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Causal DAGs and intervention

(Reference: Pearl (2000) §3.1 and §3.2; Pearl (1995))
Definition: A causal model among X1, . . . ,Xp is defined by a DAG
G and a distribution P(ε) = P(ε1, . . . , εp).

Each child-parent relationship in G, (Xj ,PAj), represents a
functional relationship (structural equation model, SEM):

Xj = fj(PAj , εj), j = 1, . . . , p. (1)

The background (error) variables are jointly independent:

P(ε1, . . . , εp) =
∏
j

P(εj). (2)

(18) and (2) imply that P(X1, . . . ,Xp) is Markovian with
respect to the DAG G:

P(X1, . . . ,Xp) =

p∏
j=1

P(Xj | PAj). (3)
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Causal DAGs and intervention

Causal effect defined via external intervention:

Consider an atomic intervention that forces Xi to some fixed
value xi , which we denote by do(Xi = xi ) or do(xi ) for short.

Effect of do(xi ): to replace the SEM for Xi by Xi = xi and
substitute Xi = xi in the other SEMs.

For two distinct sets of variables X and Y , the causal effect of
X on Y is determined by the mapping

x 7→ P[Y | do(X = x)] ≡ P(Y | do(x)).

Examples of causal effects.

1 linear SEM: Causal effect ∂E(Y |do(x))
∂x .

2 Treatment (X = 1) vs control (X = 0): Causal effect
E(Y | do(X = 1))− E(Y | do(X = 0)).
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Causal DAGs and intervention

Model interventions as variables:

Treat intervention as additional variable in the DAG: Fj for
intervention on Xj .

SEM for Xj change to

Xj = hj(PAj ,Fj , εj) =

{
fj(PAj , εj), if Fj = idle

x , if Fj = do(x).
(4)

Augment the parents of Xj to PAj ∪ {Fj}:

P(Xj = xj | PAj ,Fj) =

{
P(Xj = xj | PAj), if Fj = idle

I (xj = x), if Fj = do(x),

assuming all Xj are discrete for convenience.
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Causal DAGs and intervention

Computing causal effect (of interventions): To simplify notation,
consider discrete Xj and write P(X = x) = P(x).

Truncated factorization of P(x1, . . . , xp) given do(Xi = x∗i ):

P(x1, . . . , xp | do(x∗i )) = I (xi = x∗i )
∏
j ̸=i

P(xj | paj), (5)

where paj = (xk : k ∈ PAj).

Multiple interventions do(XS = x∗), S ⊂ {1, . . . , p}:

P(x1, . . . , xp | do(x∗)) = I (xS = x∗)
∏
j /∈S

P(xj | paj). (6)

Graph structure change when do(Xi = x∗i ): delete edges
Xj → Xi for all j ∈ PAi , i.e. change G to GX̄i

.
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Causal DAGs and intervention

Difference between P(y | do(x)) and P(y | x).
Two DAGs G1 and G2 on X1,X2:

G1

G2

Find P(x1 | do(x2)) with respect to G1 and G2.

G1 : P(x1 | do(x2)) = P(x1),

G2 : P(x1 | do(x2)) = P(x1 | x2).

Zhou, Q Graphical Models 6/32



Causal DAGs and intervention

From (5), putting xi = x∗i :

P(x−i | do(x∗i )) =
∏
j ̸=i

P(xj | paj) ·
P(x∗i | pai )
P(x∗i | pai )

=
P(x1, . . . , xp)

P(x∗i | pai )
= P(xj , j ∈ B | x∗i , pai )P(pai ), (7)

where B = [p] \ {i ,PAi} and [p] :={1, . . . , p}.

Intervention event (do-operator) not on the right-hand side.

Compute causal effect (intervention probability) by conditional
probabilities (pre-intervention probabilities) that can be
estimated from observational data.
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Causal DAGs and intervention

Theorem 1 (Adjustment for direct causes)

Let PAi be the parents of Xi and Y be any set of other variables in
a causal DAG G. Then the causal effect of do(Xi = xi ) on Y is
given by

P(y | do(xi )) =
∑
pai

P(y | xi , pai )P(pai ), (8)

where P(y | xi , pai ) and P(pai ) are pre-intervention probabilities.

Proof.

Marginalize out Xj /∈ Y ∪ {Xi} on both sides of (7).
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Causal DAGs and intervention

A simple implication of Theorem 1:

If Y is a set of non-descendants of Xi , then

Y ⊥ Xi | PAi .

By Theorem 1

P(y | do(xi )) =
∑
pai

P(y | xi , pai )P(pai )

=
∑
pai

P(y | pai )P(pai ) = P(y),

which is independent of the intervention on Xi . Thus, Xi has no
causal effect on Y .
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Linear structural equation models

A causal model (G,Pε) with linear SEMs:

A linear model for each child-parent relationship:

Xj =
∑
i∈PAj

βijXi + εj , j = 1, . . . , p. (9)

εj ’s are independent and E(εj) = 0;

Usually assume εj ∼ N (0, ω2
j ). In this case, the DAG is called

a Gaussian DAG and the graphical model is called a Gaussian
Bayesian network.
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Linear structural equation models

Causal effect:

The causal effect of Xk on Xj

γkj :=
∂E(Xj | do(Xk = x))

∂x
= E(Xj | do(Xk = c + 1))− E(Xj | do(Xk = c)), (10)

for any c ∈ R, due to the linear model assumption.

Using modified DAG GX̄k
after intervention,

E(Xj | Xk = x ;GX̄k
) = γkjx ,

where E(•;GX̄k
) takes expectation with respect to GX̄k

.
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Linear structural equation models

Apply Theorem 1 to find γkj :

Let Z = PAk and z denote the value of PAk ,

p(xj | do(Xk = xk)) =

∫
z
p(xj | xk , z)p(z)dz ,

where the p on the right side is given by the pre-intervention
distribution (that of G).
Let (β, α) be the regression coefficient of Xj on (Xk ,PAk),
that is, E(Xj | Xk ,Z ) = βXk + αTZ , which can be estimated
from observational data.

Then the causal effect

γkj =
∂

∂xk
E(Xj | do(Xk = xk))

=
∂

∂xk

∫
z

{
βxk + αTz

}
p(z)dz = β.
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Estimation of causal effect

Reference: Pearl (2000) §3.3.
Problem setup:

Given a causal DAG G, if P(y | do(x)) can be uniquely
computed from the (pre-intervention) distributions of
observed variables in G, then we say the causal effect of X on
Y is identifiable.

Note that we allow unobserved nodes in G.
Only observational data are collected.
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Estimation of causal effect

Example: Observed nodes X → Z → Y ; hidden node U, a
common parent of X and Y (sometimes called a confounder).

X Z Y

U

Can we estimate the causal effect of X on Y or of Z on Y from
observational data collected for (X ,Y ,Z )?
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Estimation of causal effect

Back-door adjustment:

Theorem 1 implies: If X ,PAX ,Y are observed, then
P(y | do(x)) is identifiable by (8).

Theorem 1 is a special case of back-door adjustment: PAX

satisfies the back-door criterion relative to X and Y .

Back-door criterion: A set of variables Z satisfies the
back-door criterion relative to an ordered pair of variables
(X ,Y ) in a DAG G if

1 no nodes in Z is a descendant of X ;
2 Z blocks every chain between X and Y that contains an arrow

into X (backdoor path).
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Estimation of causal effect

Theorem 2 (Back-door adjustment)

If Z satisfies the back-door criterion relative to (X ,Y ). Then the
causal effect of X on Y is given by

P(y | do(x)) =
∑
z

P(y | x , z)P(z). (11)

Proof.

Add intervention variable FX → X to G:

P(y | do(x)) =
∑
z

P(y | do(x), z)P(z | do(x))

=
∑
z

P(y | FX = do(x), x , z)P(z).

Invoke that (X ,Z ) d-separates FX and Y .
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Estimation of causal effect

Linear SEM: By (11), the causal effect can be identified by
regressing Y on (X ,Z ):

γX→Y :=
∂

∂x
E(Y | do(x)) = βX (Y ∼ X + Z ).

Suppose we have data observed for the three random variables
X ,Y ,Z . Then to estimate the causal effect X on Y :

1 Discrete data: estimate P(y | x , z) and P(z) from data. Then
plug into (11).

2 Linear SEM: least-squares regression Y on (X ,Z ), then

γ̂X→Y = β̂X (Y ∼ X + Z ).
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Estimation of causal effect

Example:

X Z Y

U

By Theorem 2,

P(y | do(z)) =
∑
x

P(y | x , z)P(x), P(z | do(x)) = P(z | x),

(12)

without observing U.
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Estimation of causal effect

Is P(y | do(x)) identifiable? Yes, because:

P(y | do(x)) =
∑
z

P(y , z | do(x))

=
∑
z

P(z | do(x))P(y | z , do(x))

=
∑
z

P(z | do(x))P(y | do(z)). (13)

Last step uses Y ⊥ FZ | {Z , do(x)}:

P(y | z , do(x)) = P(y | do(z), do(x)) = P(y | do(z)).

Then, plug (12) into (13) to get

P(y | do(x)) =
∑
z

P(z | x)
∑
x ′

P(y | x ′, z)P(x ′). (14)
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Estimation of causal effect

Eq. (14) is an example of front-door adjustment.

Front-door criterion: Z satisfies the front-door criterion
relative to (X ,Y ) if

1 Z intercepts all directed paths from X to Y ;
2 there is no back-door path from X to Z ; and
3 all back-door paths from Z to Y are blocked by X .

Theorem 3 (Front-door adjustment)

If Z satisfies the front-door criterion relative to (X ,Y ), then

P(y | do(x)) =
∑
z

P(z | x)
∑
x ′

P(y | x ′, z)P(x ′). (15)

Linear SEMs:

γX→Y = γX→Z × γZ→Y = βX (Z ∼ X )× βZ (Y ∼ Z + X ).
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Estimation of causal effect

Proof of Theorem 3.

(i) Condition 1 implies
P(y | do(x)) =

∑
z P(z | do(x))P(y | do(z)).

(ii) Backdoor adjustment with Condition 2 shows that
P(z | do(x)) = P(z | x).

(iii) Backdoor adjustment with Condition 3 shows that
P(y | do(z)) =

∑
x ′ P(y | x ′, z)P(x ′).

Rules of do-calculus (Pearl (2000) §3.4): a set of inference rules
for transforming intervention and observational probabilities, say to
translate causal effect to conditional probabilities.
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Estimation of causal effect

Instrumental variable formula (Bowden and Day 1984) (assume
linear SEMs)

XZ Y

U

α1 α2

Observed nodes Z → X → Y , and U is hidden common parent of
X and Y . Is γX→Y = α2 identifiable?

Example. X = college education, Y = job after college, U =
family social/educational background, Z = randomly assigned
high-school fellowship for college application.
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Estimation of causal effect

XZ Y

U

α1 α2

1 Z has no parents, thus α1 is identifiable by regressing X on
Z : α1 = βZ (X ∼ Z ).

2 Similarly, the causal effect of Z on Y , α1α2, is also
identifiable: α1α2 = βZ (Y ∼ Z ).

3 Combined we have the instrumental variable formula:

α2 =
βZ (Y ∼ Z )

βZ (X ∼ Z )
=

Cov(Y ,Z )

Cov(X ,Z )
. (16)
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Estimation of causal effect

XZ Y

U

α1 α2

Two-stage least-squares:

1 Regress X on Z so α1 = βZ (X ∼ Z ) and let X̂ = α1Z .

2 Regress Y on X̂ and then α2 = β
X̂
(Y ∼ X̂ ):

β
X̂
(Y ∼ X̂ ) =

Cov(Y , α1Z )

Var(α1Z )
=

Cov(Y ,Z )

α1 Var(Z )
= α2.

Note: To estimate α2 from samples of (X ,Y ,Z ), β → LSE β̂.
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Estimation of causal effect

Conditional instrumental variable (Brito and Pearl 2002):
Z is said to be a conditional instrumental variable given S relative
to (X ,Y ) if

1 S contains no descendants of X or Y ;

2 S d-separates Z from Y but not from X in the graph
obtained after deleting all edges emerging from X .

Then, the causal effect of X on Y

γX→Y =
Cov(Y ,Z | S)
Cov(X ,Z | S)

=
βZ (Y ∼ Z + S)

βZ (X ∼ Z + S)
. (17)
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Semi-Markov causal models

DAG with hidden variables

U

X2 X3X1

ADMG

X2 X3X1

If two nodes Xi and Xj share a common hidden parent U,
remove U from the DAG and add a bidirected edge Xi ↔ Xj :
acyclic directed mixed graph (ADMG).

Xi ↔ Xj : their background variables εi and εj are dependent.

A causal model with dependent background variables is called
a semi-Markov causal model (SMCM).
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Semi-Markov causal models

DAG with hidden variables

U1

X2 X3X1

ADMG

X2 X3X1

SEM for SMCM over X = {X1, . . . ,Xp}:

Xj = fj(PAj , εj), j = 1, . . . , p. (18)

εi ⊥ εj if no bidirected edge between i and j .

The joint distribution P(X ) is obtained by marginalization of
P(X ,U) defined by a DAG on X ∪ U:

P(x1, . . . , xp) =
∑

u1,...,ud

P(x1, . . . , xp | u1, . . . , ud)
∏
i

P(ui ).
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Semi-Markov causal models

Let Y (x) ≡ [Y | do(X = x)]. Restrictions encoded by SMCM:

1 Exclusion: For any S ⊂ V \ (PAY ∪ {Y }) (no directed edge
from S to Y ),

Y (paY ) = Y (paY , s). (19)

∵ both = fY (paY , εY ).

2 Independence: For any Z ∈ V not connected to Y via
bidirected edges,

Y (paY ) ⊥ Z (paZ ). (20)

∵ Y (paY ) = fY (paY , εY ), Z (paZ ) = fZ (paZ , εZ ) and
εY ⊥ εZ .
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Semi-Markov causal models

Y ZX

Exclusion restrictions: Y (x) = Y (x , z) and X = X (y , z).

Independence restrictions: X ⊥ {Y (x),Z (y)}, but
Y (x) ̸⊥ Z (y).
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Potential outcome approach

Under potential outcome framework (Rubin 1990):

Y (x) is a counterfactual entity representing the potential
outcome of Y had X been x .

Suppose X ∈ {0, 1} (treatment vs control). Want to estimate
causal effect E[Y (1)− Y (0)] or E[Y (1)− Y (0) | X = 1].

P∗[Y (x)] corresponds to P(Y | do(x)). Making assumptions
to calculate when Y (x) is missing.

X Y (1) Y (0) Z (covariates)

1 ✓ ? ✓,· · · ,✓
1 ✓ ? ✓,· · · ,✓
1 ✓ ? ✓,· · · ,✓
0 ? ✓ ✓,· · · ,✓
0 ? ✓ ✓,· · · ,✓
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Potential outcome approach

Assume conditional ignorability (Rosenbaum and Rubin 1983):
Y (x) ⊥ X | Z .

P∗(Y (x) = y) =
∑
z

P∗(Y (x) = y | z)P(z)

=
∑
z

P∗(Y (x) = y | x , z)P(z)

=
∑
z

P(Y = y | x , z)P(z) backdoor adjustment.

Z

X Y

Y (x) = fY (x ,Z , εY ) = h(Z , εY )
X = fX (Z , εX )
Y (x) ⊥ X | Z ⇔ εY ⊥ εX | Z .
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