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Learning Sparse Causal Gaussian Networks
With Experimental Intervention: Regularization

and Coordinate Descent
Fei FU and Qing ZHOU

Causal networks are graphically represented by directed acyclic graphs (DAGs). Learning causal networks from data is a challenging
problem due to the size of the space of DAGs, the acyclicity constraint placed on the graphical structures, and the presence of equivalence
classes. In this article, we develop an L1-penalized likelihood approach to estimate the structure of causal Gaussian networks. A blockwise
coordinate descent algorithm, which takes advantage of the acyclicity constraint, is proposed for seeking a local maximizer of the penalized
likelihood. We establish that model selection consistency for causal Gaussian networks can be achieved with the adaptive lasso penalty
and sufficient experimental interventions. Simulation and real data examples are used to demonstrate the effectiveness of our method. In
particular, our method shows satisfactory performance for DAGs with 200 nodes, which have about 20,000 free parameters. Supplementary
materials for this article are available online.
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1. INTRODUCTION

Conditional independence structures among random vari-
ables are often visualized as graphical models, where the nodes
represent the variables and the edges encode the relationships
among them. Depending on whether the edges are directional or
not, graphical models can be classified as either directed or undi-
rected. The Bayesian network (BN) is a special type of graphi-
cal models, whose structure is represented by a directed acyclic
graph (DAG). It has become a popular probabilistic model in
many research areas, including computational biology, medical
sciences, image processing, speech recognition, etc.

Learning the structure of a BN from data is an important and
challenging problem in statistics. The major difficulty lies in the
fact that the number of DAGs grows superexponentially in the
number of nodes (Robinson 1973). A substantial amount of re-
search has been devoted to the structure learning problem of BNs
and many methods have been proposed. These methods can be
roughly classified into two primary approaches. The constraint-
based approach relies on a set of conditional independence tests.
A well-known example in this category is the Peter-Clark (PC)
algorithm proposed by Spirtes, Glymour, and Scheines (1993).
Recently, Kalisch and Bühlmann (2007) considered the prob-
lem of estimating BNs with the PC algorithm and proposed an
efficient implementation suitable for sparse high-dimensional
DAGs. The second approach to learning BNs is score based,
which attempts to find a DAG that maximizes some scor-
ing function through a certain search strategy (Cooper and
Herskovits 1992; Lam and Bacchus 1994; Heckerman, Geiger,
and Chickering 1995) or sample DAGs from a Bayesian poste-
rior distribution (Madigan and York 1995; Friedman and Koller
2003; Ellis and Wong 2008; Zhou 2011). Many algorithms in
this category work well for graphs that do not have a large num-
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ber of nodes. However, due to the size of the space of DAGs,
they become computationally impractical for large networks.

In recent years, a number of researchers proposed to estimate
the structure of graphical models through L1-regularized
likelihood approaches (lasso-type penalties). The L1 penalty
becomes popular because of the parsimonious solution it leads
to as well as its computational tractability. Much of the research
has focused on estimating undirected graphs with the L1 penalty.
Yuan and Lin (2007) proposed to maximize an L1-penalized
log-likelihood based on the “max-det” problem considered
by Vandenberghe, Boyd, and Wu (1998), while Banerjee, El
Ghaoui, and d’Aspremont (2008) employed a blockwise coordi-
nate descent (CD) algorithm to solve the optimization problem.
Friedman, Hastie, and Tibshirani (2008) built on the method
of Banerjee, El Ghaoui, and d’Aspremont (2008) a remarkably
efficient algorithm called the graphical lasso. Another computa-
tionally attractive method was developed by Meinshausen and
Bühlmann (2006), where an undirected graph is constructed by
fitting a lasso regression for each node separately.

Compared to undirected graphs, BNs have an attractive prop-
erty: they can be used to represent causal relationships among
random variables. Although some authors discussed the pos-
sibility of causal inference from observational data (Spirtes,
Glymour, and Scheines 1993; Pearl 2000), most researchers
agree that causal relations can only be reliably inferred using
experimental data. Experimental interventions reveal causality
among a set of variables by breaking down various connections
in the underlying causal network. As for undirected graphs,
sparsity in the structure of a causal BN is desired, which of-
ten gives more interpretable results. A natural generalization is
to use the L1 penalty in structure learning of causal BNs with
experimental data. However, there are a number of difficulties
for this seemingly natural generalization. First, existing theo-
ries on L1-regularized estimation and penalized likelihood may
not be directly applicable to structure learning of DAGs with
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interventional data. Different interventions effectively change
the structure of a DAG as shown in Section 2. Second, it is
expected that the computation for estimating the structure of
DAGs is much more challenging than that for undirected graphs
because of the acyclicity constraint. Indeed, the recent work of
Shojaie and Michailidis (2010) assumed a known ordering of
the variables to simplify the computation for the structure learn-
ing problem of DAGs, which eliminates the need for estimating
the directions of causality among random variables.

In this article, we develop an L1-penalized likelihood ap-
proach to structure learning of causal Gaussian Bayesian net-
works (GBNs) using experimental data. We consider this prob-
lem in the general setting where the ordering of the variables is
unknown. To the best of our knowledge, this is the first method
that estimates the structure of DAGs based on L1-penalized
likelihood without assuming a known ordering. In Section 2,
we formulate the problem of learning causal DAGs with exper-
imental data. We develop a CD algorithm in Section 3 to search
for a locally optimal solution to this optimization problem and
establish in Section 4 theoretical properties of the corresponding
estimator. In Section 5 we present results of a simulation study,
and in Section 6, we apply our method to a real dataset. The
article is concluded with discussion in Section 7. All proofs are
provided in the Appendix or the online supplementary materials.

2. PROBLEM FORMULATION

2.1 Causal Bayesian Networks

The joint probability distribution of a set of random variables
X1, . . . , Xp in a BN can be factorized as

P (X1, . . . , Xp) =
p∏

i=1

P
(
Xi |�G

i

)
, (1)

where �G
i ⊆ {X1, . . . , Xp}\{Xi} is called the set of parents of

Xi . If Xi does not have any parents, then �G
i = ∅. We can

construct a DAG G = (V,E) to represent the structure of a BN.
Here, V = {1, . . . , p} denotes the set of nodes in the graph,
where the ith node in V corresponds to Xi . For simplicity, we
use Xi and i interchangeably throughout the article to represent
the ith node. The set of edges E = {(i, j ) : Xi ∈ �G

j } and an
edge (i, j ) ∈ E is written as i → j . The structure of G must
be acyclic so that (1) is a well-defined joint distribution. For
any DAG G, there exists at least one ordering of the nodes,
known as a topological sort of G, such that i ≺ j if i ∈ �G

j . A
more convenient representation of the structure of a DAG is the
adjacency matrix, a p × p matrix A whose (i, j )th entry is 1 if
i → j and 0 otherwise. Estimating the structure of DAGs from
data is equivalent to estimating their adjacency matrices.

For some joint distributions, there exist multiple factoriza-
tions of the form in (1). Those DAGs that encode the same
set of joint distributions form an equivalence class. We cannot
distinguish equivalent DAGs from observational data. However,
equivalent DAGs do not have the same causal interpretation. In
this article, we only consider using DAGs for causal inference,
following Pearl’s formulation of causal BNs (Pearl 2000). In
this setting, experimental interventions can help us distinguish
equivalent DAGs. For instance, consider the causal interpreta-
tions of two equivalent DAGs G1: X1 → X2 and G2: X1 ← X2.

Suppose that X2 is fixed experimentally at x2 (the fixed value
itself might be drawn from some distribution independent of the
DAG). IfG1 is the true causal model, fixing X2 eliminates any de-
pendency of X2 on X1, in effect removing the directed edge from
X1 to X2. Thus, data generated in this manner follow the joint
distribution P (X1, X2) = P (X1|∅)P (X2|•), where P (X1|∅) is
the marginal distribution of X1 and P (X2|•) is the distribution
from which experimental data on X2 are drawn. On the other
hand, if the true causal model is G2, interventions on X2 leave
the dependency between X1 and X2 intact. Hence, experimental
data can be used to infer causal relationships among random
variables. As this example demonstrates, if Xi (i ∈M) are un-
der intervention, then the joint distribution in (1) becomes

P (X1, . . . , Xp) =
∏
i /∈M

P
(
Xi |�G

i

) ∏
i∈M

P (Xi |•), (2)

where P (Xi |•) denotes the distribution of Xi under intervention.
In other words, we can view experimental data from G as being
generated from the DAG G ′ obtained by removing all directed
edges pointing to the nodes under intervention in G. When we
make causal inference using the likelihood function (2), the
term

∏
i∈M P (Xi |•) can be ignored, since they depend only on

external parameters that are not relevant to the estimation of
DAGs.

2.2 L 1-Regularized Log-Likelihood

In a causal GBN G, causal relationships among random vari-
ables are modeled as

Xj =
∑
i∈�G

j

βijXi + εj , j = 1, . . . , p, (3)

where βij is the coefficient representing the influence of Xi on
Xj , and εj ’s are independent Gaussian noise variables with mean
0 and variance σ 2

j . We assume, throughout this article, that all Xj

have mean 0. Then the joint distribution of (X1, . . . , Xp) defined
by (3) is Np(0,�), where the covariance matrix � depends
on βij (i, j = 1, . . . , p and i �= j ) and σ 2

j (j = 1, . . . , p). The
set of equations in (3) can be regarded as the mechanism for
generating these random variables.

Consider an n× p data matrix X generated from G. The data
matrix X consists of p blocks with the jth block Xj having size
nj × p, where n =∑p

j=1 nj . Each row in Xj is generated by
imposing an intervention on the node Xj , while the values for
all other nodes Xk (k �= j ) are observational. The experimental
data on Xj generated by intervention are assumed to follow
N (0, σ̃ 2

j ) for j = 1, . . . , p.
Let B = (βij )p×p be the coefficient matrix, where βij = 0 if

i /∈ �G
j . Let σ 2 = (σ 2

j )1×p and σ̃ 2 = (̃σ 2
j )1×p be vectors of vari-

ances. Apparently, we can learn the structure of G by estimating
the coefficient matrix B. In the rest of the article, we will call G
the graph induced by B.

Let Ij denote the collection of the row indices of Xj , and
then Oj = {1, . . . , n} \Ij gives the collection of data points in
which Xj is not fixed experimentally, j = 1, . . . , p. According
to the factorization (2), the likelihood of the data matrix X can



290 Journal of the American Statistical Association, March 2013

be written as

f (X) ∝
p∏

k=1

∏
h∈Ik

∏
j �=k

f (xhj |πhj ) =
p∏

j=1

∏
h∈Oj

f (xhj |πhj ), (4)

where xhj is the value of Xj in the hth data point [the (h, j )th el-
ement of the data matrix X], πhj is the value of its parents,
and f (xhj |πhj ) is the conditional density of xhj given πhj .
Note that, as mentioned in Section 2.1, the likelihood term
f (xhj |•) is ignored if the value xhj is fixed experimentally.
Let n−j = |Oj | = n− nj . Using the relationship in (3), we can
easily derive that the negative log-likelihood of B and σ 2 is

p∑
j=1

[
n−j log

(
σ 2

j

)
2

+
∥∥X[Oj ,j ] − X[Oj ,−j ]B[−j,j ]

∥∥2

2σ 2
j

]
, (5)

where M[Ir ,Ic] denotes the submatrix of M with rows in Ir and
columns in Ic.

For many applications, it is often the case that the underlying
network structure is sparse. It is therefore important to find
a sparse structure for the coefficient matrix B. We propose
here a penalized likelihood approach with the adaptive lasso
penalty to learn the structure of B. Specifically, given a weight
matrix W = (wij )p×p, we seek the minimizer (B̂, σ̂ 2) of

p∑
j=1

⎡⎣n−j log
(
σ 2

j

)
2

+
∥∥X[Oj ,j ] − X[Oj ,−j ]B[−j,j ]

∥∥2

2σ 2
j

+ λ
∑
i �=j

wij |βij |
⎤⎦ , subject to GB is acyclic, (6)

where GB denotes the graph induced by B and λ > 0 is the
penalty parameter.

Remark 1. Due to the acyclicity constraint, one cannot trans-
form (6) into an equivalent penalized least squares problem.
Moreover, σ 2

j cannot be ignored in our formulation, which
makes the minimization problem considerably harder than a
penalized least squares problem.

The adaptive lasso was proposed by Zou (2006) as an alterna-
tive to the lasso technique (Tibshirani 1996) for regression prob-
lems. The adaptive lasso enjoys the oracle properties considered
by Fan and Li (2001). In particular, it is consistent for variable se-
lection. In our setting, the weights are defined as wij = |β̂(†)

ij |−γ

for some γ > 0, where β̂
(†)
ij is a consistent estimate of βij . Zou

(2006) suggested using the ordinary least squares (OLS) esti-
mates to define the weights in the regression setting. However,
because of the existence of equivalent DAGs, the OLS estimates
may not be consistent in our case. To obtain the initial consis-
tent estimates β̂

(†)
ij ’s, we let w̃ij = min(|β̂(OLS)

ij |−γ ,Mγ ), where
M is a large positive constant (e.g., M = 104) and β̂

(OLS)
ij ’s are

the OLS estimates obtained by regressing Xj on other nodes
using data in Oj . As will be shown in Section 4, there exists a√

n-consistent local minimizer B̂ of (6) with the weights w̃ij ,
which can be used as β̂

(†)
ij ’s. Then, a consistent estimate of the

graph structure can be obtained with weights wij = |β̂(†)
ij |−γ .

After minimizing with respect to σ 2, problem (6) becomes

min
B

V (B; W) =
p∑

j=1

⎡⎣n−j

2
log

(∥∥X[Oj ,j ] − X[Oj ,−j ]B[−j,j ]

∥∥2)

+ λ
∑
i �=j

wij |βij |
⎤⎦ , subject to GB is acyclic, (7)

which is the problem we aim to solve.

3. COORDINATE DESCENT ALGORITHM

Both the objective function V in (7) and the constraint set are
nonconvex. Searching for the global minimizer of (7) may be
impractical. Moreover, the theoretical results in Section 4 only
establish consistency for a local minimizer (see Theorems 2 and
3). Therefore, we develop in this section a CD algorithm to find
a local minimum to the constrained optimization problem (7).
A local minimizer B̂ is defined as follows: (i) any local change
in the structure of GB̂, that is, addition, removal, or reversal
of a single edge, increases the value of V and (ii) given the
structure of GB̂, B̂ is a local minimizer of V . CD methods have
been successfully used to solve lasso-type problems (Fu 1998;
Friedman et al. 2007; Wu and Lange 2008). They are attractive
since minimizing the objective function one coordinate at a time
is computationally simple and gradient free. As a result, these
methods are easy to implement and are usually scalable.

3.1 Single-Parameter Update

Before detailing the CD algorithm, let us first consider min-
imizing V in (7) with respect to a single parameter βkj (k �= j )
without the acyclicity constraint. In particular, we seek the min-
imizer β̂kj of

Vj = n−j

2
log

(∥∥X[Oj ,j ] − X[Oj ,−j ]B[−j,j ]

∥∥2)+ λ
∑
i �=j

wij |βij |

= n−j

2
log

⎡⎢⎣∑
h∈Oj

⎛⎝xhj −
∑
i �=j,k

xhiβij − xhkβkj

⎞⎠2
⎤⎥⎦

+ λ
∑
i �=j,k

wij |βij | + λwkj |βkj |, (8)

assuming all βij ’s (i �= j, k) are fixed. We can transform the
weighted lasso penalty in (8) into an ordinary lasso penalty:

min
β̃kj

Ṽj = n−j

2
log

⎡⎢⎣∑
h∈Oj

⎛⎝xhj −
∑
i �=j,k

x̃hi β̃ij − x̃hkβ̃kj

⎞⎠2
⎤⎥⎦

+ λ
∑
i �=j,k

|β̃ij | + λ|β̃kj |, (9)

by letting β̃ij = wijβij and x̃hi = xhi/wij for i �= j . We fur-
ther define y

(k)
hj = xhj −

∑
i �=j,k x̃hi β̃ij , ξkj =

∑
h∈Oj

x̃hky
(k)
hj /∑

h∈Oj
x̃2

hk , ckj =
∑

h∈Oj
(y(k)

hj )2/
∑

h∈Oj
x̃2

hk , and η = λ/n−j .

Note that according to Cauchy–Schwarz inequality, ckj − ξ 2
kj
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≥ 0. Then equivalently, (9) can be simplified to the problem

min
β̃kj

g(β̃kj ) = 1

2
log

[
(β̃kj − ξkj )2 + (

ckj − ξ 2
kj

)]+ η|β̃kj |.
(10)

The form of g is reminiscent of the lasso problem with a single
predictor. However, minimizing g with respect to β̃kj is not as
easy as the corresponding lasso problem, since g is not a convex
function and might have two local minima for some values of
ξkj , ckj , and η. It is therefore necessary to compare the two local
minima under certain conditions. We summarize the solution to
(10) in the following proposition and provide its proof in the
online supplementary materials.

Proposition 1. Let � = 1− 4(ckj − ξ 2
kj )η2 and β∗1 = sgn

(ξkj )(|ξkj | − 1−√�
2η

). The solution to the optimization problem
(10) is given by

arg min
β̃kj

g =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β∗1 , if 0 < η < |ξkj |/ckj ,

β∗1 , if |ξkj |/ckj ≤ η <
(
2
√

ckj − ξ 2
kj

)−1
,

η > (2|ξkj |)−1 and g(β∗1 ) < g(0),

0, otherwise.

Remark 2. The form of β∗1 suggests that arg minβ̃kj
g is simi-

lar to a soft thresholded version (Donoho and Johnstone 1995)
of ξkj in nature. One difference, however, is that arg minβ̃kj

g

can be zero even when |ξkj | − (1−√�)(2η)−1 > 0 (see the
proof of Proposition 1 in the online supplementary materials).
Note that if 4(ckj − ξ 2

kj )η2 = o(1), by Taylor expansion
√

� ≈
1− 2(ckj − ξ 2

kj )η2. Then β∗1 ≈ sgn(ξkj )(|ξkj | − (ckj − ξ 2
kj )η) =

sgn(ξkj )(|ξkj | − ckj (1− ζ 2)η), where ζ is the correlation coef-
ficient between x̃hk and y

(k)
hj for h ∈ Oj .

Remark 3. In Proposition 1, we could find a more explicit
condition on η to determine when g(β∗1 ) < g(0), but the con-
dition does not have a closed-form expression. Thus, it seems
more effective to compare g(β∗1 ) and g(0) directly.

3.2 Description of the CD Algorithm

The difficulty in minimizing V in (7) is due to the constraint
that the graphical representation of BNs is acyclic. One imme-
diate consequence of this constraint is that a pair of coefficients
βij and βji cannot both be nonzero. We thus take advantage of
this implication when designing the CD algorithm. Instead of
minimizing V over a single parameter βij at each step, we per-
form minimization over βij and βji simultaneously. Hence, our
method can be naturally described as a blockwise CD method.
For a p-node problem, the p(p − 1) coefficients are partitioned
into p(p − 1)/2 blocks. Each block consists of a pair of coeffi-
cients βij and βji . The algorithm starts with an initial estimate
of the coefficient matrix B (for instance, the zero matrix) and
assumes a predefined order to cycle through the p(p − 1)/2
blocks. At each step, V is minimized over a certain block of βij

and βji while all other blocks are held constant. Given the cur-
rent estimates of other blocks, βij (or βji) is constrained to zero
if a nonzero value introduces cycles in the resulting graph. In
this case, V is only minimized over βji (or βij ). Otherwise, the

algorithm compares minβij ,βji=0 V with minβij=0,βji
V to update

βij and βji . We repeat cycling through the p(p − 1)/2 blocks
until some stopping criterion is satisfied.

The major steps in the CD algorithm are summarized as fol-
lows, where we use β̃ij ⇐ 0 to mean that β̃ij must be set to
zero due to the acyclicity constraint. In the following, different
X[Oj ,·]’s are treated as different entities so that operations on
X[Oj ,·] will not affect X[Ok ,·] for k �= j .

Algorithm 1. CD Algorithm for Estimating DAGs

1. Center and standardize the columns of X[Oj ,·](j =
1, . . . , p) to have mean zero and unit L2 norm. Trans-
form the weighted lasso problem (7) to an ordinary
lasso problem by defining X̃[Oj ,i] = X[Oj ,i]/wij , i �= j ,
for j = 1, . . . , p. Choose B0 such that GB0 is acyclic.

2. Cycle through the p(p − 1)/2 blocks of coefficients.
Specifically, do one of the following for the pair of co-
efficients β̃ij and β̃j i (i < j ), given the current estimates
of other coefficients.

(a) If β̃j i ⇐ 0, minimize Ṽj in (9) with respect to β̃ij ac-
cording to Proposition 1 and find β̃∗ij = arg minβ̃ij

Ṽj .

Then set (β̃ij , β̃ji) = (β̃∗ij , 0).
(b) If β̃ij ⇐ 0, minimize Ṽi with respect to β̃j i according

to Proposition 1 and find β̃∗ji = arg minβ̃j i
Ṽi . Then set

(β̃ij , β̃ji) = (0, β̃∗ji).
(c) If 2(a) and 2(b) do not apply, then compare the fol-

lowing two sums: S1= Ṽi |β̃j i=0 + Ṽj |β̃ij=β̃∗ij and S2 =
Ṽi |β̃j i=β̃∗ji

+ Ṽj |β̃ij=0. Set (β̃ij , β̃ji) = (β̃∗ij , 0) if S1 ≤
S2. Otherwise, set (β̃ij , β̃ji) = (0, β̃∗ji).

3. Repeat Step 2 until the maximum absolute difference
among all coefficients between successive cycles is below
some threshold or until the maximum number of iterations
is reached.

4. Output the estimates β̂ij = β̃ij /wij for i, j =
1, . . . , p and i �= j .

To ensure the acyclicity constraint by checking whether
β̃ij ⇐ 0, we employ a breadth-first search algorithm based on
algorithm 4 in Ellis (2006). A detailed description of this algo-
rithm is given in the online supplementary materials.

3.3 Practical Considerations

Since it is difficult in practice to predetermine the optimal
value of λ, we compute solutions using a decreasing sequence
of values for λ, following the practice in Friedman, Hastie,
and Tibshirani (2010). The solution for the current λ is used
as the initial estimate for the next value of λ in the sequence.
Since large values of λ force many βij to be zero and make the
optimization much easier, the solution for large λ is likely to
agree well with some sub-graph of the true model. Therefore,
employing warm starts may boost the performance of the CD
algorithm.

To speed up the CD algorithm, we use an active set method
that is better suited for warm starts, as was done by Friedman,
Hastie, and Tibshirani (2010). The algorithm first performs a
complete cycling through all p(p − 1)/2 blocks of coefficients
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Figure 1. Plots of (a) CV error, (b) difference ratio (“histogram-like” vertical lines), and log-likelihood (solid line) for graphs estimated using
a decreasing sequence of λ.

to identify the active set—the set of blocks with a nonzero
coefficient. We then only iterate over the active set until the
maximum coefficient difference falls below the threshold or the
maximum number of iterations has been reached. The algorithm
stops if another full cycle through all the blocks does not change
the active set; otherwise the above process is repeated. Note that
when the active set changes, the skeleton of the estimated DAG
is updated. Furthermore, when the algorithm iterates over a
given active set of blocks, the edges may still be reversed.

It should be noted that convergence of CD methods often
requires the objective function to be strictly convex and differ-
entiable. For nondifferentiable functions, CD may get stuck at
nonoptimal points, although Tseng (2001) considered general-
izations to nondifferentiable functions with certain separability
and regularity properties. Because of the nonconvex nature of
the objective function V in (7) and the constraint set, conver-
gence of the CD algorithm deserves a rigorous investigation,
which is beyond the scope of this study. We conjecture that the
CD algorithm converges under certain conditions. In practice,
we have never encountered any examples so far where the al-
gorithm does not converge. For a demonstration of convergence
of our algorithm, see Figure S2 in the online supplementary
materials.

3.4 Choice of the Tuning Parameter

The graphical model learned by the CD algorithm depends
on the choice of the penalty λ. Model selection is usually based
on an estimated prediction error, and commonly used model
selection methods include the Bayesian information criterion
(BIC) and cross-validation (CV) among others. As established
by Meinshausen and Bühlmann (2006) for L1-penalized linear
regression, a model selected based on minimizing the predic-
tion error is often too complex compared to the true model.
Figure 1(a) plots the five-fold CV error for a sequence of graphs

learned given a decreasing sequence of λ from a simulated
dataset with p = 100, n = 500, and βij = 1.0. The CV error is
minimized at the 67th λ. The corresponding graph Ĝ67 (obtained
using λ67 as the tuning parameter on the whole dataset) has a
total of 993 predicted edges with an 82.6% false discovery rate,
while the true graph only has 200 directed edges. Similar results
are obtained if we use BIC or other scoring metrics such as the
Bayesian score of a graph.

In this article, we employ an empirical model selection cri-
terion that works well in practice. Note that as we decrease λ

and thus increase model complexity, the log-likelihood of the
estimated graph will increase. Denote by B̂λi

the solution to (7)
with the ith penalty parameter λi . Given the estimated graph
Ĝλi

induced by B̂λi
, we estimate the unpenalized coefficient

matrix, denoted by B̃i , by regressing Xk on �
Ĝλi

k , k = 1,

. . . , p. Given two estimated graphs Ĝλi
and Ĝλj

(λi > λj ), let
�Lij = L(B̃j )− L(B̃i) and �eij = eλj

− eλi
, where L(B̃) =

−V (B̃; 0) denotes the log-likelihood function and e denotes
the total number of edges in an estimated graph. We then de-
fine the difference ratio between the two estimated graphs as
dr(ij ) = �Lij/�eij . We reason that an increase in model com-
plexity, which is represented by an increase in the total number
of predicted edges, is desirable only if there is a substantial
increase in the log-likelihood. Therefore, we compute succes-
sively the difference ratios between two adjacent graphs in the
solution path, {dr(12), . . . , dr(m−1,m)}, where m is the number of
λ in the sequence. The graph with the following index is selected:

K = sup{k : dr(k−1,k) ≥ α ×max(dr(12), . . . , dr(m−1,m)),

k = 2, . . . , m}, (11)

where α is a thresholding parameter. Essentially, this is the
graph from which further increase in model complexity will
not lead to substantial increase in the likelihood. We find that
α ∈ [0.05, 0.1] works well in our simulation. Figure 1(b) plots
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the difference ratio as well as the log-likelihood for different
graphs learned from the same dataset. The graph selected
according to (11) with α = 0.05 is Ĝ36, which has 168 edges
with a 77% true positive rate and an 8.3% false discovery rate,
much less than 82.6%.

4. ASYMPTOTIC PROPERTIES

In this section, we develop asymptotic theories on the
penalized likelihood estimator of DAGs. To simplify no-
tations, we write B in a vector format as φ = (φj )1×d =
((B[−1,1])T , . . . , (B[−p,p])T ), where d = p(p − 1) is the length
of φ. Similarly, we write the weight matrix W in a vec-
tor format as T = (τj )1×d . We say that φ is acyclic if the
graph Gφ induced by φ (or the corresponding B) is acyclic.
Let θ = (φ, σ 2, σ̃ 2) be the vector of parameters and � = {θ :
φ is acyclic, σ 2 > 0, σ̃ 2 > 0} be the parameter space. Recall
that σ 2 = (σ 2

j )1×p and σ̃ 2 = (̃σ 2
j )1×p are vectors of variances

defined in Section 2.2. Denote the true parameter value by
θ∗ = (φ∗, (σ 2)∗, (σ̃ 2)∗) ∈ �. Let Gφ∗ denote the DAG induced
by φ∗, that is, the true DAG.

Let θ k = (φk, σ
2
[−k], σ̃

2
k ), where φk is obtained from φ by re-

placing B[−k,k] with 0, that is, by suppressing all edges pointing
to the kth node from its parents. Here ν[I ] denotes the sub-
vector of a vector ν with components in I. As mentioned in
Section 2.1, Xk , the kth block of the data matrix, can be re-
garded as independent and identically distributed (iid) observa-
tions from a distribution factorized according to the DAG Gφk

,
and we denote the corresponding density by f (x|θ k), where
x = (x1, . . . , xp). For Gaussian random variables, f is the den-
sity function of Np(0,�(θ k)). Here we emphasize the depen-
dence of the variance-covariance matrix � on θ k . Recall that Ik

denotes the collection of the row indices of Xk . Then we define
the penalized log-likelihood with the adaptive lasso penalty as

R(θ ) = L(θ )− λn

d∑
j=1

τj |φj | =
p∑

k=1

Lk(θ k)− λn

d∑
j=1

τj |φj |,

(12)

where Lk(θ k) =
∑

h∈Ik
log f (X[h,·]|θ k). Our goal is to seek a

local maximizer of R(θ ) in the parameter space � to obtain
an estimator θ̂ . Note that the log-likelihood function L(θ ) is
different from the one in (6) and (7), since here we also include
in L(θ ) terms depending on σ̃

2. It is easily seen that these two
formulations of the likelihood function are equivalent for the
purpose of estimating the coefficients and the structure of BNs.

Even with interventional data, the coefficient matrix of a
DAG may not be identifiable because of interventional Markov
equivalence among DAGs (Hauser and Bühlmann 2012). We
introduce below the notion of natural parameters to establish
identifiability of DAGs for the case where each variable has
interventional data. Suppose that Xi is an ancestor of Xj in a
DAG G, that is, there exists at least one path from Xi to Xj

(see Lauritzen 1996, chap. 2, for terminology used in graphical
models). Let

�(i, j ) = {(i0, . . . , im) : ik → ik+1 for 0 ≤ k ≤ m− 1,

i0 = i, im = j,m ≥ 1} (13)

be the set of paths from Xi to Xj , and define the coefficient of
influence of Xi on Xj by βi→j =

∑
�(i,j )

∏m−1
k=0 βikik+1 .

Denote the set of ancestors of Xj by an(Xj ).

Definition 1 (Natural parameters). We say that θ is natural if
the corresponding coefficient matrix B satisfies

βi→j �= 0 for all Xi ∈ an(Xj ), 1 ≤ j ≤ p. (14)

Note that if the underlying DAG is a polytree, the corre-
sponding parameter is always natural. For more general DAGs,
a natural parameter implies that the causal effects along multiple
paths connecting the same pair of nodes do not cancel, which
is a reasonable assumption for many real-world problems. If
the true parameter is natural, then with sufficient experimental
data, the parameter θ is identifiable as indicated by the following
theorem. The proof of Theorem 1 is given in the Appendix.

Theorem 1. Suppose that Xk is an iid sample from the
normal distribution Np(0,�(θ∗k)) with density f (x|θ∗k) for
k = 1, . . . , p. Assume that the true parameter θ∗ is natural.
Then

f (x|θ k) = f (x|θ∗k) almost everywhere (a.e.)

for all k = 1, . . . , p =⇒ θ = θ∗. (15)

If we further assume that nk/n→ αk > 0 as n→∞, then

Pθ∗ (L(θ∗) > L(θ ))→ 1 (16)

for any θ �= θ∗.

Now we state two theorems to establish the asymptotic prop-
erties of θ̂ . We follow arguments similar to those given by Fan,
Feng, and Wu (2009) to prove Theorems 2 and 3. However, one
cannot directly apply Fan et al.’s results here, because the param-
eters must satisfy the acyclicity constraint, the data we have are
not iid observations due to interventions, and the identifiability
of a DAG is not always guaranteed.

Let φ̂
(OLS)
k (1 ≤ k ≤ d) be the estimate of φk when the corre-

sponding βij (i �= j ) is estimated by β̂
(OLS)
ij . Let A = {j : φ∗j =

0} and φA = (φj )j∈A. It is assumed that θ∗ is natural in the
following two theorems. We relegate the proof of Theorem 2 to
the Appendix. The proof of Theorem 3 is given in the online
supplementary materials.

Theorem 2. Assume the adaptive lasso penalty with weights
τj = min(|φ̂(OLS)

j |−γ ,Mγ ) for all j, where γ,M > 0. As n→
∞, if λn/

√
n→ 0 and nk/n→ αk > 0 for k = 1, . . . , p, then

there exists a local maximizer θ̂ of R(θ ) such that ‖θ̂ − θ∗‖ =
Op(n−1/2).

Theorem 3. Assume the adaptive lasso penalty with weights
τj = |φ̃j |−γ for some γ > 0 and all j, where φ̃j is

√
n-consistent

for φ∗j . As n→∞, if λn/
√

n→ 0, λnn
(γ−1)/2 →∞, and

nk/n→ αk > 0 for k = 1, . . . , p, then there exists a local max-
imizer θ̂ of R(θ ) such that ‖θ̂ − θ∗‖ = Op(n−1/2). Furthermore,
with probability tending to one, the

√
n-consistent local maxi-

mizer θ̂ must satisfy φ̂A = 0.

Remark 4. To achieve consistency in model selection with
the adaptive lasso penalty, we need some consistent estimate
of the vector φ to construct the weights. Theorem 2 suggests
that we first use τj = min(|φ̂(OLS)

j |−γ ,Mγ ) as weights to obtain
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an initial consistent estimate φ̃. Then with weights constructed
from φ̃, Theorem 3 guarantees model selection consistency. In
a similar spirit, Shojaie and Michailidis (2010) proposed a two-
stage lasso penalty where the initial estimate is constructed by
a regular lasso. As seen from Theorem 2, our initial estimate is
in fact obtained by a weighted lasso with weights bounded from
above.

5. SIMULATION STUDY

5.1 Performance of the CD Algorithm

To test the performance of the CD algorithm, we conducted a
simulation study. We randomly generated graphs with p nodes
(p = 20, 50, 100, 200) and 2p edges. To further control the
sparsity of the graphs, we set the maximum number of parents
for any given node to be 4. For each value of p, we simulated 10
different random graphs, and for each graph, three datasets were
generated according to Equation (3) with βij = 0.2, 0.5, and 1.0,
respectively. The variance σ 2

j of the Gaussian noise variable εj

(j = 1, . . . , p) was set to 1 in all our simulation. The sample
size of each dataset is n = 5p. As described in Section 2, a
data matrix is divided into p blocks such that the sample size of
each block is nj = 5, j = 1, . . . , p. The jth block Xj contains
experimental data on the node Xj , which were drawn from
the standard normal distribution N (0, 1). For each dataset, we
applied the CD algorithm to compute the solution path using a
geometric sequence of λ’s, starting from the largest value λmax

for which B̂λmax = 0 and decreasing to the smallest value λmin.
The sequence typically contained 50 or 100 different values of
λ’s with the ratio λmin/λmax set to some small value such as
0.001. Graphical models were then selected according to (11)
with α = 0.1. We used γ = 0.15 for all datasets, except for the
two cases with p ≥ 100 and βij = 1.0, where γ was set to 0.5.

Table 1 summarizes the average performance of the CD al-
gorithm over 10 datasets for each combination of p and βij . For
instance, when p = 100 and βij = 0.5, the estimated graphical

model on average contains 220.9 directed edges, of which 156.5
edges are present in the true graph, 28.3 edges have directions
reversed, and the rest 36.1 edges are not included in the true
graph. On average, there are also 15.2 true edges missing in the
estimated model. Results in Table 1 suggest that our method can
estimate the structure of a DAG with reasonable accuracy even
when the sample size is limited. All TPRs (defined in Table 1)
are above 0.70 except for cases with βij = 0.2, where signal-
to-noise ratios are too small. The accuracy of estimation can be
greatly improved if a large sample is available (see Table S1 in
the online supplementary materials). Note that when p = 200,
the number of parameters to be estimated is around 20,000,
which is much larger than the sample size n = 5p = 1000.
Even in this high-dimensional setting, our CD algorithm was
still able to estimate DAGs quite accurately.

Since the CD algorithm computes a set of solutions along the
solution path of problem (7), another way to evaluate the perfor-
mance is to investigate the relationship between TPR and false
positive rate [FPR = (R+ FP)/(p(p − 1)− T)] as the penalty
parameter λ varies, which is known as the receiver operating
characteristic (ROC) analysis. However, since the sequence of
λ’s we used was data dependent, we examined the TPR–FPR re-
lationships as the number of predicted edges increases. Figure 2
presents the results of the ROC analysis. Again, these ROC
curves suggest satisfactory performance of the CD algorithm
except when the signal-to-noise ratio is small (βij = 0.2). In
particular, we note that for large networks (p = 100, 200), as
we increase the number of predicted edges and the complexity of
estimated graphs by adjusting the penalty λ, we will increase the
TPR without affecting the FPR that much until the TPR reaches
a plateau, a level at which the estimated DAGs are structurally
similar to the true DAG. This is consistent with our sensitivity
analysis on the tuning parameter α in (11). The analysis shows
that when α is greater than 0.1, the FDR falls into an acceptable
and stable level (see Figure S3). Further decrease in α to below
0.05 would result in a drastic increase in false positive edges.

Table 1. The average number of predicted (P), expected (E), reversed (R), missed (M), and false positive (FP) edges and the average true
positive rate (TPRa) and false discovery rate (FDRb) for DAGs learned by the CD algorithm

CD algorithm KO method

p βij P E R M FP TPR FDR TPR FDR

20 0.2 59.6 17.3 10.9 11.8 31.4 0.433(0.069) 0.694(0.080) 0.375 0.213
0.5 48.6 29.2 6.1 4.7 13.3 0.730(0.152) 0.399(0.083) 0.908 0.086
1.0 65.5 34.0 2.8 3.2 28.7 0.850(0.092) 0.429(0.138) 0.723 0.065

50 0.2 158.9 54.0 32.8 13.2 72.1 0.540(0.048) 0.652(0.061) 0.732 0.128
0.5 114.9 74.5 17.4 8.1 23.0 0.745(0.100) 0.351(0.085) 0.992 0.045
1.0 132.7 70.5 5.0 24.5 57.2 0.705(0.113) 0.453(0.090) 0.763 0.050

100 0.2 246.0 137.9 53.2 8.9 54.9 0.690(0.027) 0.431(0.075) 0.952 0.088
0.5 220.9 156.5 28.3 15.2 36.1 0.783(0.058) 0.290(0.071) 0.993 0.032
1.0 167.8 149.1 11.4 39.5 7.3 0.746(0.087) 0.109(0.074) 0.508 0.011

200 0.2 421.2 325.3 72.2 2.5 23.7 0.813(0.054) 0.226(0.061) 1.000 0.051
0.5 430.2 341.8 41.9 16.3 46.5 0.855(0.053) 0.203(0.071) 1.000 0.016
1.0 328.1 298.5 18.3 83.2 11.3 0.746(0.100) 0.090(0.049) 0.549 0.004

NOTE:
1. The numbers in parentheses are the standard deviations across 10 datasets.
2. As a comparison, the last two columns list the average TPR and FDR for DAGs estimated by the approach of Shojaie and Michailidis (2010) assuming that the ordering of the variables
is known. (KO: known ordering).
aTPR = E/T, where T = 2p is the total number of true edges; bFDR = (R+ FP)/P.
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Figure 2. ROC curves for βij = 0.2 (solid lines), βij = 0.5 (dot-dashed lines), and βij = 1.0 (long-dashed lines).

As expected, the performance of the CD algorithm decreases
when the graph is less sparse. We varied the number of edges
from p to 4p in our simulation and found a decrease in the TPR
with an increase in the FDR when the underlying DAG became
denser. However, even for the most dense cases, the result is
still reasonably good, as reported in Table S2 in the online sup-
plementary materials. Note that the parameter α was fixed to
0.1 for all the simulation results. It seems that this choice may
control the FDR at an acceptable level unless the sample size is
too small or the signal-to-noise ratio is too low (small βij ). To
obtain a rough measure of the amount of information that inter-
ventional data can provide to resolve directionality of DAGs, we
also applied the CD algorithm to simulated observational data
with the same sample sizes as their interventional counterparts.
The results are summarized in Tables S3 in the online supple-
mentary materials. We found that interventional data helped to
increase the TPR and simultaneously reduce the FDR, and the
boost in the TPR ranges from 2% up to about 50%.

5.2 Comparison With Other Methods

To benchmark the performance of the CD algorithm, we com-
pared our method to a PC-algorithm-based approach. The PC al-
gorithm is a classical constraint-based method that can estimate
DAGs with hundreds of nodes. We did not compare with Monte

Carlo approaches, as even the most recent developments, such as
the order-graph sampler (Ellis and Wong 2008), have not shown
convincing performance on graphs with more than 50 nodes.

The PC algorithm is designed to estimate from observational
data a completed partially directed acyclic graph (CPDAG),
which contains both directed and undirected edges. We therefore
took a two-step approach to produce results favorable for the PC
algorithm. We first used the PC algorithm to estimate a CPDAG
from data. Then one may try to estimate the direction of an
undirected edge using interventions and produce a DAG. In this
comparison, however, we simply counted an undirected edge
between two nodes in a CPDAG as an expected edge, provided
that there is a corresponding directed edge between the two
nodes in the true DAG. Thus, the reported result is the best (or an
upper bound) one can obtain by a two-step PC-algorithm-based
method (PC-based method). The performance of this PC-based
method applied to our simulated datasets is shown in Table 2.
Unlike graphs selected by criterion (11), a graph learned by the
PC-based method generally has fewer edges than the true model.
So to make a fair comparison, we selected from the solution
path constructed by the CD algorithm the graph that matches
the total number of edges of the graph learned by the PC-based
method. The corresponding results are also presented in Table 2.
It can be easily seen that the CD algorithm outperforms the
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Table 2. Performance comparison between the two-step PC-based method and the CD algorithm

PC-based method CD algorithm

p βij P TPR FDR P TPR FDR

20 0.2 7.6 0.103(0.042) 0.443(0.262) 8.3 0.115(0.044) 0.442(0.184)
0.5 18.4 0.313(0.049) 0.311(0.134) 19.8 0.383(0.095) 0.227(0.148)
1.0 15.7 0.290(0.061) 0.254(0.172) 15.7 0.318(0.103) 0.183(0.088)

50 0.2 53.3 0.221(0.037) 0.585(0.071) 52.8 0.299(0.032) 0.430(0.072)
0.5 70.3 0.409(0.081) 0.422(0.082) 72.5 0.557(0.117) 0.233(0.109)
1.0 54.7 0.313(0.042) 0.427(0.054) 50.5 0.355(0.094) 0.296(0.080)

100 0.2 173.8 0.399(0.050) 0.542(0.051) 173.5 0.610(0.034) 0.297(0.026)
0.5 153.1 0.456(0.053) 0.405(0.048) 154.6 0.596(0.077) 0.231(0.066)
1.0 107.8 0.328(0.069) 0.396(0.096) 107.2 0.513(0.042) 0.041(0.051)

200 0.2 429.1 0.506(0.030) 0.528(0.028) 431.8 0.815(0.053) 0.245(0.051)
0.5 351.4 0.493(0.075) 0.438(0.085) 357.4 0.734(0.093) 0.181(0.068)
1.0 235.3 0.335(0.056) 0.433(0.069) 234.8 0.561(0.059) 0.043(0.046)

NOTE: The numbers in parentheses are the standard deviations across 10 datasets.

PC-based method in all the cases of our simulation. Graphs
estimated using our method have both higher TPRs and lower
FDRs. This result shows the advantage of using experimental
data in an integrated penalized likelihood method. In addition,
we compared the performance of the CD algorithm and the
PC-based method on observational data (see Table S4 in the
online supplementary materials). We found that our method
still outperforms the PC-based method for most cases.

We also compared the running time for both methods. Table 3
summarizes the CPU time for one run of each algorithm aver-
aged over 10 datasets. Each run of the CD algorithm uses a
sequence of 50 λ’s with λmin/λmax = 0.001. The CD algorithm
is implemented in R with the majority of its core computation
executed in C programs. The PC algorithm we used was imple-
mented by Kalisch et al. (2012) in the R package pcalg. The
running time for the PC algorithm depends on the argument
u2pd, which we assume to be rand (see online manuals for fur-
ther details). According to Table 3, the average CPU time for the
PC algorithm is shorter than the CD algorithm. However, con-
sidering that the CD algorithm estimates 50 (or more generally
a sequence of) graphical models in each run, it is on average at
least as fast as the PC algorithm for estimating a single graph.

Recently, Shojaie and Michailidis (2010) developed an ap-
proach to estimate DAGs assuming a known ordering of the
variables, which we will refer to as the KO method. Know-
ing the ordering greatly simplifies the structure learning prob-
lem. Following their formulation, we can simply estimate the
coefficient matrix B (and thus the structure of directed graphs)

by regressing each variable on all preceding variables in a given
ordering. Hence, the problem of estimating directed graphs be-
comes p − 1 separate lasso problems, which can be solved effi-
ciently using either the least angle regression (LARS) algorithm
(Efron et al. 2004) or the pathwise CD algorithm (Friedman et al.
2007). To obtain an estimate of a directed graph, Shojaie and
Michailidis (2010) proposed to use λi(δ) = 2ñ−1/2Z∗δ/[2p(i−1)]
as the penalty for the ith individual lasso problem, where ñ

is the sample size, Z∗q is the (1− q)th quantile of the stan-
dard normal distribution, and δ is a parameter controlling the
probability of falsely joining two ancestral sets in a graph (see
Shojaie and Michailidis 2010). We applied their method to our
simulated datasets. Though this criterion worked well with a
large sample size (see Table S1), it led to over-sparse solu-
tions when applied to our datasets with a limited sample size
(n = 5p). We thus scaled down the tuning parameters λi(δ)
proportionately and the results are summarized in Table 1 (KO
method). The δ level was chosen to be 0.1 as suggested by Sho-
jaie and Michailidis (2010). As anticipated, most of the results
obtained by assuming a known ordering are clearly better than
the results of the CD algorithm. However, almost all the TPRs
from the CD algorithm are above 75% of those from the KO
method. Furthermore, the CD algorithm seemed to outperform
the KO method when p = 200 and βij = 1.0. This compar-
ison demonstrates the gain in prediction accuracy when the
assumed ordering of the variables is correct. The gain mostly
comes from a lower FDR as no reversed edges will be pro-
duced. However, such an assumption is often risky in practical

Table 3. Comparison of average CPU time (in seconds) between the PC algorithm and the CD algorithm

PC algorithm CD algorithm

p = 20 p = 50 p = 100 p = 200 p = 20 p = 50 p = 100 p = 200

βij = 0.2 0.04 0.28 4.18 28.74 0.09 1.32 17.54 255.09
βij = 0.5 0.09 1.23 9.67 76.94 0.15 4.54 112.69 1938.23
βij = 1.0 0.09 0.97 5.10 33.73 0.32 10.05 193.17 4595.95
Mean 0.07 0.83 6.32 46.47 0.19 5.30 107.80 2263.09
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applications. Fortunately, the promising result of the CD al-
gorithm for large networks with a reasonably strong signal
(p ≥ 100 and βij ≥ 0.5) suggests that estimating a DAG with-
out knowing the ordering is reliable with sufficient data.

6. REAL DATA EXAMPLE

In this section, we analyze a flow cytometry dataset generated
by Sachs et al. (2005). This dataset contains simultaneous mea-
surement on p = 11 protein and phospholipid components of
the signaling network in human immune system cells. The orig-
inal dataset contains continuous data collected from n = 7466
cells and consists of a mixture of observational and experimen-
tal samples on the 11 components. The dataset analyzed by
Sachs et al. (2005) is a discretized version of the continuous
dataset. A number of researchers studied the flow cytometry
dataset, among whom Friedman, Hastie, and Tibshirani (2008)
and Shojaie and Michailidis (2010) analyzed the continuous
version.

Figure 3(a) shows the known causal interactions among the
11 components of the signaling network. These causal relation-
ships are well established, and no consensus has been reached

on interactions beyond those present in the network. Thus, this
network structure is often used as the benchmark to assess the
accuracy of an estimated network structure, and we therefore call
it the consensus model. Friedman, Hastie, and Tibshirani (2008)
applied the graphical lasso to this dataset and estimated a num-
ber of graphical models using different values of the L1 penalty.
Their models are all undirected and they observed moderate
agreement between one of their estimates and the consensus
model. Shojaie and Michailidis (2010) also analyzed the same
dataset using their penalized likelihood method by assuming
the ordering of the variables is known a priori. Their estimated
DAG using the adaptive lasso penalty is shown in Figure 3(b).
This graph has 27 directed edges in total, among which 14 are
expected and 13 are false positives. We obtained a sequence of
estimated DAGs by applying the CD algorithm to the continuous
flow cytometry data. One of them is shown in Figure 3(c). Our
model also has a total of 27 directed edges, of which 8 are ex-
pected, 6 are reversed, and 13 are false positives. It seems that the
performance of the CD algorithm, if ignoring the directionality,
is very comparable to the method assuming a known ordering.

To test the robustness of our method, we applied the CD
algorithm to the discrete version of the flow cytometry dataset,

Figure 3. (a) The classical signaling network of human immune system cells, (b) Shojaie’s network estimated from the continuous flow
cytometry dataset. The CD networks estimated from (c) the continuous flow cytometry dataset and (d) the discrete flow cytometry dataset.
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Table 4. Comparison among the CD algorithm, the order-graph
sampler, and the multidomain sampler applied to the discrete flow

cytometry dataset

Method P E M R+FP

CD algorithm (26 edges) 26 11 5 15
CD algorithm (20 edges) 20 9 9 11
Order-graph sampler 20 8 8 12
Multidomain sampler 25.9 15.55 2.4 10.35

NOTE: The order-graph sampler result comes from the mean graph (figure 11) in Ellis and
Wong (2008), while the multidomain sampler result is the average over 20 independent
runs (see Zhou 2011, table 3).

which has n = 5400 cells. The discretization transformed the
data into three levels, high, medium, and low, which are coded
as 2, 1, and 0, respectively. As a result, the magnitude of the
original measurement is partially preserved in the discrete data.
An estimated DAG with 26 edges is shown in Figure 3(d). To our
surprise, this graph is qualitatively better than the one estimated
using the continuous dataset. In this graph, there are 11 expected
edges and 15 false predictions (R+FP; see Table 4). We also ap-
plied the CD algorithm to 100 bootstrap samples generated from
the discrete dataset to assess the sensitivity of our method to data
perturbation. For each bootstrap sample, we selected a model
with 26 edges and found that on average it shared 23.3 edges
with the model shown in Figure 3(d), which confirms that our
method is quite robust to data perturbation. Moreover, though
our method was designed for Gaussian data, we were still able
to obtain a reasonable network structure from the discretized
dataset, which does not satisfy the Gaussian assumption.

Compared to the estimate obtained by Ellis and Wong (2008)
using their order-graph sampler, our result with 20 predicted
edges is slightly better in terms of the number of expected edges
(E) and false predictions (R+FP; see Table 4). The multidomain
sampler, recently developed by Zhou (2011) for Bayesian infer-
ence, yields better result than the CD algorithm. However, the
CD algorithm is much faster than these Monte Carlo sampling
approaches. For large networks with hundreds of nodes, the CD
algorithm can still be used to obtain reasonably good estimates
of DAGs, while Monte Carlo methods may not be applicable
due to their long running time.

7. DISCUSSION

We have developed a method to estimate the structure of
causal Gaussian networks using a penalized likelihood approach
with the adaptive lasso penalty. Without knowing the ordering
of the variables, we rely on experimental data to retrieve in-
formation about the directionality of the edges in a graph. The
acyclicity constraint on the structure of BNs presents a chal-
lenge to the maximization of the penalized log-likelihood func-
tion. A blockwise CD algorithm has been developed for this
optimization problem. The algorithm runs reasonably fast and
can be applied to large networks. A simulation study has been
conducted to demonstrate the performance of our method for
BNs of various sizes, and a real data example is shown as well.
Throughout this article, variables are assumed to be Gaussian,
although our approach may be applied to datasets from other
distributions as demonstrated by the result on the discrete flow

cytometry data. However, a more principled generalization to
other data types is expected to have a better performance.

We have established asymptotic properties for the penalized
maximum likelihood estimator of the coefficient matrix of a
GBN, assuming that the number of variables p is fixed. Asymp-
totic theory for the estimator if p is allowed to grow as a function
of the sample size remains to be established in the future. This
type of asymptotic problems has been studied in various set-
tings of undirected graph and precision matrix estimation (e.g.,
Meinshausen and Bühlmann 2006; Lam and Fan 2009), where
p(n) = O(nc) for some c > 0 or is of an even higher order.
Following our current setup, however, we may need to restrict
our attention to the case where 0 < c < 1 so that every variable
will have sufficient interventional data as n→∞. The satis-
factory results in our simulation for p ≥ 100 and n = 5p seem
to suggest that our CD algorithm is effective even for p >

√
n.

It will be interesting to study the theoretical properties of this
penalized likelihood approach when not all variables have ex-
perimental data, for which the concept of interventional Markov
equivalence (Hauser and Bühlmann 2012) will be relevant.

APPENDIX: PROOFS

Proof of Theorem 1. We prove the first claim (15) by contradiction.
Suppose θ �= θ∗ and f (x|θ k) = f (x|θ∗k) a.e. for k = 1, . . . , p. LetS(G)
denote the set of topological sorts of a DAG G. Recall that we denote
by Gφ and Gφ∗ the DAGs induced by φ and φ∗, respectively. There are
two possibilities between the topological sorts of Gφ and Gφ∗ if θ �= θ∗.

Case 1: S(Gφ) ∩ S(Gφ∗ ) �= ∅. Let � ∈ S(Gφ) ∩ S(Gφ∗ ), that is, an
ordering compatible with both Gφ and Gφ∗ . Assume without loss of gen-
erality that in this ordering i ≺ j if i < j . Apparently, � is also compat-
ible with Gφk

and Gφ∗
k

for k = 1, . . . , p. Then we can write f (x|θ k) =∏p

i=1 f (xi |x1, . . . , xi−1, θ k) =
∏p

i=1 f (xi |�Gφk

i , θ k) and similarly

f (x|θ∗k) =
∏p

i=1 f (xi |�
Gφ∗

k

i , θ∗k). Since f (x|θ k) = f (x|θ∗k), it follows

that �
Gφk

i = �
Gφ∗

k

i for all i and thus Gφk
= Gφ∗

k
for all k. However,

since θ �= θ∗, there exists some k such that θ k �= θ∗k . Therefore,
there exists a k such that the common multivariate normal density
f (x|θ k) = f (x|θ∗k), factorized according to a common structure
Gφk
= Gφ∗

k
, can be parameterized by two different parameters θ k and

θ∗k . This is apparently impossible.
Case 2: S(Gφ) ∩ S(Gφ∗ ) = ∅, that is, none of the orderings of Gφ∗

is compatible with Gφ . In this case, there must exist a pair of indices
(i, j ) such that in Gφ∗ , Xi ∈ an(Xj ), but in Gφ , Xj is a nondescendant
of Xi . Then Xj is independent of Xi in f (x|θ i), since in Gφi

, Xi has
no parents and Xj is a nondescendant of Xi . So cov(Xi,Xj ) = 0 in
f (x|θ i). However, in Gφ∗

i
, we still have Xi ∈ an(Xj ). It is easy to show

that cov(Xi, Xj ) = β∗i→j var(Xi) �= 0 in f (x|θ∗i ) since θ∗ is natural.
Therefore, there exists 1 ≤ i ≤ p such that f (x|θ i) �= f (x|θ∗i ), which
contradicts our assumption.

So in both Case 1 and Case 2, we have a contradiction. Thus, the
first claim holds.

For the second claim (16), first note that by the law of large numbers,

1

n
(L(θ )− L(θ∗)) =

p∑
k=1

nk

n

1

nk

∑
h∈Ik

log
f (X[h,·]|θ k)

f (X[h,·]|θ∗k)

−→p

p∑
k=1

αkEθ∗k

[
log

f (Y|θ k)

f (Y|θ∗k)

]
, (A.1)

where Y is a random vector with probability density f (x|θ∗k). Then
the desired result follows immediately using Jensen’s inequality
and (15). �
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Proof of Theorem 2. Define an = 1/
√

n and B = {j : φ∗j �= 0}. Let

I(θ k) = Eθk

{[
∂

∂θ k

log f (x|θ k)

] [
∂

∂θ k

log f (x|θ k)

]T
}

be the Fisher information matrix.
Consider θ = (φ, σ 2, σ̃ 2) ∈ nb(θ∗), where nb(θ∗) is an arbitrarily

small neighborhood of θ∗. The components of φ must satisfy φiφ
∗
i > 0

if φ∗i �= 0 (i = 1, . . . , d), since otherwise ‖θ − θ∗‖ ≥ minj :φ∗
j
�=0 |φ∗j |.

In particular, this implies that if θ ∈ nb(θ∗), i → j in Gφ for all i → j

in Gφ∗ and thus Gφ and Gφ∗ have a compatible ordering. If we restrict to
the lower-dimensional space �k = {θ k : θ ∈ �}, the same arguments
apply to an arbitrarily small neighborhood of θ∗k in this space, that
is, Gφk

and Gφ∗
k

have a compatible ordering as well. Then it follows
from the arguments used in Case 1 in the proof of Theorem 1 that
f (x|θ k) �= f (x|θ∗k) for θ k ∈ nb(θ∗k)\{θ∗k}. Since f is a Gaussian density,
it follows that I(θ∗k) is positive definite for all k.

Let u ∈ {u : θ∗ + anu ∈ �} and denote its components by uj . Let
uk be the vector defined in the same way as θ k , k = 1, . . . , p. Note that∑p

k=1 ‖uk‖2 ≥ ‖u‖2. Let δk
min > 0 be the minimal eigenvalue of I(θ∗k)

and ρ = mink(αkδ
k
min/2). Then

p∑
k=1

αk

2
uT

k I(θ∗k)uk ≥
p∑

k=1

αk

2
δk

min‖uk‖2 ≥ ρ

p∑
k=1

‖uk‖2 ≥ ρ‖u‖2.

(A.2)

Now we study the behavior of R(θ ) in a small neighborhood of the
true value θ∗ by expanding L(θ ) around θ∗. We have, as n→∞,

R(θ∗ + anu)− R(θ∗)

≤ L(θ∗ + anu)− L(θ∗)− λn

∑
j∈B

τj (|φ∗j + anuj | − |φ∗j |)

=
p∑

k=1

[Lk(θ
∗
k + anuk)− Lk(θ

∗
k)]− λnan

∑
j∈B

τjuj sgn(φ∗j )

=
p∑

k=1

[
anL

′
k(θ
∗
k)T uk − 1

2
nka

2
nuT

k I(θ∗k)uk{1+ op(1)}
]

− λnan

∑
j∈B

τjuj sgn(φ∗j )

=
p∑

k=1

[√
αk

L′k(θ
∗
k)T√

nk

uk{1+ op(1)} − αk

2
uT

k I(θ∗k)uk{1+ op(1)}
]

− λn√
n

∑
j∈B

τjuj sgn(φ∗j )

≤
p∑

k=1

[√
αk

L′k(θ
∗
k)T√

nk

uk{1+ op(1)}
]
− ρ‖u‖2{1+ op(1)}

− λn√
n

∑
j∈B

τjuj sgn(φ∗j ). (A.3)

The last inequality is due to (A.2). From the central limit theorem,
n
−1/2
k ‖L′k(θ∗k)‖ = Op(1) for all k. By assumption, τj = Op(1) for j =

1, . . . , d and λn/
√

n = op(1). Therefore, for a sufficiently large C, the
second term in the last line of (A.3) dominates the first and the third
terms uniformly in {u : ‖u‖ = C, θ∗ + anu ∈ �}. Hence, for any given
ε > 0, there exists a sufficiently large C such that

P

(
sup
‖u‖=C

R(θ∗ + anu) < R(θ∗)
)
≥ 1− ε, (A.4)

which implies that with probability at least 1− ε, there exists a local
maximizer θ̂ of R(θ ) in the ball {θ∗ + anu ∈ � : ‖u‖ < C}. Thus, there
exists a local maximizer θ̂ of R(θ ) such that ‖θ̂ − θ∗‖ = Op(n−1/2).

SUPPLEMENTARY MATERIALS

Some technical proofs, the algorithm for checking the acyclic-
ity constraint, and additional results can be found in the supple-
mentary materials.

[Received October 2011. Revised November 2012.]
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