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Abstract

Understanding how and predicting where proteins interact with DNA are impor-
tant problems in biology. Currently, computational methods for predicting binding
sites of the proteins are mostly based on generative models in the form of position-
specific weight matrices (also called “motifs”). We present here a systematic study
of predictive modeling approaches to embryonic gene regulation. In such an ap-
proach, the genomic sequence information is combined with gene expression or
other information regarding the biological system through sequence feature extrac-
tion and selection. Sequence features to be extracted include matching scores to
existing TF binding motifs, frequencies of short words, certain periodic signals, a
measure of cross-species conservation, etc. Feature selection is achieved by a statis-
tical learning method that relates the gene expression values (or measures of other
kind of biological properties) with some of the extracted sequence features.

Keywords and Phrases: Predictive modeling, statistical learning, motif discov-
ery, gene regulation, transcription factor.

1 Introduction: central dogma of molecular
biology

The complete information that defines the characteristics of a living cell within an
organism is encoded in the form of a moderately simple molecule, deoxyribonucleic
acid, or DNA. The building blocks of DNA are four nucleotides, abbreviated by
their attached organic bases as A, C, G, and T. A-T and C-G are complimentary
bases, between which hydrogen bonds can form. A DNA molecule consists of
two long chains of nucleotides that are complimentary to each other and joined
by hydrogen bonds twisted into a double helix. The specific ordering of these
nucleotides, the “genetic code”, is the means by which information is stored that
completely defines all functions within a cell. With the recent development of very
fast sequencing technology, genetic sequence databases such as GenBank have
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sustained an exponential growth rate since 1982, housing more than 65 billion
DNA bases now.

Although all the cells in an organism contain the same DNA sequences, they
display different physiological characteristics within different tissues, developmen-
tal stages, and environmental conditions. The central dogma of molecular biology
dictates that DNA is transcribed into RNA, which serves as a transient template
to make proteins, the basic building blocks of the cellular life. The collection of
proteins synthesized in a particular cell state determines the cell’s current physi-
ological functions. If a protein is being synthesized at a certain state, its coding
DNA (called a gene) is defined as being “active” or “expressed”. Thus, a cell in
a particular physiological state can be roughly viewed as a mechanical system in
which each protein is either turned on (active) or turned off (inactive).

In many organisms, the DNA that codes for proteins (genes) is only a small
portion of the total genomic DNA. The non-coding components of DNA, which
were initially considered as “junk” sequences, contain the information for acti-
vating and deactivating the genes/proteins. Most of the control sequences for a
gene lie in the upstream regulatory region, which is the couple of thousands base
pairs long region directly before the gene (also called the transcription regula-
tory region - TRR, or the promoter). Transcribing or activating a gene requires
not only the DNA sequence in the TRR, but also many proteins called transcrip-
tion factors (TFs). TFs regulate their target genes’ expression by binding in a
sequence-specific manner to various binding sites located in the promotor regions
of these genes. Several statistical models have been developed to characterize the
common sequence pattern, often referred to as a TF binding motif (TFBM), of
DNA sites bound by a TF. Most widely used is the position-specific weight matrix
(PWM) model, which assumes that each position of a binding site is generated
by a multinomial probability distribution independent of other positions. Many
computational methods have been developed based on the PWM representation
to “discover” motifs from a set of DNA sequences likely to be bound by a common
TF [1, 2]. See [3, 4] for recent reviews.

Characterizing the TFBMs and predicting TF binding sites (TFBS) are cru-
cial tasks for studying how the cell regulates its genes in response to develop-
mental and environmental changes. With the availability of the complete genome
sequences and high-throughput experimental techniques such as gene expression
microarrays, it has become a reality to predict genome-wide TFBMs and TFBSs
efficiently with the aid of bioinformatic tools, which can then lead to a deeper
understanding on gene regulatory networks.

2 Statistical generative models for transcription
regulation

Suppose we have n observed DNA sequences, S1, . . . ,Sn, of lengths L1, . . . , Ln,
respectively (the L’s are typically in the range of hundreds to thousands). The
basic generative motif finding model assumes that in these sequences there are
segments of length W (typically in the range of 10 to 20), called “binding sites”,
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that are iid realizations from a probability distribution, such as a hidden Markov
model or a product multinomial model, the latter often being called the position-
specific weight matrix (PWM) model. Since both the model parameters and the
locations of these binding sites are unknown, one can utilize the missing data
formulation and estimate the binding sites either with the EM algorithm or with
Markov chain Monte Carlo (see [2, 3, 27]).

From the discriminant modeling perspective, the PWM implies a linear addi-
tive model for TF-DNA interaction trained from the positive sequences (i.e., those
containing binding sites) only. There are also approaches developed to make use of
the information in both the positive, i.e., binding sites, and the negative sequences,
i.e., non-binding sites (see [10]–[12]). Recently, several lines of experimental evi-
dence have also demonstrated the existence of non-negligible dependence among
the positions of a binding site (e.g., [5, 6]). Methods that simultaneously infer such
dependence and discover novel binding sites have been developed, and were shown
to outperform the PWM in both de novo motif discovery and site scan [7, 8, 9]. In
addition, a TF often cooperates with other TFs to bind synergistically to regula-
tory regions. Such a region contains multiple TFBS’s and is called a cis-regulatory
module (CRM). Various models have been proposed for the CRM, including lo-
gistic regression [13], hidden Markov models [14]–[19], and a hierarchical mixture
model [20].

Although it has been commonly acknowledged that all the models mentioned
above are at best crude approximations to the underlying TF-DNA binding mech-
anism, it is extremely difficult to build more complex models that are both scien-
tifically and statistically sound. First, the data used to infer a motif model usually
contain only tens of known binding sites. With this little information, a compli-
cated generative model can easily over-fit the data, rendering it useless for making
predictions. Second, the detailed mechanism of TF-DNA interaction, which is
likely gene-dependent, has not been fully understood, although some qualitative
descriptions exist.

Recently, the development of chromatin immunoprecipitation followed by mi-
croarray (ChIP-chip) technology has enabled the scientist to obtain genome-wide
binding regions for a TF under certain cellular conditions. The advantage of
ChIP-chip data is that they not only provide hundreds or even thousands of high
resolution TF binding regions, but also give quantitative measures of the bind-
ing activity (ChIP-enrichment) for such regions. With abundance of such type of
data, it is now hopeful that one may be able to build a more flexible model than
weight matrices to capture sequence features that can be predictive of TF-DNA
interactions.

Several predictive modeling (PM) approaches have been developed in recent
years to study sequence motif features and gene expression or ChIP-chip data
jointly, e.g., [21]–[25]. In contrast to many previous methods that directly build
generative statistical models in the sequence space (e.g., [27, 17, 20]), PM ap-
proaches treat the gene expression or ChIP-intensity values as response variables,
and regard a set of candidate sequence motifs (in the form of PWM) as potential
predictors. In [23], a stepwise linear regression method was used to infer motif
patterns that are of value to predict the response variable, whereas in [24], the
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method of multiple adaptive regression splines (MARS, [28]) was used instead. In
[25], an even more ambitious goal was attempted: predicting gene expression from
sequences.

A distinctive advantage of the PM approach is that it provides a coher-
ent framework to connect “behaviors” of genes (e.g., expression levels) with their
composition (i.e., genomic sequence), thus effectively using both positive and neg-
ative information. In addition, a predictive model can be self-validated and avoid
overfitting via a proper cross-validation procedure instead of relying on anecdotal
biological evidences, which may be biased or inaccurate. This is especially use-
ful in studying biological systems, since specific model assumptions are often not
available due to the comlexity of the problem. For example, the concept of weight
matrix motif has dominated computational cis-regulatory analyses. But it is also
well known that the short motif sites by themselves are not specific enough to di-
rect accurate TF recognition. For eukaryotes, nucleosome occupancy and histone
modifications clearly play important roles in gene regulation. There is also evi-
dence that sequence features other than TF binding motifs are important for both
nucleosome occupancy and TF binding [32, 33]. As illustrated in this paper, the
PM approach provides a useful tool for the researcher to explore in this direction.

3 A framework for predictive modeling

A basic assumption of all PM approaches is that certain sequence features influence
the response measurement in either a linear or a nonlinear way. This is in principle
true for many biological measurements. For example, for ChIP-chip data, the
enrichment value can be viewed as a surrogate of the binding affinity of the TF
to the corresponding DNA segment. Influential sequence features other than the
binding motif of the target TF may correspond to binding motifs of co-factors,
genomic codes for histone remodeling, and so on. Thus, the PM approach consists
of two generic steps: Step 1, feature extractions and Step 2, feature selections.

The input data for fitting a predictive model are a set of DNA sequences,
{S1,S2, . . . ,Sn}, which correspond to potential binding regions, each with a cor-
responding response value, e.g., expression or ChIP-chip fold change value (in the
logarithmic scale), yi. We write {(yi,Si), for i = 1, 2, . . . , n}. In Step 1, we map
each Si to a feature space composed of generic features, background word frequen-
cies, a set of motif scores derived from both known motifs documented in biological
databases and de novo motif finding software, and others such as certain periodic
properties and structural properties. Thus, each sequence Si is transformed into
a multi-dimensional data vector representing p features: xi = [xi1, . . . , xip]. For
example, in Conlon et al. [23], we used a fast de novo motif search method MD-
scan [26] to first generate a large set of putative TFBMs (typically in the range
of tens to hundreds). Then each sequence Si is scored against each putative motif
Mj to get matching score xij (which can be intuitively understood as the number
of matching sites in Si).

In Step 2, we apply a statistical learning method to infer the relation between
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the response variables, i.e., to fit the model

yi = f(xi) + εi. (3.1)

Or, if the yi are categorical responses (such as binary), one can model their prob-
abilities of belonging to a particular class, i.e., fitting a model of the form

P (yi = k) = g(xi). (3.2)

The most well-known “learning” model for (3.1) is the linear regression, whereas
for (3.2) the logistic regression. Many other statistical learning methods, such as
multivariate adaptive regressions (MARS), neural networks (NN), support vector
machines (SVM), boosting, Bayesian additive regression trees (BART), etc., have
been developed over the past few decades to counter the high-dimensionality and
nonlinearity problems. At a conceptual levels, all of these methods are composed
from a set of simpler units (such as a sum of a set of “weak learners”), which make
them flexible enough to approximate almost any complex relationship between re-
sponses and covariates. However, due to the nature of their basic learning “units”
and the ways of combining these units, these methods have different sensitivies,
tolerance on nonlinearity, and ways of coping with over-fitting. In the following
sections, we first report an early successful study of histone modifications using the
PM approach via a novel nonlinear dimension-reduction and regression method.
We then move on to a comparative study of the utility of various advanced sta-
tistical learning tools, reporting their performances in the application to a human
TF (Oct4) activity data, and in a simulation study.

4 RSIR and histone modification prediction

4.1 SIR and RSIR methods

Here we assume that the response variable y (i.e., gene expression values) is de-
pendent of the gene’s upstream features through a smooth function f(·) of k linear
combinations of these features, i.e.,

y = f(βT
1 x,βT

2 x, . . . ,βT
k x, ε),

where k, β’s, and f( ) are unknown. The expression-score data y are usually
high-dimensional and noisy, so a direct fit of f using non-parametric methods
is impractical. It is thus desirable to estimate the linear combinations without
fitting f . This task can be accomplished by SIR [34], which was originally de-
veloped for dimension reduction and data visualization. After having obtained
βT

1 x,βT
2 x, . . . ,βT

k x, we can identify the influential individual xs with nonzero con-
tributions to the linear combinations and their corresponding sequence features.
However, since many of the x’s are highly correlated, a direct application of the
SIR method, which is equivalent to sequentially solving the eigen-value problems:

arg max
βT

Σβ
βT Mβ
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where Σ = Cov(x) and M = Cov[E(x|y)] (which is estimated by slicing the y),
often results in highly variable solutions. In [35], we introduced the regularized
SIR method, which is equivalent to solving

arg max
βT

(Σ+εI)β
βT Mβ,

and can greatly reduce the estimation variability.

4.2 Histone modification data analysis via RSIR

Now we come to the biology part. Gene activities in eukaryotic cells are concertedly
regulated by TFs and chromatin structure. The basic repeating unit of chromatin
is the nucleosome, an octamer containing two copies each of four core histone
proteins. While nucleosome occupancy in promoter regions typically occludes TF
binding, thereby repressing global gene expression, the role of histone modification
is more complex [36]–[38]. Histone tails can be modified in various ways, including
acetylation, methylation, phosphorylation, and ubiquitination. Even the regula-
tory role of histone acetylation, the best characterized modification to date, is still
not fully understood [39, 40].

Each of the four core histones contains several acetylable sites at their amino
terminus tails. Genome-wide histone acetylation data from Saccharomyces cere-
visiae [41, 42] have offered new opportunities for us to evaluate the regulatory
effects of histone acetylation at these lysine sites. In particular, both H3 and H4
acetylation levels were found to be positively correlated with gene transcription
rates. However, a subtle but important issue in analyzing such data is that ef-
fects of other potentially important factors not included in the analysis, generally
termed as confounding factors, cannot be revealed by simple correlation plots. It
is unclear, for example, how much regulatory information associated with histone
acetylation is redundant with the genomic sequence information. To gain insights
into this, we conducted a predictive modeling analysis by combining acetylation
[41, 42, 44], nucleosome occupancy [46, 43, 42], gene upstream sequence informa-
tion [45], and gene expression data [46]–[48] to investigate the effect of histone
acetylation in the context of other regulatory factors in S. cerevisiae.

We analyzed two recent genome-wide histone acetylation datasets (more de-
tails in Yuan et al. [33]). Pokholok et al. [42] measured acetylation levels at
three different sites, H3K9, H3K14, and H4, with the last referring to nonspecific
acetylation on any of the four acetylable lysines on H4 tails. A typical analy-
sis, when both histone acetylation data on a single site (for example, H3K9) and
transcription rate data are available, is to simply correlate the two sets of mea-
surements and to report the apparent significant statistical correlation between
the two. When data on multiple acetylation sites are available, a slightly more
formal analysis is to fit a linear regression model with multiple acetylation covari-
ates. However, gene regulation is a complex process involving many contributing
factors. Probably the best characterized factor for controlling gene transcription is
the upstream sequence information. Although histone acetyltransferases (HATs)
and histone deacetylases (HDACs) do not have obvious sequence specificity them-
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selves, they may be recruited by TFs that recognize specific sequences. Thus,
sequence information is an important confounding factor.

We tested using two different sequence motif based-methods to account for
the cis-regulatory information and observed that the two methods gave remark-
ably consistent results. Here we present results from using MDscan [26], which
first infers sequence motif information de novo based on the gene transcription
rate data. In particular, this algorithm searched for enriched sequence motifs of
widths 5 to 15 in the promoter sequences, resulting in 580 statistically significant,
possibly overlapping, candidate TFBMs (p-value < 0.05). We then used these mo-
tif patterns to scan all promoter regions for matches so as to compute a motif score
for each TFBM at each promoter. We used both a linear regression procedure,
Motif Regressor [23], and RSIR to select 33 motifs that are significantly influential
of the transcription rate.

As an alternative approach to account for the cis-regulatory information, we
directly used the 666 TFBMs reported by Beer and Tavazoie [25], which is a com-
bination of computational predictions using AlignACE [15] and 51 experimentally
derived ones. Out of these 666 motifs, our linear regression and RSIR procedures
found 15 that are highly relevant to predicting gene transcription rates.

Figure 1 Model validation by comparing the R2 for the real versus randomly permutated

datasets. The R2 obtained by applying the motif selection and fitting Equation (4.1)

(with sequence motif information only) procedures to randomly permutated and real

data. The histogram is obtained based on 50 randomly permutated samples. The arrow

on the right marks the R2 for the real data. Results for the coding regions are represented

here.

To assess the significance of our model for controlling the confounding effects
due to sequence information, we randomly permuted the transcription rates data
50 times and repeated the same statistical procedures: identifying motif candi-
dates using MDscan, selecting the most significant motifs using RSIR, and fitting
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the linear regression model. The distribution of R2 obtained for these randomized
data, as well as the R2 value for the original data, was shown in Figure 1. The
largest motif-based R2 observed in randomized data was 0.038, which is signifi-
cantly below the motif-based R2 for the real data.

The combined transcriptional control by TFBMs, nucleosome occupancy, and
histone acetylation is modeled as:

yi = α +
∑

j

βjxij +
∑

j

ηjzij + δwi + εi, (4.1)

where the xij values are the three histone acetylation levels (corresponding to
H3K9, H3K14, and H4, respectively), the zij values are the corresponding scores
to the 33 selected motifs, and wi is the nucleosome occupancy level. The results
are shown in Table 1. One can see that a simple regression of transcription rates
against histone acetylation without considering any other factors gave an R2 of
0.1841, implying that about 18% of the variation of the transcription rates is at-
tributable to histone acetylation. In contrast, the regression of transcription rates
against motif scores and nucleosome density levels (no histone acetylation) gave
an R2 of 0.1997. The comprehensive model with all the variables we considered
bumped up the R2 to 0.3262, indicating that the histone acetylation does have
a significant effect on the transcription rate, although not as high as that in the
naive model.

Table 1: Model performance (adjusted R2) with different covariates

Ace. sites - Seq Nuc S/N - Seq Nuc S/N
- 0 0.14 0.11 0.20 0 0.13 0.14 0.22
H3K9,14 0.18 0.27 0.26 0.32 0.10 0.21 0.25 0.31
H4 0.08 0.21 0.25 0.31 0.02 0.15 0.21 0.28
H3K9,14,H4 0.18 0.27 0.27 0.33 0.20 0.26 0.26 0.31

The adjusted R2 for the linear regression model (Equation (4.1)) containing different regulatory
factors (Nuc (N), nucleosome occupancy; Seq (S), sequence information).

5 A case study: Oct4 ChIP-chip data in human
ESCs

5.1 The data and learning methods

The DNA microarray used in [49] covers −8 kb to +2 kb of ∼16,000 annotated
human genes. We identified consistently a Sox-Oct composite motif from both the
Oct4 and the Sox2 ChIP-chip data sets using the de novo motif search algorithm
CisModule [20] with heterogeneous Markov background [50]. This motif is known
to be recognized by the protein complex of Oct4 and Sox2, the target TFs in
the ChIP-chip experiments. Noting that this motif is identical to the Sox-Oct
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composite motif detected from an independent Oct4 ChIP-PET data set in mouse
ESCs [51], we included this motif in our pre-compiled motif set. In addition, we
included all the 219 known high-quality PWMs from TRANSFAC release 9.0 [52]
and the PWMs of four TFs with known functions in ES cells from the literature
[53], to compile a final list of 224 motif PWMs.

Boyer et al. [49] reported 603 Oct4-ChIP enriched regions (positives) in
human ESCs. We randomly selected another 603 regions with the same length
distribution from the genomic regions targeted by the DNA microarray (negatives),
i.e. [−8,+2] kb of the 16,000 human genes. A ChIP-intensity measure, which is
defined as the average array-intensity ratio of ChIP samples over control samples,
is attached to each of the 1206 ChIP-regions. We treat the logarithm of the ChIP-
intensity measure as the response variable, and the features extracted from the
genomic sequences as explanatory variables. This produced a data set of 1206
observations with 269 features (explanatory variables).

We compare the following methods for statistical learning on this data set:
(1) LR-SO, linear regression using the Sox-Oct composite motif only; (2) LR-Full,
linear regression using all the 269 features; (3) Step-SO, stepwise linear regres-
sion starting from LR-SO; (4) Step-Full, stepwise linear regression starting from
LR-Full; (5) NN-SO, neural networks with the Sox-Oct composite motif feature
as input; (6) NN-Full, neural networks with all the features as input; (7) MARS,
multivariate adaptive regression splines using all the features; (8) Boost, boosting
with regression tree as base learner; (9) SVM, support vector machine for re-
gression with various kernels; (10) BART, Bayesian additive regression trees with
different number of trees.

5.2 Comparison results

A ten-fold cross-validation procedure was conducted as follows. We first divided
the observations into ten subgroups of equal size at random. Each time, we left one
subgroup (called “the test sample”) out and used the remaining nine subgroups
(called “the training sample”) to train a model using one of the above methods.
Then, we predicted the responses for the test sample based on the trained model
and compared them with the observed responses. This process was continued until
every subgroup had served as the test sample once. In this section, we use the
correlation coefficient between the predicted and observed responses as a measure
of the goodness of model performance. This measure is invariant under linear
transformation, and can be intuitively understood as the fraction of variation in
the response variable that can be explained by the features (covariates). We call
this measure the CV-correlation, or CV-cor, henceforth.

The cross validation results are summarized in Table 2. The average CV-
cor (over 10 cross validations) of LR-SO is 0.446, which is the lowest among all
the linear regression methods. All the other methods used more features and
predicted better, demonstrating that sequence features other than the target motif
contribute to the prediction of ChIP-intensity. In Step-SO, we started from the LR-
SO model and used the stepwise method (with both forward and backward steps)
to add or delete features in the linear regression model based the AIC criterion
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(see R function “step”). The Step-Full was performed similarly, but starting from
the LR-Full model. Among all the linear regression methods, Step-SO achieved
the highest CV-cor of 0.535.

Table 2: Ten-fold cross validations of the Oct4 ChIP-chip data

Method Tuning parameters Optimal Cor
LR-SO − 0.446 (0%)
LR-Full − 0.491 (10%)
Step-SO − 0.535 (20%)
Step-Full − 0.513 (15%)
NN-SO # of nodes, weight decay 0.468 (5%)
Step+NN # of nodes, weight decay 0.463 (4%)
MARS interaction d, penalty λ 0.580 (30%)
SVM cost C 0.547 (23%)
Boost # of iterations 0.586 (32%)
BART # of trees N 0.600 (35%)

Note: Reported here are the average CV-correlations (Cor). The percentage in the parentheses
is calculated by Cor/Cor(LR-SO)−1.

For neural networks (implemented in R package “nnet”), we tested its per-
formance with all combinations of different number of hidden nodes (2, 5, 10, 20,
30) and weight decay (0, 0.5, 1.0, 2.0). However, even the optimal results were not
satisfactory. The NN-SO showed a slight improvement in CV-cor over that of LR-
SO, while the neural network with all the features as input encountered a severe
overfitting problem, resulting in a CV-cor < 0.38. The NN reached an optimal
CV-cor of 0.463 with 2 hidden nodes. MARs (R package “mda”) is sensitive to the
choice of the penalty parameter λ, and the optimal CV-cor of 0.580 was reached
when λ = 6. Support vector regression (ε-SVR) as defined in [29] was applied to
this dataset, with the implementation of LIBSVM [54] in R-package “e1071”. We
tested the linear, radial basis, polynomial (3rd-order), and sigmoid kernels and
found that the radial basis kernel performed the best. The optimal CV-cor of
0.548 was reached when the cost parameter C = 1. The boosting method (the
R package “mboost” [55]) using regression trees with a maximum depth of 2 as
the base learner performed quite robustly for this dataset, with CV-cor ranging
from 0.532 to 0.586 with various stopping rules. For BART, we ran 20,000 itera-
tions after a burn-in period of 2,000 iterations, as implemented in the R package
“BayesTree”. We tested the method with the number of trees ranging from 20 to
200. Notably, BARTs with different number of trees reached CV-cor’s between
0.592 and 0.6, which outperformed all the other methods in terms of both CV-cor
and robustness.

5.3 An analysis of selected sequence features

The top feature chosen by BART is the Sox-Oct composite motif, which is consis-
tent with the existing biological knowledge that Sox2 is one of the most important
cooperative TFs of Oct4 and they form a complex to bind to the composite sites.
The next three important variables are all background features, “GC”, “CAA”,
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and “CCA” with Pin > 0.98. Other two background variables, “AA” and “G/C”,
also have high posterior inclusion probabilities. It is interesting to note that the
t-values for “GC”, “AA”, and “G/C” are not that significant, implying that they
may be cooperating with other variables to affect the TF-DNA binding. The fre-
quency of “CAA” is significantly higher and the frequency of “CCA” is significantly
lower in the positive ChIP-regions than in the negative ones (see their t-values).
It is possible that these words are responsible for the interaction strength between
the TF Oct4 and its DNA target region, given that “CAA” occurs in the Sox-Oct
motif consensus.

In addition to the Sox-Oct motif, we found eight motifs with Pin > 0.5,
among which OCT Q6, OCT1 Q6 and OCT1 Q5 01 are variants of the Oct4 motif,
implying that Oct4 may work with different cooperative factors to control the
transcription of different target genes. The remaining five motifs, Hsf1, Uf1h3b,
Nfy Q6, E2F, and E2F1, may be cooperative factors of Oct4 or other functional
TFs in ESCs. We note that the sequence length is also selected in the model,
which serves to balance out the potential bias in ChIP-intensity caused by the
length difference of repeat elements in the original sequences.

A surprising yet interesting finding is the inclusion of many non-motif features
in the optimal BART model. This is also true for the learning results of other
methods, such as stepwise linear regressions (data not shown). To further verify
their effect in predictive modeling, we excluded non-motif features from the input
and applied BART with 100 trees, MARS (d = 1, λ = 6), MARS (d = 2, λ = 20),
and Step-SO to the reduced data set. The CV-correlations were 0.510, 0.511, 0.478,
and 0.456 for the above four models, respectively, which decreased substantially
(about 12∼15%) compared to those of the corresponding methods with all the
features. One almost obtains no improvement (2%) in predictive power by taking
more motif features in the linear regression. However, if the background and other
generic features are incorporated, the stepwise regression improved dramatically
(20%).

Using this data set, we also compared the use of heterogeneous and homo-
geneous Markov background models for motif feature extraction. For the homo-
geneous background model, we used all the nucleotides in a sequence to build a
first-order Markov chain. Intuitively, the heterogeneous background model [50] as-
sumes that the sequence in consideration can be segmented into pieces and within
each piece the nucleotides follow a homogeneous first-order Markov chain. Using a
Bayesian formulation and an MCMC algorithm, we estimate the background tran-
sition probability of each nucleotide. With these two different background models,
we calculated motif scores for all the Oct4-family matrices in the 224 PWMs,
i.e., the Sox-Oct composite motif, OCT1 Q6, OCT Q6, and OCT1 Q5 01. We
observe that, for all the Oct4-family matrices, the motif scores under the hetero-
geneous background model show higher correlations with the log-ChIP intensity
than the scores under the homogeneous background model. We further computed
the t-statistic for each motif score between the positive and negative ChIP-regions.
Similarly, using the heterogeneous background model enhances the separation be-
tween the positive and negative regions by resulting in larger t-statistics (Table 3).
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Table 3: Comparison between the heterogeneous (ht) and the homogeneous (hm) back-

ground models for motif feature extraction

Motif Sox-Oct OCT1 Q6 OCT Q6 OCT1 Q5 01
Cor(ht) 0.442 0.261 0.303 0.295
Cor(hm) 0.421 0.221 0.267 0.256
t-stat(ht) 14.04 8.77 10.19 10.16
t-stat(hm) 13.06 7.38 8.87 8.68

6 A simulation study

We performed a simulation study as a final test on the effectiveness of the PM
approaches. We generated 1,000 sequences, each from a first-order Markov chain,
of length uniformly distributed between 800 and 1200. For each of the first 500
sequences, we inserted one, two, or three Oct4 motif sites with probability 0.25, 0.5,
or 0.25, respectively. Furthermore, we inserted one site for each of the three motifs,
Sox2, Nanog, and Nkx2.5 independently with probability 0.5. We calculated a
probability-ratio score for each inserted site. For each motif, we obtained the sum
of the site scores for a sequence, denoted by Z1, . . . , Z4 for Oct4, Sox2, Nanog,
and Nkx2.5, respectively. Then we defined the motif score for a sequence by
Xj = log(max(Zj , 1)) for j = 1, . . . , 4. Denote by X5 the GC content of a sequence.
We normalized these five features by their respective standard deviations so that
the rescaled features have a unit variance. Then, the observed ChIP-intensity Y
for each sequence was simulated as:

Y = X1(1 + 0.5X2 + 0.3X3 + 0.4X4) +
√

X1X3X4 + 2X5 + ε, (6.1)

where ε ∼ N(0, σ2). This model states that X1 is the target TF with three
interactive factors (X2, X3, X4), and the GC content (X5) has a positive effect
on the level of ChIP-intensities. The signal-to-noise-ratio (SNR) of a simulated
data set is defined as V ar(Y )/σ2−1. We simulated 10 independent sequence sets,
and then generated observed ChIP-intensities with SNR = 1/0.6, 1/1, and 1/2,
respectively.

We applied exactly the same sequence feature extraction procedure as in
the previous sections to the simulated data sets. Since stepwise linear regression,
MARS, SVM, boosting and BART showed more promising learning ability in the
Oct4 and Sox2 data sets, we tested only these five methods in this simulation study.
To quantify their performance, we calculated the average correlation coefficient
between predicted and the true ChIP-intensities, and compared the motifs selected
by each method to the true ones. For stepwise linear regression (Step-LR), only
features with a regression p-value < 0.01 were used for computing error rates
in motif identification since including all the covariates selected by the method
resulted in an overly large number of false positives. We used MARS with d =
1, λ = 6, boosting with 100 iterations, the radial basis SVM with C = 1 and
BART with 100 trees here given that these were their optimal tuning parameters
in the Oct4 data set, which is roughly of the same size as the simulated data. The
comparison of the results of these methods are given in Table 4.
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Table 4: Performance comparison on the simulated data sets

Method SNR 1/0.6 1/1 1/2
Cor 0.732(0.012) 0.703(0.017) 0.637(0.018)

Step-LR NT 3.8(0.42) 3.8(0.42) 3.3(0.67)
NF 4.9(2.64) 8.6(3.63) 7.5(3.54)
Cor 0.732(0.014) 0.704(0.019) 0.651(0.031)

MARS NT 3.9(0.32) 3.5(0.53) 3.3(0.48)
NF 4.4(1.78) 4.2(1.81) 4.6(2.80)

SVM Cor 0.798(0.010) 0.737(0.020) 0.626(0.021)
Boost Cor 0.810(0.009) 0.787(0.013) 0.725(0.016)

Cor 0.805(0.011) 0.779(0.011) 0.720(0.011)
BART NT 4.0(0.00) 3.6(0.70) 3.5(0.71)

NF 1.8(1.40) 2.5(1.18) 2.5(1.43)

Note: Reported are the averages results (standard errors in the parentheses) of 10 independent

data sets. “Cor” is the correlation between predicted and true ChIP-intensities. NT and NF are

the numbers of true and false motifs identified.

As expected, with the increase of the noise level, the average correlation and
the accuracy of motif identification decreased for all the tested methods. However,
even when the SNR is as low as 1/2, the correlation is still above 0.7 for the two
additive-tree-based methods, boosting and BART, which again demonstrates their
strong capability of approximating complicated non-linear functions from training
data. We further tested the accuracy of these approaches in detecting true motifs
that determine the ChIP-intensity. When we set the threshold of Pin to be 0.7,
BART identified on average more than 85% of the true motifs with at most 2.5
falsely included motifs. At comparable sensitivity levels (NT ), BART reported
significantly fewer false positives (NF ) for all the SNR levels than stepwise linear
regression and MARS (Table 4). For either SVM or boosting, we were not able to
check the features (covariates) utilized by these methods given that the methods
(and the implemented programs) work more like a black-box with no explicit
feature selection criteria.

7 Discussion

We have demonstrated in this article how the predictive modeling approach, with
the help of sophisticated statistical learning tools, can reveal subtle sequence sig-
nals that may influence TF-DNA binding and generate testable hypotheses. Com-
pared with some other more systems-based approaches to gene regulation, such
as building a large system of differential equations or inferring a comprehensive
Bayesian network, PM approaches are more direct, intuitive, theoretically solid
(as many in-depth statistical learning theories have been developed), and easily
validated (i.e., using cross-validations). It can generate straightforward testable
hypotheses.

In the Oct4 ChIP-chip data, PM approaches not only unambiguously iden-
tified the binding motifs for the target TF, but also discovered several known or
potential cooperative TFs, such as E2F and NFY. As a principled way of utiliz-
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ing both positive (i.e., binding sequences) and negative (nonbinding) information,
this approach provides another way to detect cis-regulatory motifs besides the well-
established generative model-based motif discovery methods (e.g., [1, 2, 56, 57]).
The PM approaches appear to be more sensitive than both de novo motif discov-
ery approaches and motif scan approaches (based on experimentally validated TF
motifs) since they effectively utilize the ChIP-intensity or expression information
in the model. For instance, with only the positive-ChIP regions, we were not able
to detect E2F or NFY motifs by conducting only de novo motif searches.

The comparative study on several learning methods suggests BART as a good
candidate for analyzing high-dimensional genomic data because of both its pre-
dictive power and its interpretability. First, like boosting, BART is an ensemble
learning method, which approximates an unknown relationship by the aggregation
of a large number of simple models (small trees). Second, the Bayesian formulation
of BART leads to a posterior sample of the predictive models, which helps predict
the response of a new observation by using the average of all sampled trees. This
is effectively a model averaging approach, which is known to improve the model’s
predictive power [58]. Finally, BART MCMC updates features in additive trees
according to the joint posterior distribution. Thus, it has a coherent variable selec-
tion component based on the posterior probabilities. This provides an sensible way
to identify important sequence features that contribute to TF-DNA interaction.
Note that Step-SO is equivalent to MotifRegressor [23] and MARS is equivalent
to MARSMotif [24], with all the known and discovered (Sox-Oct) motifs as input.
Thus, our study demonstrates that BART with all three categories of features
outperformed MotifRegressor and MARSMotif significantly.

With the rapid accumulation of such large-scale data, we believe that, as
illustrated by this work, flexible statistical learning methods on well-designed se-
quence features will be very useful for the understanding of TF-DNA interaction
and the development of predictive approaches in cis-regulatory analysis.
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