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Abstract

Gene transcription is regulated by interactions between transcription factors
and their target binding sites in the genome. A motif is the sequence pattern
recognized by a transcription factor to mediate such interactions. With the
availability of high-throughput genomic data, computational identification
of transcription factor binding motifs has become a major research problem
in computational biology and bioinformatics. In this chapter, we present
a series of Bayesian approaches to motif discovery. We start from a ba-
sic statistical framework for motif finding, extend it to the identification of
cis-regulatory modules, and then discuss methods that combine motif find-
ing with phylogenetic footprinting, gene expression or ChIP-chip data, and
nucleosome positioning information. Simulation studies and applications to
biological data sets are presented to illustrate the utility of these methods.

Keywords: Transcriptional regulation; motif discover; cis-regulatory; Gene
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1 Introduction

The goal of motif discovery is to locate short repetitive patterns (“words”) in DNA
that are involved in the regulation of genes of interest. In transcriptional regula-
tion, sequence signals upstream of each gene provide a target (the promoter region)
for an enzyme complex called RNA polymerase (RNAP) to bind and initiate the
transcription of the gene into messenger RNA (mRNA). Certain proteins called
transcription factors (TFs) can bind to the promoter regions, either interfering
with the action of RNAP and inhibiting gene expression, or enhancing gene ex-
pression. TFs recognize sequence sites that give a favorable binding energy, which
often translates into a sequence-specific pattern (∼8-20 base pairs long). Binding
sites thus tend to be relatively well-conserved in composition – such a conserved
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pattern is termed as a “motif”. Experimental detection of TF-binding sites (TF-
BSs) on a gene-by-gene and site-by-site basis is possible but remains an extremely
difficult and expensive task at a genomic level, hence computational methods that
assume no prior knowledge of the motif become necessary.

With the availability of complete genome sequences, biologists can now use
techniques such as DNA gene expression microarrays to measure the expression
level of each gene in an organism under various conditions. A collection of expres-
sions of each gene measured under various conditions is called the gene expression
profile. Genes can be divided into clusters according to similarities in their ex-
pression profiles–genes in the same cluster respond similarly to environmental and
developmental changes and thus may be co-regulated by the same TF or the same
group of TFs. Therefore, computational analysis is focused on the search for
TFBSs in the upstream of genes in a particular cluster. Another powerful experi-
mental procedure called Chromatin ImmunoPrecipitation followed by microarray
(ChIP-chip) can measure where a particular TF binds to DNA in the whole genome
under a given experimental condition at a coarse resolution of 500 to 2000 bases.
Again, computational analysis is required to pinpoint the short binding sites of
the transcription factor from all potential TF binding regions.

With these high throughput gene expression and ChIP-chip binding data,
de novo methods for motif finding have become a major research topic in com-
putational biology. The main constituents a statistical motif discovery procedure
requires are: (i) a probabilistic structure for generating the observed text (i.e. in
what context a word is “significantly enriched”) and (ii) an efficient computational
strategy to find all enriched words. In the genomic context, the problem is more
difficult because the “words” used by the nature are never “exact”, i.e., certain
“mis-spellings” can be tolerated. Thus, one also needs a probabilistic model to
describe a fuzzy word.

An early motif-finding approach was CONSENSUS, an information theory-
based progressive alignment procedure [42]. Other methods included an EM-
algorithm [11] based on a missing-data formulation [24], and a Gibbs sampling
algorithm [23]. Later generalizations that allowed for a variable number of motif
sites per sequence were a Gibbs sampler [28, 33] and an EM algorithm for finite
mixture models [2].

Another class of methods approach the motif discovery problem from a “seg-
mentation” perspective. MobyDick [6] treats the motifs as “words” used by na-
ture to construct the “sentences” of DNA and estimates word frequencies using
a Newton-Raphson optimization procedure. The dictionary model was later ex-
tended to include “stochastic” words in order to account for variations in the motif
sites [16, 36] and a data augmentation (DA) [43] procedure introduced for finding
such words.

Recent approaches to motif discovery have improved upon the previous meth-
ods in at least two primary ways: (i) improving and sensitizing the basic model
to reflect realistic biological phenomena, such as multiple motif types in the same
sequence, “gapped” motifs, and clustering of motif sites (cis-regulatory modules)
[30, 51, 17], and (ii) using auxiliary data sources, such as gene expression microar-
rays, ChIP-chip data, phylogenetic information and the physical structure of DNA
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[9, 21, 52, 18]. In the following section we will discuss the general framework of
de-novo methods for discovering uncharacterized motifs in biological sequences,
focusing especially on the Bayesian approach.

2 A Bayesian approach to motif discovery

In this section, unless otherwise specified, we assume that the data set is a set of N
unaligned DNA fragments. Let S = (S1, · · · , SN ) denote the N sequences of the
data set, where sequence Si is of length Li (i = 1, · · · , N). Multiple instances of the
same pattern in the data are referred to as motif sites or elements while different
patterns are termed motifs. Motif type k (of, say, width wk) is characterized
by a Position-Specific Weight matrix (PWM) Θk = (θk1, · · · , θkwk

), where the
J-dimensional (J = 4 for DNA) vector θki = (θki1, · · · , θkiJ )T represents the
probabilities of occurrence of the J letters in column i, (i = 1, · · · , wk). The
corresponding letter occurrence probabilities in the background are denoted by
θ0 = (θ01, · · · , θ0J). Let Θ = {Θ1, · · · , ΘK}.

We assume for now that the motif widths, wk (k = 1, · · · , K) are known (this
assumption will be relaxed later). The locations of the motif sites are unknown,
and are denoted by an array of missing indicator variables A = (Aijk), where
Aijk = 1 if position j (j = 1, · · · , Li) in sequence i (i = 1, · · · , N) is the starting
point of a motif of type k (k = 1, · · · , K). For motif type k, we let Ak = {Aijk :
i = 1, · · · , N ; j = 1, · · · , Li}, i.e., the indicator matrix for the site locations
corresponding to this motif type, and define the alignment:

S
(Ak)
1 = {Sij : Aijk = 1; i = 1, · · · , N ; j = 1, · · · , Li},

S
(Ak)
2 = {Si,j+1 : Aijk = 1; i = 1, · · · , N ; j = 1, · · · , Li},

· · ·

S(Ak)
wk

= {Si,j+wk−1 : Aijk = 1; i = 1, · · · , N ; j = 1, · · · , Li}.

In words, S
(Ak)
i is the set of letters occurring at position i of all the instances of

the type-k motif.
In a similar fashion, we use S(Ac) to denote the set of all letters occurring in

the background, where S(Ac) = S \
⋃K

k=1

⋃wk

l=1 S
(Ak)
l (For two sets A, B, A ⊂ B,

B \ A ≡ B ∩ Ac). Further, let C : S → Z
4 denote a “counting” function that

gives the frequencies of the J letters in a specified subset of S. For example, if
after taking the set of all instances of motif k, in the first column, we observe a

total occurrence of 10 ‘A’s, 50 ‘T’s and no ‘C’ or ‘G’s, C(S
(Ak)
1 ) = (10, 0, 0, 50).

Assuming that the motif columns are independent, we have

[C(S
(Ak)
1 ), · · · , C(S(Ak)

wk
)] ∼ Product-Multinomial[Θk = (θk1, · · · , θkwk

)],

i.e., the i th vector of column frequencies for motif k follows a multinomial distri-
bution parametrized by θki.

We next introduce some general mathematical notation. For vectors v =
(v1, · · · , vp)

T , let us define |v| = |v1| + · · · + |vp|, and Γ(v) = Γ(v1) · · ·Γ(vp).
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Then the normalizing constant for a p-dimensional Dirichlet distribution with
parameters α = (α1, · · · , αp)

T can be denoted as Γ(|α|)/Γ(α). For notational
convenience, we will denote the inverse of the Dirichlet normalizing constant as
ID(α) = Γ(α)/Γ(|α|). Finally, for vectors v and u = (u1, · · · , up), we use the
shorthand uv =

∏p

i=1 uvi

i .
The probability of observing S conditional on the indicator matrix A can

then be written as

P (S | Θ, θ0, A) ∝ θ
C(S(Ac))
0

K∏

k=1

wk∏

i=1

θ
C(S

(Ak)

i )

ki .

For a Bayesian analysis, we assume a conjugate Dirichlet prior distribution for θ0,
θ0 ∼ Dirichlet(β0), β0 = (β01, · · · , β0D), and a corresponding product-Dirichlet
prior (i.e., independent priors over the columns) PD(B) for Θk (k = 1, · · · , K),
where B=(βk1, βk2, · · · , βkwk

) is a J×wk matrix with βki=(βki1, · · · , βkiJ )T . Then
the conditional posterior distribution of the parameters given A is:

P (Θ, θ | S, A) ∝ θ
C(S(Ac))+β0
0

K∏

k=1

wk∏

i=1

θ
C(S

(Ak)

i )+β
ki

ki .

For the complete joint posterior of all unknowns (Θ, θ, A), we further need to
prescribe a prior distribution for A. In the original model [23], a single motif site
per sequence with equal probability to occur anywhere was assumed. However, in
a later model [28] that can allow multiple sites, a Bernoulli(π) model is proposed
for motif site occurrence. More precisely, assuming that a motif site of width w
can occur at any of the sequence positions, 1, 2, · · · , L∗ − w + 1 in a sequence of
length L∗, with probability π, the joint posterior distribution is:

P (Θ,θ,A | S)∝θ
C(S(Ac))+β

0
0

K∏

k=1

wk∏

i=1

θ
C(S

(Ak)

i )+β
ki

ki π|A|(1 − π)L−|A|, (2.1)

where L =
∑N

i=1(Li − w) is the adjusted total length of all sequences and |A| =∑K

k=1

∑N

i=1

∑Li

j=1 Aijk. If we have reason to believe that motif occurrences are
not independent, but occur as clusters (as in regulatory modules), we can instead
adopt a prior Markovian model for motif occurrence [17, 44] which is discussed
further in Section 3.

2.1 Markov chain Monte Carlo computation

Under the model described in (2.1), it is straightforward to implement a Gibbs
sampling (GS) scheme to iteratively update the parameters, i.e., sampling from
[Θ, θ0 | C, A], and impute the missing data, i.e., sampling from [A | C, Θ, θ0].
However, drawing Θ from its posterior at every iteration can be computationally
inefficient. Liu et al. [28] demonstrated that marginalizing out (Θ, θ0) from the
posterior distribution can lead to much faster convergence of the algorithm [29]. In



Chapter 8 Regulatory Motif Discovery: from Decoding to Meta-Analysis 183

other words, one can use the Gibbs sampler to draw from the marginal distribution

p(A | S,π)=

∫ ∫
p(Θ, θ0 | S, A, π)p(A)p(Θ, θ0)dΘdθ0, (2.2)

which can be easily evaluated analytically.
If π is unknown, one can assume a beta prior distribution Beta (α1, α2) and

marginalize out π from the posterior, in which case p(A | S) can be derived from
(2.2) by altering the last term in (2.2) to the ratio of normalizing constants for the
Beta distribution, B(|A| + α1, L− |A| + α2)/B(α1, α2). Based on (2.2), Liu et al.
[28] derived a predictive updating algorithm for A, which is to iteratively sample
each component of A according to the predictive distribution

P (Aijk = 1 | S)

P (Aijk = 0 | S)
=

π

1 − π

wk∏

l=1

(
θ̂kl

θ̂0

)C(Si,j+l,k)

, (2.3)

where the posterior means are θ̂kl =
C(S

(Ak)

l
)+β

kl

|C(S
(Ak)

l
)+β

kl
|

and θ̂0 =
C(S(Ac))+β0

|C(S(Ac))+β0|
.

Under the model specified above, it is also possible to implement a “partition-
based” data augmentation (DA) approach [16] that is motivated by the recursive
algorithm used in Auger and Lawrence [1]. The DA approach samples A jointly
according to the conditional distribution

P (A | Θ, S) =

N∏

i=1

P (AiLi
| Θ, S)

Li−1∏

j=1

P (Aij |Ai,j+1, · · · , AiLi
, S,Θ).

At a position j, the current knowledge of motif positions is updated using the
conditional probability P (Aij | Ai,j+1, · · · , AiLi

,Θ) (backward sampling), with
Ai,j−1, · · · , Ai1 marginalized out using a forward summation procedure (an ex-
ample will be given in Section 3.1). In contrast, at each iteration, GS iteratively
draws from the conditional distribution: P (Aijk |A \ Aijk , S), iteratively visiting
each sequence position i, updating its motif indicator conditional on the indicators
for other positions. The Gibbs approach tends to be “sticky” when the motif sites
are abundant. For example, once we have set Aijk = 1 (for some k), we will not be
able to allow segment S[i,j+1:j+wk ] to be a motif site. The DA method corresponds
to a grouping scheme (with A sampled together), whereas the GMS corresponds to
a collapsing approach (with Θ integrated out). Both have been shown to improve
upon the original scheme [29].

2.2 Some extensions of the product-multinomial model

The product-multinomial model used for Θ is a first approximation to a realistic
model for transcription factor binding sites. In empirical observations, it has been
reported that certain specific features often characterize functional binding sites.
We mention here a few extensions of the primary motif model that have been
recently implemented to improve the performance of motif discovery algorithms.
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In the previous discussion, the width w of a motif Θ was assumed to be known
and fixed; we may instead view w as an additional unknown model parameter.
Jointly sampling from the posterior distribution of (A, Θ, w) is difficult as the
dimensionality of Θ changes with w. One way to update (w, Θ) jointly would be
through a reversible jump procedure [15]. However, note that we can integrate
out Θ from the posterior distribution to avoid a dimensionality change during the
updating. By placing an appropriate prior distribution p(w) on w (a possible choice
is a Poisson(λ)), we can update w using a Metropolis step. Using a Beta(α1, α2)
prior on π, the marginalized posterior distribution is P (A, w|S) ∝ ID(C(S(Ac)) +

β0)
∏w

i=1

ID(C(S
(A)
i ) + βi)

ID(βi)

B(|A| + α1, L − |A| + α2)

B(α1, α2)
p(w).

Another assumption in the product multinomial model is that all columns
of a weight matrix are independent– however, it has been observed that about
25% of experimentally validated motifs show statistically significant positional
correlations. Zhou and Liu [49] extend the independent weight matrix model
to including one or more correlated column pairs, under the restriction that no
two pairs of correlated columns can share a column in common. A Metropolis-
Hastings step is added in the Gibbs sampler [28] that deletes or adds a pair of
correlated column at each iteration. Other proposed models are a Bayesian tree-
like network modeling the possible correlation structure among all the positions
within a motif model [4], and a permuted Markov model in which the assumption
is that an unobserved permutation has acted on the positions of all the motif sites
and that the original ordered positions can be described by a Markov chain [48].
Mathematically, the model [49] is a sub-case of [48], which is, in turn, a sub-case
of [4].

3 Discovery of regulatory modules

Motif predictions for higher eukaryotic genomes are more challenging than that for
simpler organisms such as bacteria or yeast, for reasons such as (i) large sections of
low-complexity regions (repeat sequences), (ii) weak motif signals, (iii) sparseness
of signals compared to entire region under study-binding sites may occur as far
as 2000—3000 bases away from the transcription start site, either upstream or
downstream. In addition, in complex eukaryotes, regulatory proteins often work
in combination to regulate target genes, and their binding sites have often been
observed to occur in spatial clusters, or cis-regulatory modules (Figure 1). One
approach to locating cis-regulatory modules (CRMs) is by predicting novel motifs
and looking for co-occurrences [41]. However, since individual motifs in the cluster
may not be well-conserved, such an approach often leads to a large number of
false negatives. Here, we describe a strategy to first use existing de novo motif
finding algorithms and motif databases to compose a list of putative binding motifs,
D = {Θ1, · · · , ΘD}, where D is in the range of 50 to 100, and then simultaneously
update these motifs and estimate the posterior probability for each of them to be
included in the CRM [17].

Let S denote the set of n sequences with lengths L1, L2, · · · , Ln, respectively,
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Figure 1: Graphical illustration of a CRM

corresponding to the upstream regions of n co-regulated genes. We assume that
the CRM consists of K different kinds of motifs with distinctive PWMs. Both the
PWMs and K are unknown and need to be inferred from the data. In addition to
the indicator variable A defined in Section 2, we define a new variable ai,j , that
denotes the location of the jth site (irrespective of motif type) in the ith sequence.
Let a = {aij ; i = 1, · · · , n; j = 1, · · · , Li}. Associated with each site is its type

indicator Ti,j , with Ti,j taking one of the K values (Let T = (Tij)). Note that the
specification (a, T ) is essentially equivalent to A.

Next, we model the dependence between Ti,j and Ti,j+1 by a K × K proba-
bility transition matrix τ . The distance between neighboring TFBSs in a CRM,
dij = ai,j+1 − ai,j , is assumed to follow Q( ; λ, w), a geometric distribution trun-
cated at w, i.e. Q(d; λ, w) = (1−λ)d−wλ (d = w, w + 1, · · · ). The distribution of
nucleotides in the background sequence is a multinomial distribution with unknown
parameter ρ = (ρA, · · · , ρT ).

Next, we let u be a binary vector indicating which motifs are included in
the module, i.e. u = (u1, · · · , uD)T , where uj = 1(0) if the j th motif type is
present (absent) in the module. By construction, |u| = K. Thus, the information
regarding K is completely encoded by u. In light of this notation, the set of PWMs
for the CRM is defined as Θ = {Θj : uj = 1}. Since now we restrict our inference
of CRM to a subset of D, the probability model for the observed sequence data
can be written as:

P (S |D,τ ,u,λ,ρ)=
∑

a

∑

T

P (S |a,T ,D,τ ,u,λ, ρ)P (a |λ)P (T |a, τ ).

From the above likelihood formulation, we need to simultaneously estimate the
optimal u and the parameters (D, τ , λ, ρ). To achieve this, we first prescribe a
prior distribution on the parameters and missing data:

P (D, τ , u, λ, ρ) = f1(D | u)f2(τ | u)f3(ρ)g1(u)g2(λ).

Here the fi(·)’s are (product) Dirichlet distributions. Assuming each ui takes the
value 1 with a prior probability of π (i.e. π is the prior probability of including
a motif in the module), g1(u) represents a product of D Bernoulli(π) distribu-
tions; and g2(λ), a generally flat Beta distribution. More precisely, we assume
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a priori that Θi ∼
∏w

j=1 Dirichlet(βij) (for i = 1, · · · , D); ρ ∼ Dirichlet(β0);
λ ∼ Beta(a, b). Given u (with |u| = K), each row of τ is assumed to follow an
independent Dirichlet. Let the i th row vi|u ∼ Dirichlet(αi), where i = 1, · · · , K.

Let Ω = (D,τ ,λ,ρ) denote the full parameter set. Then the posterior distri-
bution of Ω has the form

P (Ω, u |S)∝P (S |u,Ω)f1(D|u)f2(τ |u)f3(ρ)g1(u)g2(λ). (3.1)

Gibbs sampling approaches were developed to infer the CRM from a special case
of the posterior distribution (3.1) with fixed u [44, 51]. Given the flexibility of
the model and the size of the parameter space for an unknown u, it is unlikely
that a standard MCMC approach can converge to a good solution in a reasonable
amount of time. If we ignore the ordering of sites T and assume components of a

to be independent, this model is reduced to the original motif model in Section 2
which can be updated through the previous Gibbs or DA procedure.

3.1 A hybrid EMC-DA approach: EMCmodule

With a starting set of putative binding motifs D, an alternative approach was
proposed by Gupta and Liu [17], which involves simultaneously modifying the
motifs and estimating the posterior probability for each of them to be included
in the CRM. This was acheived through iterations of the following Monte Carlo
sampling steps: (i) Given the current collection of motif PWMs (or sites), sample
motifs into the CRM by evolutionary Monte Carlo (EMC); (ii) Given the CRM
configuration and the PWMs, update the motif site locations through DA; and
(iii) Given motif site locations, update all parameters including PWMs.

3.1.1 Evolutionary Monte Carlo for module selection

It has been demonstrated that the EMC method is effective for sampling and op-
timization with functions of binary variables [26]. Conceptually, we should be able
to apply EMC directly to select motifs comprising the CRM, but a complication
here is that there are many continuous parameters such as the Θj ’s, λ, and τ

that vary in dimensionality when a putative motif in D is included or excluded
from the CRM. We therefore integrate out the continuous parameters analytically
and condition on variables a and T when updating the CRM composition. Let
Ω(u) = (Θ, ρ, τ , λ) denote the set of all parameters in the model, for a fixed u.
Then, the marginalized conditional posterior probability for a module configura-
tion u is:

P (u |a,T ,S)∝π|u|(1 − π)D−|u|

∫
P (S |a,T , Ω(u))P (Ω(u) | u)dΩ(u), (3.2)

where only Θ and τ are dependent on u; and a and T are the sets of locations and
types, respectively, of all putative motif sites (for all the D motifs in D). Thus,
only when the indicator ui for the weight matrix Θi is 1, do its site locations and
types contribute to the computation of (3.2). When we modify the current u by
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excluding a motif type, its site locations and corresponding motif type indicators
are removed from the computation of (3.2).

For EMC, we need to prescribe a set of temperatures, t1 > t2 > · · · > tM = 1,
one for each member in the population. Then, we define φi(ui) ∝ exp[log P (ui |

a, T , S)/ti], and φ(U ) ∝
∏M

i=1 φi(ui). The “population” U = (u1, · · · , uM ) is
then updated iteratively using two types of moves: mutation and crossover.

In the mutation operation, a unit uk is randomly selected from the current
population and mutated to a new vector vk by changing the values of some of
its bits chosen at random. The new member vk is accepted to replace uk with
probability min(1, rm), where rm = φk(vk)/φk(uk).

In the crossover step, two individuals, uj and uk, are chosen at random from
the population. A crossover point x is chosen randomly over the positions 1 to D,
and two new units vj and vk are formed by switching between the two individuals
the segments on the right side of the crossover point. The two “children” are
accepted into the population to replace their parents uj and uk with probability

min(1, rc), where rc =
φj(vj)φk(vk)
φj(uj)φk(uk) . If rejected, the parents are kept unchanged.

On convergence, the samples of uM (for temperature tM = 1) follow the target
distribution (3.2).

3.1.2 Sampling motif sites A through recursive DA

The second part of the algorithm consists of updating the motif sites conditional on
a CRM configuration (i.e., with u fixed). For simplicity, we describe the method
for a single sequence S = (s1, · · · , sL)– the same procedure is repeated for all
sequences in the data set. For simplicity of notation, we assume that all motifs
are of width w. For fixed u, let F (i, j, k,u) = P (s[i,j,k] | Ω(u), u) denote the
probability of observing the part of the sequence S from position i to j, with a
motif of type k {k ∈ D : uk = 1} occupying positions from j − w + 1 to j (k = 0

denotes the background). Let K =
∑D

k=1 uk denote the number of motif types
in the module. For notational simplicity, let us assume that u represents the set
of the first K motifs, indexed 1 through K. Since the motif site updating step is
conditional given u, we drop the subscript u from F (i, j, k,u) in the remaining
part of the section.

In the forward summation step, we recursively calculate the probability of
different motif types ending at a position j of the sequence:

F (1, j, k)=




∑

i<j

K∑

l=1

F (1, i, l)τl,k Q(j−i−w; λ, w) + P (s[1,j−w,0]|ρ)





× F (j−w + 1, j, k).

By convention, the initial conditions are: F (0, 0, k) = 1, (k = 0, 1, · · · , K), and
F (i, j, k) = 0 for j < i and k > 0. In the backward sampling step, we use Bayes
theorem to calculate the probability of motif occurrence at each position, starting
from the end of the sequence. If a motif of type k ends at position i in the sequence,
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the probability that the next motif further ahead in the sequence spans position
(i′ − w + 1) to i′, (i′ 6 i − w), and is of type k′, is:

P (A·,i′−w+1,k′ = 1 | S, Ω, A·,i−w+1,k = 1)

=
F (1, i′, k′) P (s[i′+1,i−w,0]|ρ) F (i−w+1, i, k) Q(i−i′−w; λ, w) τk′,k

F (1, i, k)
.

The required expressions have all been calculated in the forward sum.

Finally, given the motif type indicator u and the motif position and type
vectors a and T , we now update the parameters Ω = (Θ, ρ, τ , λ) by a random
sample from their joint conditional distribution. Since conjugate priors have been
assumed for all parameters, their conditional posterior distributions are also of the
same form and are straightforward to simulate from. For example, the posterior of
Θi will be

∏w

j=1 Dirichlet(βij + nij), where nij is a vector containing the counts
of the 4 nucleotides at the jth position of all the sites corresponding to motif
type i. For those motifs that have not been selected by the module (i.e., with
ui = 0), the corresponding Θ’s still follow their prior distribution. The posterior
distributions of the other parameters can be similarly calculated using conjugate
prior distributions.

3.2 A case-study

We compared the performance of EMCmodule with EM- and Gibbs sampling-
based methods in an analysis of mammalian skeletal muscle regulatory sequences
[44]. The raw data consist of upstream sequences of lengths up to 5000 bp each
corresponding to 24 orthologous pairs of genes in the human and mouse genomes–
each of the sequences being known to contain at least one experimentally reported
transcription-factor binding site corresponding to one of 5 motif types: MEF,
MYF2, SRF, SP1 and TEF. Following the procedure of Thompson et al. [44], we
aligned the sequences for each orthologous pair (human and mouse) and retained
only the parts that shared a percent identity greater than 65%, cutting down the
sequence search space to about 40% of the original sequences.

Using BioProspector and EM (MEME), we obtained initial sets of 100 motifs
including redundant ones. The top-scoring 10 motifs from BioProspector and
MEME respectively contained 2 and 3 matches to the true motif set (of 5). The
Gibbs sampler under a module model [44] found 2 matches, but could find 2 others
with a more detailed and precise prior input (the number of sites per motif and
motif abundance per sequence), which may not be available in real applications.
The best scoring module configuration from EMCmodule contained 3 of the true
5, MYF, MEF2, and SP1, and two uncharacterized motifs. There are few TEF
sites matching the reported consensus in these sequences, which may explain why
they were not found. The relative error rates for the algorithms were compared
using knowledge of the 154 experimentally determined TFBSs [44]. Table 1 shows
that EMCmodule significantly cuts down the percentage of false positives in the
output, compared to the methods that do not adjust for positional clustering of
motifs.
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4 Motif discovery in multiple species

Modeling CRMs enhances the performance of de novo motif discovery because it
allows the use of information encoded by the spatial correlation among TFBS’s in
the same module. Likewise, the use of multiple genomes enhances motif predic-
tion because it allows the use of information from the evolutionary conservation
of TFBS’s in related species. Several recent methods employ such information to
enhance the power of cis-regulatroy analysis. PhyloCon [45] builds multiple align-
ments among orthologs and extends these alignments to identify motif profiles.
CompareProspector [31] biases motif search to more conserved regions based on
conservation scores. With a given alignment of orthologs and a phylogenetic tree,
EMnEM [34], PhyME [40], and PhyloGibbs [39] detect motifs based on more com-
prehensive evolutionary models for TFBS’s. When evolutionary distances among
the genomes are too large for the orthologous sequences to be reliably aligned, Li
and Wong [25] proposed an ortholog sampler that finds motifs in multiple species
independent of ortholog alignments. Jensen et al. [19] used a Bayesian clustering
approach to combine TF binding motifs from promoters of multiple orthologs.

Table 1: Error rates for module prediction methods.

Method MEF MYF SP1 SRF Total SENS SPEC TSpec
EM 0 1 21 0 161 0.14 0.14 0.20
BioProspector 6 1 8 1 155 0.10 0.10 0.36
GS 6 6 2 1 84 0.10 0.25 0.44
GSp∗ 14 14 4 6 162 0.25 0.23 0.60
EMCmodule 12 12 5 7 180 0.23 0.20 0.67
True 32 50 44 28 154 − − −

SENS (sensitivity) ≡ (# predicted true positives)/(# true positives); SPEC (specificity) ≡

(# predicted true positives)/(# predicted sites). TSpec: Total specificity– the fraction of the

predicted motif types that “correspond” to known motifs (match in at least 80% of all positions).

The Gibbs sampler (GS) requires the total number of motif types to be specified (here = 5).

GSp∗ denotes the GS using a strong informative prior.

In this section, we review in details the coupled hidden Markov model (c-
HMM) developed by Zhou and Wong [52] (ZW hereafter) as an example for mo-
tif discovery that utilizes information from cis-regulatory modules and multiple
genomes. The authors use a hidden Markov model (HMM) to capture the co-
localization tendency of multiple TFBS’s within each species, and then couple the
hidden states (which indicate the locations of modules and TFBS’s within the
modules) of these HMMs through multiple-species alignment. They developed
evolutionary models separately for background nucleotides and for motif binding
sites, in order to capture the different degrees of conservation among the back-
ground and among the binding sites. A Markov chain Monte Carlo algorithm is
devised for sampling CRMs and their component motifs simultaneously from their
joint posterior distribution.
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4.1 The coupled hidden Markov model

The input data consist of upstream or regulatory sequences of n (co-regulated)
genes from N species, i.e., a total of n × N sequences. Assuming these genes are
regulated by CRMs composed of binding sites of K TFs, one wants to find these
TFBS’s and their motifs (PWMs). Assume that the N species are closely related
in the sense that their orthologous TFs share the same binding motif, which applies
to groups of species within mammals, or within Drosophila, etc.

Let us first focus on the module structure in one sequence. Assume that the
sequence is composed of two types of regions, modules and background. A module
contains multiple TFBS’s separated by background nucleotides, while background
regions contain only background nucleotides. Accordingly, we assume that the
sequence is generated from a hidden Markov model with two states, a module
state (M) and a background state (B). In a module state, the HMM either emits
a nucleotide from the background model (of nucleotide preference) θ0, or it emits
a binding site of one of the K motifs (PWMs) Θ1, Θ2, · · · , ΘK . The probability
for emission from θ0 and Θk(k = 1, 2, · · · , K) is denoted by q0 and qk, respectively

(
∑K

k=0 qk = 1) (Figure 4.1A). Note that a module state can be further decomposed
to K + 1 states, corresponding to within-module background (M0) and K motif
binding sites (M1 to MK), i.e. M = {M0, M1, · · · , MK}. Assuming that the
width of motif k is wk, a binding site of this motif, a piece of sequence of length
wk, is treated as one state of Mk as a whole (k = 1, 2, · · · , K). The transition
probability from a background to a module state is r, i.e., the chance of initiating a
new module is r. The transition probability from a module state to a background
state is t, i.e., the expected length of a module is 1/t. Denote the transition matrix
by

T =

[
T (B, B) T (B, M)
T (M, B) T (M, M)

]
=

[
1 − r r

t 1 − t

]
. (4.1)

This model can be viewed as a stochastic version of the hierarchical mixture model
defined in [51].

The HMMs in different orthologs are coupled through multiple alignment,
so that the hidden states of aligned bases in different species are collapsed into
a common state (Figure B). For instance, the nucleotides of state 4 in the three
orthologs are aligned in Figure B. Thus these three states are collapsed into one
state, which determines whether these aligned nucleotides are background or bind-
ing sites of a motif. (Note that these aligned nucleotides in different orthologs are
not necessarily identical.) Here hidden states refer to the decomposed states, i.e.
B and M0 to MK , which specify the locations of modules and motif sites. This
coupled hidden Markov model (c-HMM hereafter) has a natural graphical model
representation (lower panel of Figure B), in which each state is represented by
a node in the graph and the arrows specify the dependence among them. The
transition (conditional) probabilities for nodes with a single parental node are de-
fined by the same T in equation 4.1. We define the conditional probability for
a node with multiple parents as follows: If node Y has m parents, each in state
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Yi (i = 1, 2, · · · , m), then we have

P (Y |Y1, · · · , Ym) =
CB

m
T (B, Y ) +

CM

m
T (M, Y ), (4.2)

where CB and CM are the numbers of the parents in states B and M , respectively
(m = CB + CM ). This equation shows that the transition probability to a node
with multiple parents is defined as the weighted average from the parental nodes
in background states and module states. The same emission model described in
the previous paragraph is used for unaligned states. For aligned (coupled) states,
ZW assume star-topology evolutionary models with one common ancestor. The
c-HMM first emits (hidden) ancestral nucleotides by the emission model defined
in Figure 2A given the coupled hidden states. Then, different models are used for
the evolution from the ancestral to descendant nucleotides depending on whether
they are background or TFBS’s.

(A) (B) (C)

Figure 2: The coupled hidden Markov model (c-HMM). (A) The HMM for module
structure in one sequence. (B) Multiple alignment of three orthologous sequences (upper
panel) and its corresponding graphical model representation of the c-HMM (lower panel).
The nodes represent the hidden states. The vertical bars in the upper panel indicate that
the nucleotides emitted from these states are aligned and thus collapsed in the lower panel.
Note that a node will emit wk nucleotides if the corresponding state is Mk (k = 1, · · · , K).
(C) The evolutionary model for motifs using one base of a motif as an illustration. The
hidden ancestral base is Z, which evolves to three descendant bases X(1), X(2), and
X(3). Here the evolutionary bond between X(1) and Z is broken, implying that X(1)

is independent of Z. The bond between X(2) and Z and that between X(3) and Z are
connected, which means that X(2) = X(3) = Z.

A neutral substitution matrix is used for the evolution of aligned background
nucleotides, both within and outside of modules, with a transition rate of α and a
transversion rate of β:

Φ =





1 − µb β α β
β 1 − µb β α
α β 1 − µb β
β α β 1 − µb



 , (4.3)

where the rows and columns are ordered as A, C, G, and T, and µb = α + 2β is
defined as the background mutation rate. ZW assume an independent evolution



192 Qing Zhou, Mayetri Gupta

for each position (column) of a motif under the nucleotide substitution model of
Felsenstein [13]. Suppose the weight vector of a particular position in the motif is θ.
The ancestral nucleotide, denoted by Z, is assumed to follow a discrete distribution
with the probability vector θ on {A, C, G, T}. If X is a corresponding nucleotide in
a descendant species, then either X inherits Z directly (with probability µf ) or it is
generated independently from the same weight vector θ (with probability 1−µf ).
The parameter µf , which is identical for all the positions within a motif, reflects the
mutation rate of the TFBS’s. This model takes PWM into account in the binding
site evolution, which agrees with the non-neutral constraint of TFBS’s that they
are recognized by the same protein (TF). It is obvious that under this model,
the marginal distribution of any motif column is identical in all the species. This
evolutionary model introduces another hidden variable which indicates whether
X is identical to or independent of Z for each base of an aligned TFBS. These
indicators are called evolutionary bonds between ancestral and descendent bases
(Figure 4.1C). If X = Z, we say that the bond is connected; If X is independent
of Z, we say that the bond is broken.

4.2 Gibbs sampling and Bayesian inference

The full model involves the following parameters: the transition matrix T de-
fined in equation 4.1, the mixture emission probabilities q0, q1, · · · , qK , the motif
widths w1, · · · , wK , the PWMs Θ1, · · · , ΘK , the background models for ancestral
nucleotides and all current species, and the evolutionary parameters α, β, and
µf . The number of TFs, K, and the expected module length, L, are taken as
input, and the transition probability t is fixed to t = 1/L in T . Compared to
the HMx model in [51], this model has three extra free parameters, α, β, and
µf , related to the evolutionary models. Independent Poisson priors are put on
motif widths and flat Dirichlet distributions are used as priors for all the other
parameters. With a given alignment for each ortholog group, one may treat as
missing data the locations of modules and motifs (i.e. the hidden states), the
ancestral sequences, and the evolutionary bonds. ZW develop a Gibbs sampler
(called MultiModule, hereafter) to sample from the joint posterior distribution of
all the unknown parameters and missing data. To consider the uncertainty in mul-
tiple alignment, they adopt an HMM-based multiple alignment [3, 22] conditional
on the current parameter values. This is achieved by adding a Metropolis-Hastings
step in the Gibbs sampler to update these alignments dynamically according to
the current sampled parameters, especially the background substitution matrix Φ
(equation 4.3). In summary, the input data of MultiModule are groups of ortholo-
gous sequences, and the program builds an initial alignment of each ortholog group
by a standard HMM-based multiple alignment algorithm. Then each iteration of
MultiModule is composed of three steps: (1) Given alignments and all the other
missing data, update motif widths and other parameters by their conditional pos-
terior distributions; (2) Given current parameters, with probability u, update the
alignment of each ortholog group; (3) Given alignments and parameters, a dynamic
programming approach is used to sample module and motif locations, ancestral
sequences, and evolutionary bonds. The probability u is typically chosen in the
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range [0.1, 0.3]. (See ref[52] for the details of the Gibbs sampling of MultiModule.)

Motif and module predictions are based on their marginal posterior distri-
butions constructed by the samples generated by MultiModule after some burn-in
period (usually the first 50% of iterations). The width of each motif is estimated
by its rounded posterior mean. MultiModule records the following posterior prob-
abilities for each sequence position in all the species: (1) Pk, the probability that
the position is within a site for motif k, i.e., the hidden state is Mk (k = 1, 2, · · · ,
K); (2) Pm, the probability that the position is within a module, i.e., the hidden
state is M ; (3) Pa, the probability that the position is aligned. All the contiguous
segments with Pk > 0.5 are aligned (and extended if necessary) to generate pre-
dicted sites of motif k given the estimated width wk. The corresponding average
Pa over the bases of a predicted site is reported as a measure of its conservation.
All the contiguous regions with Pm > 0.5 are collected as candidates for mod-
ules, and a module is predicted if the region contains at least two predicted motif
binding sites. The boundary of a predicted module is defined by the first and last
predicted binding sites it contains.

Under the c-HMM, if one fixes r = 1 − t = 1 in the transition matrix T
(equation 4.1), then MultiModule reduces to a motif discovery method, assuming
the existence of K motifs in the sequences. This setting is useful when the motifs
do not form modules, and it is defined as the motif mode of MultiModule in [52].

4.3 Simulation studies

Here we present the simulation studies conducted in [52] to illustrate the use of
MultiModule. The authors used the following model to simulate data sets in this
study: They generated 20 hypothetical ancestral sequences, each of length 1000
bps. Twenty modules, each of 100 bps and containing one binding site of each of the
three TFs, were randomly placed in these sequences. TFBS’s were simulated from
their known weight matrices with logo plots [38] shown in Figure 3. Then based on
the choices of the background mutation rate µb (with α = 3β in equation 4.3) and
the motif mutation rate µf , they generated sequences of three descendant species
according to the evolutionary models in section 4.1. The indel (insertion-deletion)
rate was fixed to 0.1µb. After the ancestral sequences were removed, each data
set finally contains 60 sequences from three species. The simulation study was
composed of two groups of data sets, and in both groups they set µf = 0.2µb but
varied the value of µb. In the first group, they set µb = 0.1 to mimic the case
where species are evolutionarily close. In the second group, they set µb = 0.4 to
study the situation for remotely related species. For each group 10 data sets were
generated independently.

MultiModule was applied to these data sets under three different sets of
program parameters: (A) Module mode, L = 100, u = 0.2; (B) Motif mode,
u = 0.2; (C) Motif mode, u = 0. For each set of parameters, they ran MultiModule
for 2,000 iterations with K = 3, searching both strands of the sequences. Initial
alignments were built by ordinary HMM based multiple alignment methods. If
u = 0, these initial alignments were effectively fixed along the iterations.

The results are summarized in Table 2, which includes the sensitivity, the
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Figure 3: Logo plots for the motifs in the simulated studies: (A) Oct4, (B) Sox2, and
(C) Nanog

specificity, and an overall measurement score of the performance, defined as the
geometric average of the sensitivity and specificity. One sees that updating align-
ments improves the performance for both µb = 0.1 and 0.4, and the improvement is
more significant for the latter setting (compare results of B and C in Table 2). The
reason is that the uncertainty in alignments for the cases with µb = 0.4 is higher
than that for µb = 0.1, and thus updating alignments, which aims to average over
different possible alignments, has a greater positive effect. Considering module
structure shows an obvious improvement for µb = 0.1, but it is only slightly better
than running the motif mode for µb = 0.4 (compare A and B in Table 2). For
µb = 0.4, MultiModule found all the three motifs under both parameter settings
(A and B) for five data sets, and the predictions in A with an overall score of 70%
definitely outperformed that in B with an overall score of 58%. For the other five
data sets, no motifs were identified in setting A, but in setting B (motif mode)
subsets of the motifs were still identified for some of the data sets. This may
be caused by the slower convergence of MultiModule in setting A, because of its
higher model complexity, especially when the species are farther apart. One pos-
sible quick remedy of this is to use the output from setting B as initial values for
setting A, which will be a much better starting point for the posterior sampling.

Table 2: Results for the simulation study

Oct4 (60) Sox2 (60) Nanog (60) Three motifs in total
N2/N1 N2/N1 N2/N1 Sen Spe Overall

(A) 38.7/57.4 51.6/66.0 40.8/46.3 73% 77% 75%
(B) 27.7/45.3 52.2/91.3 27.6/37.8 60% 62% 61%
(C) 22.2/36.7 42.4/89.6 23.6/39.0 49% 53% 51%
(A) 18.8/24.8 22.7/30.6 21.0/33.9 35% 70% 49%
(B) 9.3/29.4 34.0/51.1 21.7/31.6 36% 58% 46%
(C) 5.1/8.1 14.2/18.2 8.3/14.2 15% 68% 32%

N2 and N1 refer to the numbers of correct and total predictions for each motif, respectively. TF

names are followed by the numbers of true sites in parentheses. The upper and lower halves

refer to the average results over 10 independently generated data sets with µb = 0.1 and 0.4,

respectively. “Overall” is the geometric average of sensitivity (“Sen”) and specificity (“Spe”).

For each data set, the optimal results (in terms of overall score) among three independent runs

under the same parameters were used for the calculation of averages. Parameter sets (A), (B),

(C) are defined as: (A) Module mode, L = 100, u = 0.2; (B) Motif mode, u = 0.2; (C) Motif

mode, u = 0.
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MultiModule has also been tested on two well-annotated data sets from the
human and the Drosophila genomes, and the results were compared to experimen-
tal validations. Please see [52] for more details.

5 Motif learning on ChIP-chip data

In recent years, a number of computational approaches have been developed to
combine motif discovery with gene expression or ChIP-chip data, e.g., [7, 9, 10,
20]. These approaches identify a group of motifs, and then correlate expression
values (or ChIP-intensity) to the identified motifs via linear or other regression
techniques.

The use of ChIP-chip data has great advantage in understanding TF-DNA
binding: Such data not only provide hundreds or even thousands of high res-
olution TF binding regions, but also give quantitative measures of the binding
activity (ChIP-enrichment) for such regions. In this section, we introduce a new
approach developed by Zhou and Liu [50] (ZL hereafter) for motif learning from
ChIP-chip data, to illustrate the general framework of this type of methods. In
contrast to many approaches that directly build generative statistical models in
the sequence space such as those discussed in the previous sections, ZL map each
ChIP-chip binding region into a feature space composed of generic features, back-
ground frequencies, and a set of motif scores derived from both known motifs
documented in biological databases and motifs discovered de novo. Then, they
apply the Bayesian additive regression trees (BARTs) [8] to learn the relationship
between ChIP-intensity and these sequence features. As the sum of a set of trees,
the BART model is flexible enough to approximate almost any complex relation-
ship between responses and covariates. With carefully designed priors, each tree
is constrained to be a weak learner, only contributing a small amount to the full
model, which effectively prevents the BART model from overfitting. The learn-
ing of the model is carried out by Markov chain Monte Carlo sampling of the
posterior BART distribution that lives in the additive tree space, which serves to
average over different BART models. These posterior draws of BARTs also pro-
vide a natural way to rank the importance of each sequence feature in explaining
ChIP-intensity.

Compared to other motif learning approaches with auxiliary data, there are
at least two unique features of the Zhou-Liu method [50]. First, the features
(or covariates) used in the method contain not only the discovered motifs, but
also known motifs, background word frequencies, and other features such as the
GC content and cross-species conservation. Second, the additive regression tree
model is more flexible and robust than the regression methods used in the other
approaches. These advantages will be illustrated in the application of this method
to a recently published genome-wide human ChIP-chip data set.

Consider a set of n DNA sequences {S1,S2, · · · ,Sn}, each with a ChIP-chip
intensity yi that measures the level of enrichment of that segment (fold changes)
compared to the normal genomic background. In principle, the yi serves as a
surrogate of the binding affinity of the TF to the corresponding DNA segment in
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the genome. We write {(yi,Si), for i = 1, 2, · · · , n}. For each Si, we extract p
numerical features xi = [xi1, · · · , xip], and transform the dataset to {(yi,xi)}

n
i=1,

on which we “learn” a relationship between yi and xi using the BART model.
The details on how to extract features from each sequence Si will be described
in section 5.1. In comparison to the standard statistical learning problem, two
novel features of the problem described here are that (a) the response variable yi

is continuous instead of categorical; and (b) the features are not given a priori,
but need to be produced from the sequences by the researcher.

5.1 Feature extraction

Zhou and Liu [50] extract three categories of sequence features from a repeat-
masked DNA sequence, the generic, the background, and the motif features. The
generic features include the length, the GC content, and the average conservation
of the sequence. For background features, they compute the number of occurrences
of each k-mer (only for k = 2 and 3 in this paper) in the sequence. They count
both forward and backward strands of the DNA sequence, and merge the counts of
each k-mer and its reverse complement. For each value of k, if there are Ck distinct
words after merging reverse complements, only the frequencies of (Ck −1) of them
will be included in the feature vector since the last one is uniquely determined by
the others. Note that the zeroth order frequency (k = 1) is equivalent to the GC
content.

The motif features are extracted from a compiled set of motifs, each paramet
rized by a PWM. The compiled set includes known motifs from TF databases
such as TRANSFAC [46] or JASPAR [37], and new motifs found from the posi-
tive ChIP sequences in the data set of interest using a de novo motif search tool.
ZL fit a segment-wise homogeneous first-order Markov chain as the background
sequence model [27], which helps to account for the heterogeneous nature of ge-
nomic sequences such as regions of low complexities (eg. GC/AT rich). Intuitively,
this model assumes that the sequence in consideration can be segmented into an
unknown number of pieces and within each piece the nucleotides follow a ho-
mogeneous first-order Markov chain. Using a Bayesian formulation and Markov
chain Monte Carlo, one estimates the background transition probability of each
nucleotide. Suppose the current sequence is S = R1R2 · · ·RL, the PWM of a mo-
tif of width w is Θ = Θi(j) (i = 1, · · · , w, j = A, C, G, T), and the background
transition probability of Rn given Rn−1 is θ0(Rn|Rn−1) (1 6 n 6 L). For each
w-mer in S, say Rn · · ·Rn+w−1, we calculate a probability ratio

r =

w∏

i=1

Θi(Rn+i−1)

θ0(Rn+i−1|Rn+i−2)
. (5.1)

Considering both strands of the sequence, we have 2 × (L − w + 1) such ratios.
Then the motif score for this sequence is defined as log(

∑m

k=1 r(k)/L), where r(k)

is the kth ratio in descending order. In [50], the authors take m = 25, i.e., the top
25 ratios are included.
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5.2 Bayesian additive regression trees

Here we give a brief review of the Bayesian additive regression tree (BART) model
developed in [8]. Let Y be the response variable and X = [X1, · · · , Xp], the feature
vector. Let T denote a binary tree with a set of interior and terminal nodes. Each
interior node is associated with a binary decision rule based on only one feature,
typically of the form {Xj 6 a} or {Xj > a}, for 1 6 j 6 p. Suppose the number of
terminal nodes of T is B. Then, the tree partitions the feature space into B disjoint
regions, each associated with a parameter µb (b = 1, · · · , B) (see Figure 4 for an
illustration). Consequently, the relationship between Y and X is approximated by
a piece-wise constant function with B distinct pieces. Let M = [µ1, · · · , µB ], and
we denote this tree-based piece-wise constant function by g(X, T, M). The additive
regression tree model is simply a sum of N such piece-wise constant functions:

Y =

N∑

m=1

g(X, Tm, Mm) + ǫ, ǫ ∼ N(0, σ2), (5.2)

in which each tree Tm is associated with a parameter vector Mm (m = 1, · · · , N).
The number of trees N is usually large (100 to 200), which makes the model flexible
enough to approximate a complex relationship between Y and X. We assume that
each observation {(yi,xi)}, i = 1, · · · , n, follows Eq. (5.2) and is independent of
each other.

Figure 4: A regression tree with two interior and three terminal nodes. The decision
rules partition the feature space into three disjoint regions: {X1 6 c, X2 6 d}, {X1 6

c, X2 > d}, and {X1 > c}. The mean parameters attached to these regions are µ1, µ2,
and µ3, respectively

To complete a Bayesian inference based on model (5.2), one needs to prescribe
prior distributions for both the tree structures and the associated parameters, Mm

and σ2. The prior distribution for the tree structure is specified conservatively
in [8] so that the size of each tree is kept small, which forces it to be a weak
learner. The priors on Mm and σ2 also contribute to preventing from overfitting.
In particular, the prior probability for a tree with 1, 2, 3, 4, and > 5 terminal
nodes is 0.05, 0.55, 0.28, 0.09, and 0.03, respectively.

Chipman et al. [8] developed a Markov chain Monte Carlo approach (BART



198 Qing Zhou, Mayetri Gupta

MCMC) to sample from the posterior distribution

P ({(Tm, Mm)}N
m=1, σ

2 | {(yi,xi)}
n
i=1). (5.3)

Note that the tree structures are also updated along with MCMC iterations.
Thus, the BART MCMC generates a large number of samples of additive trees,
which form an ensemble of models. Now given a new feature vector x∗, instead
of predicting its response y∗ based on the “best” model, BART predicts y∗ by
the average response of all sampled additive trees. More specifically, suppose
one runs BART MCMC for J iterations after the burin-in period, which gen-
erates J sets of additive trees. For each of them, BART has one prediction:

y∗(j) =
∑N

m=1 g(x∗, T
(j)
m , M

(j)
m ) (j = 1, · · · , J). These J predicted responses may

be used to construct a point estimate of y∗ by the plain average, as used in the
following applications, or an interval estimate by the quantiles. Thus, BART has
the nature of Bayesian model average.

5.3 Application to human ChIP-chip data

Zhou and Liu [50] applied BART to two recently published ChIP-chip data sets of
the TFs Oct4 and Sox2 in human embryonic stem (ES) cells [5]. The performance
of BART was compared with those of linear regressions [9], MARS [14, 10], and
neural networks, respectively, based on ten-fold cross validations. The DNA micro-
array used in [5] covers −8 kb to +2kb of ∼17,000 annotated human genes. A
Sox-Oct composite motif (Figure 8) was identified consistently in both sets of
positive ChIP-regions using de novo motif discovery tools (e.g., [23]). This motif
is known to be recognized by the protein complex of Oct4 and Sox2, the target
TFs of the ChIP-chip experiments. Combined with all the 219 known high-quality
PWMs from TRANSFAC and the PWMs of 4 TFs with known functions in ES
cells from the literature, a final list of 224 PWMs were compiled for motif feature
extraction. Here we present their cross-validation results on the Oct4 ChIP-chip
data as a comparative study of several competing motif learning approaches.

Figure 5: The Sox-Oct composite motif discovered in the Oct4 positive ChIP-regions

Boyer et al. [5] reported 603 Oct4-ChIP enriched regions (positives) in human
ES cells. ZL randomly selected another 603 regions with the same length distribu-
tion from the genomic regions targeted by the DNA microarray (negatives). Note
that each such region usually contains two or more neighboring probes on the
array. A ChIP-intensity measure, which is defined as the average array-intensity
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ratio of ChIP samples over control samples, is attached to each of the 1206 ChIP-
regions. We treat the logarithm of the ChIP-intensity measure as the response
variable, and those features extracted from the genomic sequences as explanatory
variables. There are a total of 1206 observations with 224 + 45 = 269 features
(explanatory variables) for this Oct4 data set.

ZL used the following methods to perform statistical learning on this data set:
(1) LR-SO, linear regression using the Sox-Oct composite motif only; (2) LR-Full,
linear regression using all the 269 features; (3) Step-SO, stepwise linear regression
starting from LR-SO; (4) Step-Full, stepwise linear regression starting from LR-
Full; (5) NN-SO, neural networks with the Sox-Oct composite motif feature as
input; (6) NN-Full, neural networks with all the features as input; (7) MARS,
multivariate adaptive regression splines using all the features with different tuning
parameters; (8) BART with different number N of trees ranging from 20 to 200.

In Step-SO, one started from the LR-SO model, and used the stepwise method
(with both forward and backward steps) to add or delete features in the linear re-
gression model based the AIC criterion (see R function “step”). The Step-Full was
performed similarly, but starting from the LR-Full model. For neural networks,
ZL used the R package “nnet” with different combinations of the number of hid-
den nodes (2, 5, 10, 20, 30) and weight decay (0, 0.5, 1.0, 2.0). For MARS, they
used the function “mars” in the R package “mda” made by Hastie and Tibshirani,
with up to two-way interactions and a wide range of penalty terms. For BART,
they ran 20,000 iterations after a burn-in period of 2,000 iterations, and used the
default settings in the R package “BayesTree” for all other parameters.

The ten-fold cross validation procedure in [50] was conducted as follows.
They first divided the observations into ten subgroups of equal sizes at random.
Each time, one subgroup (called “the test sample”) was left out and the remaining
nine subgroups (called “the training sample”) were used to train a model using the
stated method. Then, they predicted the responses for the test sample based on
the trained model and compared them with the observed responses. This process
was continued until every subgroup had served as the test sample once. In [50],
the authors used the correlation coefficient between the predicted and observed
responses as a measure of the goodness of a model’s performance. This measure
is invariant under linear transformation, and can be intuitively understood as the
fraction of variation in the response variable that can be explained by the features
(covariates). We call this measure the CV-correlation (or CV-cor) henceforth.

The cross validation results are given in Table 3. The average CV-correlation
(over 10 cross validations) of LR-SO is 0.446, which is the lowest among all the
linear regression methods. Since all the other methods use more features, this
shows that sequence features other than the target motif itself indeed contribute
to the prediction of ChIP-intensity. Among all the linear regression methods,
Step-SO achieves the highest CV-cor of 0.535. Only the optimal performance
among all the combinations of parameters were reported for the neural networks.
However, even these optimal results are not satisfactory. The NN-SO showed
a slight improvement in CV-cor over that of LR-SO. For different parameters
(the number of hidden nodes and weight decay), NN-SO showed roughly the same
performance except for those with 20 or more hidden nodes and weight decay =
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0, which overfitted the training data. The neural network with all the features as
input encountered a severe overfitting problem, resulting in CV-cor’s < 0.38, even
worse than that of LR-SO. In order to relieve the overfitting problem for NNs,
ZL reduced the input independent variables to those selected by the stepwise
regression (about 45), and employed a weight decay of 1.0 with 2, 5, 10, 20, or
30 hidden nodes. More specifically, for each training data set, they performed
Step-SO followed by NNs with features selected by the Step-SO as input. Then
they calculated the CV-cor’s for the test data. We call this approach Step+NN,
and it reached an optimal CV-cor of 0.463 with 2 hidden nodes.

ZL applied MARS to this data set under two settings: the one with no in-
teraction terms (d = 1) and the one considering two-way interactions (d = 2).
For each setting, they chose different values of the penalty λ, which specifies the
cost per degree of freedom. In the first setting (d = 1), they set the penalty
λ = 1, 2, · · · , 10, and observed that the CV-cor reaches its maximum of 0.580
when λ = 6. Although this optimal result is only slightly worse than that of
BART (Table 3), we note that the performance of MARS was very sensitive to the
choice of λ. With λ = 2 or 1, MARS greatly overfitted the training data, and the
CV-cor’s dropped to 0.459 and 0.283, respectively, which are almost the same or
even worse than that of LR-SO. MARS with two-way interactions (d = 2) showed
unsatisfactory performance for λ 6 5 (i.e., CV-cor < 0.360). They then tested λ
in the range of [10, 50] and found the optimal CV-cor of 0.561 when λ = 20.

Table 3: Ten-fold cross validations for log-ChIP-intensity prediction on

the Oct4 ChIP-chip data

Method Cor Imprv Method Cor Imprv
LR-SO 0.446 0% LR-Full 0.491 10%

Step-SO 0.535 20% Step-Full 0.513 15%

NN-SO 0.468 5% Step+NN 0.463 4%

MARS1,6 0.580 30% MARS1,1 0.283 −37%

MARS2,20 0.561 26% MARS2,4 0.337 −24%
BART20 0.592 33% BART40 0.599 34%
BART60 0.596 34% BART80 0.597 34%
BART100 0.600 35% BART120 0.599 34%
BART140 0.599 34% BART160 0.594 33%
BART180 0.595 33% BART200 0.593 33%
Step-M 0.456 2% BART-M 0.510 14%
MARS1,6-M 0.511 15% MARS2,20-M 0.478 7%

Reported here are the average CV-correlations (Cor). LR-SO, LR-Full, Step-SO, Step-Full, NN-

SO, and Step+NN are defined in the text. MARSa,b refers to the MARS with d = a and λ = b.

BARTm is the BART with m trees. Step-M, MARSa,b-M, and BART-M are Step-SO, the

optimal MARS, and BART100 with only motif features as input. The improvement (“Imprv”)

is calculated by Cor/Cor(LR-SO)−1.

Notably, BARTs with different number of trees outperformed all the other
methods uniformly. BARTs reached a CV-cor of about 0.6, indicating a greater
than 30% of improvement over that of LR-SO and the optimal NN, and more
than 10% of improvement over the best performance of the stepwise regression
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method. In addition, the performance of BART was very robust for different
choices of the number of trees included. This is a great advantage over MARS,
whose performances depended strongly on the choice of the penalty parameter λ,
which is typically difficult for the user to set a priori. Compared to NNs, BART
is much less prune to overfitting, which may be attributable to its Bayesian model
averaging nature with various conservative prior specifications.

To further illustrate the effect of non-motif features, ZL did the following
comparison. They excluded non-motif features from the input, and applied BART
with 100 trees, MARS (d = 1, λ = 6), MARS (d = 2, λ = 20), and Step-SO to the
resulting data set to perform ten-fold cross validations. In other words, the fea-
ture vectors contained only the 224 motif features. The CV-correlations of these
approaches are given in Table 3, denoted by BART-M, MARS1,6-M, MARS2,20-
M and Step-M, respectively. It is observed that the CV-correlations decreased
substantially (about 12% to 15%) compared to the corresponding methods with
all the features. One almost obtains no improvement (2%) in predictive power by
taking more motif features in the linear regression. However, if the background
and other generic features are incorporated, the stepwise regression improves dra-
matically (20%) in its prediction. This does not mean that the motif features are
not useful, but their effects need to be considered in conjunction with background
frequencies.

Step-M is equivalent to MotifRegressor [9] and MARS-M is equivalent to
MARSMotif [10] with all the known and discovered (Sox-Oct) motifs as input.
Thus, this study implies that BART with all three categories of features out-
performed MotifRegressor and MARSMotif by 32% and 17% in CV-correlation,
respectively.

6 Using nucleosome positioning information in
motif discovery

Generally TF-DNA binding is represented as a one-dimensional process; however,
in reality, binding occurs in three dimensional space. Biological evidence [32] shows
that much of DNA consists of repeats of regions of about 147 bp wrapped around
nucleosomes, separated by stretches of DNA called linkers. Recent techniques
[47] based on high density genome tiling arrays have been used to experimentally
measure genomic positions of nucleosomes, in which the measurement “intensi-
ties” indicate how likely that locus is to be nucleosome-bound. These studies
suggest that nucleosome-free regions highly correlate with the location of func-
tional TFBSs, and hence can lead to significant improvement in motif prediction,
if considered.

Genome tiling arrays pose considerable challenges for data analysis. These
arrays involve short overlapping probes covering the genome, which induces a spa-
tial data structure. Although hidden Markov models or HMMs [35] may be used
to accommodate such spatial structure, they induce an exponentially decaying
distribution of state lengths, and are not directly appropriate for assessing struc-
tural features such as nucleosomes that have restrictions in physical dimension.
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For instance, in Yuan et al. [47], the tiling array consisted of overlapping 50-
mer oligonucleotide probes tiled every 20 base pairs. The nucleosomal state can
thus be assumed to be represented by about 6 to 8 probes, while the linker states
had no physical restriction. Since the experiment did not succeed in achieving
a perfect synchronization of cells, additionally a third “delocalized nucleosomal”
state was modeled, which had intensities more variable in length and measurement
magnitude than expected for nucleosomal states.

Here, we describe a general framework for determining chromatin features
from tiling array data and using this information to improve de novo motif pre-
diction in eukaryotes [18].

6.1 A hierarchical generalized HMM (HGHMM)

Assume that the model consists of K (= 3) states. The possible length duration in
state k, (k = 1, · · · , K) is given by the set Dk = {rk, · · · , sk} ⊂ N (i.e. N denotes
the set of positive integers).

The generative model for the data is now described. The initial distribution
of states is characterized by the probability vector π = (π1, · · · , πK). The prob-
ability of spending time d in state k is given by the distribution pk(d|φ), d ∈ Dk

(1 6 k 6 K), characterized by the parameter φ = (φ1, · · · , φK). For the motivat-
ing application, pk(d) is chosen to be a truncated negative binomial distribution,
between the range specified by each Dk. The latent state for probe i is denoted by
the variable Zi (i = 1, · · · , N). Logarithms of spot measurement ratios are denoted
by yij (16i6N ; 16j6r) for N spots and r replicates each. Assume that given the
(unobservable) state Zi, yij ’s are independent, with yij |Zi = k ∼ gk( · ; ξik, σ2

ik).
For specifying gk, a hierarchical model is developed that allows robust estimation
of the parameters. Let µ = (µ1, · · · , µK) and Σ = {σ2

ik; 1 6 i 6 N ; 1 6 k 6

K}. Assume yij |Zi = k, ξik, σ2
ik ∼ N(ξik, σ2

ik), ξik|µk, σ2
ik ∼ N(µk, τ0σ

2
ik), σ2

ik ∼
Inv-Gamma(ρk, αk), where at the top level, µk ∝constant, and ρk, αk, and τ0 are
hyperparameters. Finally, the transition probabilities between the states are given
by the matrix τ = (τjk), (1 6 j, k 6 K). Assume a Dirichlet prior for state tran-
sition probabilities, i.e. τk1, · · · , τk,k−1, τk,k+1, · · · , τk,K ∼ Dirichlet(η), where
η = (η1, · · · , ηk−1, ηk+1, · · · , ηK). Since the duration in a state is being modeled
explicitly, no transition back to the same state can occur, i.e. there is a restriction
τkk = 0 for all 1 6 k 6 K.

6.2 Model fitting and parameter estimation

For notational simplicity, assume Y = {y1, · · · , yN}, is a single long sequence of
length N , with r replicate observations for each yi = (yi1, · · · yir)

′. Let the set
of all parameters be denoted by θ = (µ, τ , φ, π,Σ), and let Z = (Z1, · · · , ZN)
and L = (L1, · · · , LN) be latent variables denoting the state identity and state
lengths. Li is a non-zero number denoting the state length if it is a point where a
run of states ends, i.e.

Li =

{
l if Zj =k, (i−l+1)6j6 i ; Zi+1, Zi−l 6=k ; 16k6K

0 otherwise.
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The observed data likelihood then may be written as:

L(θ; Y ) =
∑

Z

∑

L

p(Y |Z, L, θ)P (L|Z, θ)P (Z|θ). (6.1)

The likelihood computation (6.1) is analytically intractable, involving a sum over
all possible partitions of the sequence Y with different state conformations, and
different state lengths (under the state restrictions). However, one can formulate
a data augmentation algorithm which utilizes a recursive technique to efficiently
sample from the posterior distributions of interest, as shown below. The key
is to update the states and state length durations in an recursive manner, after
calculating the required probability expressions through a forward summation step.

Let an indicator variable It take the value 1 if a segment boundary is present
at position t of the sequence, meaning that a state run ends at t (It = 1 ⇔ Lt 6= 0).
In the following, the notation y[1:t] is used to denote the vector {y1, y2, · · · , yt}.
Define the partial likelihood of the first t probes, with the state Zt = k ending at
t after a state run length of Lt = l, by the “forward” probability:

αt(k, l) = P (Zt = k, Lt = l, It = 1, y[1:t]).

Also, let the state probability marginalized over all state lengths be given by
βt(k) =

∑sk

l=rk
αt(k, l). Let d(1) = min{D1, · · · , DK} and d(K) = max{D1, · · · ,

DK}. Then, assuming that the length spent in a state and the transition to that
state are independent, i.e. P (l, k|l′, k′) = P (Lt = l|Zt = k)τk′k = pk(l)τk′k, it can
be shown that

αt(k, l) = P (y[t−l+1:t]|Zt = k)pk(l)
∑

k′ 6=k

τk′kβt−l(k
′), (6.2)

for 2 6 t 6 N ; 1 6 k 6 K; l ∈ {d(1), d(1)+1, · · · , min[d(K), t]}. The boundary
conditions are: αt(k, l) = 0 for t < l < d(1), and αl(k, l) = πkP (y[1:l]|Zl = k)pk(l)
for d(1) 6 l 6 d(K), k = 1, · · · , K. pk(·) denotes the k-th truncated negative
binomial distribution.

The states and state duration lengths (Zt, Lt) (1 6 t 6 N) can now be
updated, for current values of the parameters θ = (µ, τ , φ, π,Σ), using a backward

sampling-based imputation step:

1. Set i = N . Update ZN |y, θ using P (ZN = k|y, θ) = βN (k)
P

k βN (k) .

2. Next, update LN |ZN = k, y, θ using

P (LN = l|ZN = k, y, θ) =
P (LN = l, ZN = k|y, θ)

P (ZN = k|y, θ)
=

αN (k, l)

βN (k)
.

3. Next, set i= i − LN , and let LS(i) = LN . Let D(2) be the second smallest
value in the set {D1, · · · , DK}. While i > D(2), repeat the following steps:

• Draw Zi|y, θ, Zi+LS(i), Li+LS(i) using

P (Zi = k|y, θ, Zi+LS(i), Li+LS(i)) =
βi(k)τkZi+LS(i)∑
k βi(k)τkZi+LS(i)

,

where k ∈ {1, · · · , K} \ Zi+LS(i).
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• Draw Li|Zi, y, θ using P (Li = l|Zi, y, θ) = αi(Zi, l)
βi(Zi)

.

• Set LS(i − Li) = Li, i = i − Li.

6.3 Application to a yeast data set

The HGHMM algorithm was applied to the normalized data from the longest
contiguous mapped region, corresponding to about 61 Kbp (chromosomal coor-
dinates 12921 to 73970), of yeast chromosome III [47]. The length ranges for
the three states were: (1) linker: D1 = {1, 2, 3, · · · }, (2) delocalized nucleosome:
D2 = {9, · · · , 30}, and (3) well-positioned nucleosome: D3 = {6, 7, 8}.

It is of interest to examine whether nucleosome-free state predictions corre-
late with the location of TFBSs. Harbison et al. (2004) used genomewide location
analysis (ChIP-chip) to determine occupancy of DNA-binding transcription regu-
lators under a variety of conditions. The ChIP-chip data give locations of binding
sites to only a 1Kb resolution, making further analysis necessary to determine the
location of binding sites at a single nucleotide level. For the HGHMM algorithm,
the probabilities of state membership for each probe were estimated from the pos-
terior frequencies of visiting each state in M iterations (excluding burn-in). Each
region was assigned to the occupancy state k, for which the estimated posterior

state probability P̂ (Zi = k|Y ) =
∑M

j=1 I(Z
(j)
i = k)/M was maximum. For all

probes, this probability ranged from 0.5 to 0.9.
Two motif discovery methods SDDA [16] and BioProspector [30] were used

to analyze the sequences for motif lengths of 8 to 10 and a maximum of 20 motifs
per set. Motif searches were run separately on linker (L), nucleosomal (N) and
delocalized nucleosomal (D) regions predicted by the HGHMM procedure. The
highest specificity (proportion of regions containing motif sites corresponding to
high binding propensities in the Harbison et al. (2004) data) was for the linker re-
gions predicted by HGHMM: 61% by SDDA and 40% by BP (Table 4). Sensitivity
is defined as the proportion of highly TF-bound regions found when regions were
classified according to specific state predictions. The highest overall specificity and
sensitivity was observed for the linker regions predicted with HGHMM, indicating
nucleosome positioning information may aid significantly in motif discovery when
other information is not known.

Table 4: Specificity (Spec) and Sensitivity (Sens) of motif predictions

compared to data from Harbison et al
SDDA BP

Spec Sens Spec Sens
Linker 0.61 0.7 0.40 0.87
Deloc Nucl 0.19 0.8 0.15 0.63
Nucleosomal 0.16 0.5 0.09 0.43

7 Conclusion

In this article we have tried to present an overview of statistical methods related to
the computational discovery of transcription factor binding sites in genomic DNA
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sequences, ranging from the initial simple probabilistic models to more recently
developed tools that attempt to use auxiliary information from experiments, evolu-
tionary conservation, and chromatin structure for more accurate motif prediction.
The field of motif discovery is a very active and rapidly expanding area, and our
aim was to provide the reader a snapshot of some of the major challenges and
possibilities that exist in the field, rather than give an exhaustive listing of work
that has been published (which would in any case be almost an impossible task
in the available space). With the advent of new genomic technologies and rapid
increases in the volume, diversity, and resolution of available data, it seems that
in spite of the considerable challenges that lie ahead, there is strong promise that
many exciting discoveries in this field will continue to be made in the near future.
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