .

Rules of do-calculus (Pearl (2000) §3.4): a set of inference rules
for transforming intervention and observational probabilities, say to
translate causal effect to conditional probabilities.
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Estimation of causal effect

Instrumental variable formula (Bowden and Day 1984) (assume
linear SEMs)

Observed nodes Z — X — Y, and U is hidden common parent of
X and Y. Is vx_,y = ap identifiable?

Example. X = college education, Y = job after college, U =
family social/educational background, Z = randomly assigned
high-school fellowship for college application.
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Estimation of causal effect
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Z has no parents, thus oy is identifiable by regressing X on
Z: a1 = Bz(X ~ 2).

Similarly, the causal effect of Z on Y, ajan, is also
identifiable: ajan = ,Bz(y ~ Z)

Combined we have the instrumental variable formula:

(Y ~2)  CouY,2)
2T B(X~2Z) " Cov(X,Z)

(16)
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Estimation of causal effect

Two-stage least-squares:
Regress X on Z so a3 = Bz(X ~ Z) and let X = a1 ”Z.
Regress Y on X and then a; = Bg(Y ~ X):

oy Cov(Y,a1Z)  Cov(Y,Z)

Bg(Y ~ X) = Var(aeaZ) i Var(Z) “

Note: To estimate ap from samples of (X, Y, Z), 8 — LSE B
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Estimation of causal effect

Conditional instrumental variable (Brito and Pearl 2002):
Z is said to be a conditional instrumental variable given S relative
to (X, Y) if

S contains no descendants of X or Y/

S d-separates Z from Y but not from X in the graph
obtained after deleting all edges emerging from X.

Then, the causal effect of X on Y

_ Cov(Y,Z]S5)  Bz(Y~Z+5) (17)
TX—=Y = Cov(X,Z|S) Bz(X~Z+S)
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Semi-Markov causal models

DAG with hidden variables ADMG

()
o b

m If two nodes X; and X; share a common hidden parent U,
remove U from the DAG and add a bidirected edge X; <+ Xi:
acyclic directed mixed graph (ADMG).

m X; <> Xj: their background variables ¢; and ¢; are dependent.

m A causal model with dependent background variables is called
a semi-Markov causal model (SMCM).
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Semi-Markov causal models

DAG with hidden variables ADMG

@
&)%) @%@0

m SEM for SMCM over X = {Xi,..., X
)<j = G(PAj,&j), _/ = 1, ceey P (18)

i L gj if no bidirected edge between / and ;.

m The joint distribution P(X) is obtained by marginalization of
P(X, U) defined by a DAG on X U U:

P(x1,...,Xp) = Z P(x1,...,Xp | ul,...,ud)HP(u;).

ug,...,ud
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Semi-Markov causal models

Let Y(x) = [Y | do(X = x)]. Restrictions encoded by SMCM:

Exclusion: For any S C V' \ (PAy U{Y}) (no directed edge
from S to Y),

Y(pay) = Y(pay,s). (19)

" both = fy(pay,ey).
Independence: For any Z € V not connected to Y via
bidirected edges,

Y(pay) 1 Z(paz). (20)
" Y(pay) = fy(pay,ey), Z(paz) = fz(paz,cz) and

€y J_Ez.
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Semi-Markov causal models

-

m Exclusion restrictions: Y(x) = Y(x,z) and X = X(y, 2).
m Independence restrictions: X L {Y(x),Z(y)}, but
Y(x) £ Z(y)
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Potential outcome approach

Under potential outcome framework (Rubin 1990):
m Y(x) is a counterfactual entity representing the potential
outcome of Y had X been x.
m Suppose X € {0,1} (treatment vs control). Want to estimate
causal effect E[Y(1) — Y/(0)] or E[Y(1) — Y(0) | X =1].
m P*[Y(x)] corresponds to P(Y | do(x)). Making assumptions
to calculate when Y/(x) is missing.

X Y(1) Y(0) Z (covariates)
?

NN
ENENENENEN

OO R FH =

?
7
v
v

Sasas
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Potential outcome approach

Assume conditional ignorability (Rosenbaum and Rubin 1983):
Y(x)LX|Z.

P*(Y ZIP’* =y|2)P(2)
—ZP* =y |x.2)P(2)

= ZIP’ (Y =y |x,z)P(z) backdoor adjustment.

Y(x)=fy(x,Z,ey) = h(Z,ey)
X = fx(Z,Ex)
Y(X)J_X’Z<Z>€yLex|Z.
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