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Finding multiple minimum-energy conformations of the hydrophobic-polar protein model
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We demonstrate the efficiency of the multidomain sampler (MDS) in finding multiple distinct global minima and
low-energy local minima in the hydrophobic-polar (HP) lattice protein model. Extending the idea of partitioning
energy space in the Wang-Landau algorithm, our approach introduces an additional partitioning scheme to divide
the protein conformation space into local basins of attraction. This double-partitioning design is very powerful
in guiding the sampler to visit the basins of unexplored local minima. An H-residue subchain distance is used
to merge the basins of similar local minima into one domain, which increases the diversity among identified
minimum-energy conformations. Moreover, a visit-enhancement factor is introduced for long protein chains to
facilitate jumps between basins. Results on three benchmark protein sequences reveal that our approach is capable
of finding multiple global minima and hundreds of low-energy local minima of great diversity.
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I. INTRODUCTION

The function of a protein not only depends on its amino
acid sequence, but also strongly relies on its three-dimensional
(3D) spatial conformation. However, prediction of protein
spatial structures from a given amino acid sequence has
been a challenging computational problem, which is still
under intensive investigation. Direct physical modeling, like
molecular dynamics (MD), is powerful in studying folding
kinetics and transition states, but is largely limited to short
protein chains and fast folders (short time scale), due to the
vast amount of computation required to construct the atomistic
trajectories [1]. On the other hand, the rough energy landscape
of protein folding structures also poses additional difficulty
in search of the native state (energy global minimum) of a
protein. Monte Carlo simulation based on all-atom models
is able to partially relax the issue of short time scale in
MD simulation [2,3], because it does not need to follow the
atomistic trajectories exactly. To further simplify the problem,
coarse-grain lattice protein models are frequently used. The
hydrophobic-polar (HP) model [4] is one of the most popular
lattice protein models [5–9], as it greatly simplifies the amino
acid representation and interaction. In this model, amino acids
are abstracted as hydrophobic (H) or polar (P) residues, and
the proteins are self-avoiding chains arranged on a simple
cubic lattice. The H-H, H-P, and P-P pairwise interaction
energies are defined as εHH = −1,εHP = 0, and εPP = 0, and
only nearest-neighbor interactions are considered. The total
energy of a chain in conformation s is thus given by

E(s) = nHHεHH , (1)

where nHH is the number of H-H contact pairs nonadjacent
on the chain. Under this energy function, a folded HP chain
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usually consists of a hydrophobic core and a polar shell. It
mimics real proteins in native states with hydrophobic residues
hidden from the solvent (water). Computational expense in
evaluating energy of the HP model has been largely simplified.
Nevertheless, the rough energy landscape of real proteins is
somewhat retained, so it is still an ideal model to test and drive
the development of efficient algorithms which target at finding
global minima in a highly rough energy landscape.

Stochastic algorithms that simulate from the HP model
generally fall into two categories [5]: chain-growth algorithms
[10–12] and Markov chain Monte Carlo (MCMC) [6–8,13,14].
The idea of chain-growth algorithms is to construct a protein
folding structure from the first residue by adding one residue at
a time. Empty sites in neighbor to the leading residue carry dif-
ferent probabilities to accept a new residue, depending on the
energy change induced by the new residue. Successful growth
of the chain to the targeted length would be a valid sample. If
a dead end is reached, the growth process starts over from the
first residue. Although the method may be efficient for short
HP models, the idea is hard to transfer to the folding of real
proteins. In comparison, an MCMC method starts from a whole
chain, and the conformation evolves according to a specific
move set. It is also referred to as a “blind search” method, be-
cause it does not require a priori knowledge on the protein na-
tive state, while chain-growth algorithms are usually designed
to preferably form dense conformations. A popular choice of
the move set is the pull move, which is local, reversible, and
complete [15]. The pull move folds a chain locally, creates
“humps” on the chain, and gradually forms dense structures.
Details on how the pull move operates can be found in Ref. [6].
One drawback of the pull move is that when the chain is in
highly dense conformations (quasifolded states), only residues
on the shell can perform valid pull moves, while residues in
the core are relatively hard to change, and thus the efficiency
in proposing new conformations is largely reduced. The bond-
rebridging move [8,16] has been proposed to overcome this dif-
ficulty, by breaking and reconnecting bonds in the hydrophobic
core. In this work, we combine the pull move and the bond-
rebridging move as the move set for a lattice protein chain.

031909-11539-3755/2012/86(3)/031909(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.031909


WEI TANG AND QING ZHOU PHYSICAL REVIEW E 86, 031909 (2012)

However, a straightforward Metropolis algorithm on the
HP model usually suffers from being trapped at local minima,
because proposals to high-energy barriers surrounding a local
minimum have an exponentially small acceptance probability.
Various strategies have been proposed to alleviate this problem,
including multicanonical sampling [17,18], entropic sampling
[19], simulated tempering [20], evolutionary Monte Carlo [21],
the equienergy sampler [6], replica exchange Monte Carlo
[14,22], the Wang-Landau (WL) algorithm [7,8], and gradient-
directed Monte Carlo [23].

In reality, due to the continuum nature of folding of
real proteins, there is only one global minimum (the native
state). However, under moderate interruption of environmental
conditions (e.g., temperature, pH value, ion concentrations),
proteins may have a good chance to misfold into metastable
states with energy close to the global minimum and lose
their desired function, which is the cause of many diseases.
The native state is typically only 5–10 kcal/mol lower in
energy than a misfolded state [24]. Therefore, knowledge about
those metastable states is very important for understanding
the protein thermodynamics and further development of
medications to help correct misfolded proteins. In this work,
we develop an MCMC method to find multiple global minima
and a large number of local minima with energy close to the
global minima of the HP model. With the use of a new distance
measure, minima found by our method all have distinct
hydrophobic cores and represent conformations with nontrivial
structural differences. This clearly distinguishes our method
from existing MCMC methods which focus on thermodynamic
estimation and often provide only a few minima, such as those
reviewed above.

II. METHODOLOGY

We apply a recently developed algorithm, the multidomain
sampler (MDS) [25], to the HP model. The MDS carries on
and develop the idea of the WL algorithm [26,27]. It not only
performs a random walk over energy space, but also over
different basins of attraction of local minima. The effectiveness
of this algorithm in statistical inference and in constructing
Ising energy landscapes has been demonstrated in our previous
work [25,28]. In this paper, we show that the MDS with
suitable modifications can also serve as a powerful method for
finding multiple global and local minima, because it avoids
redundant visits to basins with adequate samples and pushes
the sampler to less-explored portions of the state space. After
a description of the MDS in the context of the HP model, we
develop new strategies to achieve an efficient search for a large
number of minimum-energy folding conformations.

A. Multidomain sampler

For a given energy function, the MDS can be used as an
algorithm to search for its K lowest energy minima. We use
dynamically updated information of K local minima, denoted
as v1, . . . ,vK , to partition the state space into K + 1 domains,
D1, . . . ,DK , and their complement D0. For any state s, if it
finds vk by steepest descent, we say s ∈ Dk . In other words,
Dk is the basin of attraction of vk . To enable steepest descent
in a discrete model like the HP model, neighbors of a given

state s need to be defined. For the HP model, the set of
neighbors of s is defined as all the conformations that can be
accessed by a single pull move from the conformation s, as pull
moves only locally mutate the original state. Then a steepest
descent algorithm is implemented by recursive application of
single pull moves that give the maximum energy decrease
in each step until a local minimum is reached. When a new
minimum with energy lower than the maximum energy of the
K stored local minima is found, the new minimum replaces
the highest-energy minimum in the original set. Hence, the
set V = {vk : k = 1, . . . ,K} always keeps the K minima with
the lowest energy so far. When the steepest descent finds
a local minimum with energy higher than those in V , the
conformation s is assigned to D0. On the other hand, similar
to the WL algorithm, the energy space is also partitioned by a
ladder of energies, u1 < · · · < uL < uL+1 = ∞. Usually the
global minimum of a given chain is unknown, so the ladder is
dynamically updated during the simulation process to ensure
the lowest minimum found so far is in [u1,u2). The objective
for this double-partitioning design is to drive the sampler to
perform a random walk over all nonempty subregions,

Dkj = {s ∈ Dk : E(s) ∈ [uj ,uj+1)},
k = 0, . . . ,K, j = 1, . . . ,L, and also to encourage the sampler
to explore thoroughly the basins of newly found low-energy
minima.

The mechanism to generate a random walk over all Dkj

is similar to the generalized Wang-Landau (GWL) algorithm
[29,30], in which each energy interval may contain multiple
energy levels. Let θkj ∝ ∑

s∈Dkj
e−βE(s) denote the statistical

weight (unnormalized) of Dkj in the Boltzmann distribution
at temperature T = 1/β. A flat histogram can be generated
if the probability of visiting a state s ∈ Dkj is proportional to
e−βE(s)/θkj . The weights θkj can be estimated by a WL-type
iterative algorithm. At the t th iteration, θkj is estimated by θ

(t)
kj

(θ (1)
kj is set to 1 for all k and j ). If the state at this iteration is

xt ∈ Dkj and a new state y ∈ D�i is proposed, the Metropolis
ratio from xt to y is

r(xt → y) = min

{
1,eβ[E(xt )−E(y)]

θ
(t)
kj

θ
(t)
�i

P (y → xt )

P (xt → y)

}
, (2)

where P (y → xt ) is the proposal probability from y to xt and
P (xt → y) is the proposal probability from xt to y. In addition
to the pull move, our proposals for new conformations also
include the bond-rebridging move [8,16], which is a good
complement as it is more efficient than the pull move for
updating dense conformations. The probability to propose a
pull move, denoted by Ppm, is fixed to 0.9 throughout our
simulation. Denote by xt+1 the updated state according to the
above Metropolis ratio. Then

ln θ
(t+1)
kj = ln θ

(t)
kj + 1(xt+1 ∈ Dkj ) ln f (3)

is used to update the estimation of θkj for all k,j , where f >

1 (ln f > 0) is the modification factor and 1(xt+1 ∈ Dkj ) = 1
if xt+1 ∈ Dkj and 0 otherwise. It is easy to see that the
Metropolis ratio increases with θ

(t)
kj /θ

(t)
�i . Thus, if the basin Dk

has already been visited frequently, a proposed y to another
basin will have a higher acceptance rate. Unlike those works
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that use the WL algorithm to determine the density of states
of the HP model [8,31,32], we do not reduce f to achieve
convergence in thermodynamic estimation. Since our goal
here is to find as many minima as possible, while sampling
is less of a concern, we keep f ≡ e (ln f ≡ 1) throughout
the simulation to ensure fast growth in θ

(t)
kj and therefore

a fast exploration over many basins. Under this setting, the
log weight ln θ

(t)
kj simply records the number of visits to Dkj

until the current iteration. This makes it convenient to update
these weights when the set of stored minima V is updated.
Here, note that steepest descent with the pull move is used to
determine the basin of the proposed conformation y. Suppose
it finds the local minimum v(y). If v(y) replaces an existing
minimum vm in V , then we add the current log weights of
the basin Dm, i.e., ln θ

(t)
mj for all j , to the log weights of D0,

because Dm now becomes a part of D0, and reset ln θ
(t)
mj = 0

as the initial weights for the basin of the new minimum v(y).
In other applications when sampling is the primary goal,

we can first run the MDS with f ≡ e for a while, updating
dynamically the set of minima V , and then gradually reduce
f with V fixed to achieve convergence in sampling. This
strategy has been adopted in our previous work [25] on
structural sampling of Bayesian networks, where we have
obtained reliable and accurate estimation of various statistics
of interest. This shows that minima found by fixing f ≡ e are
often good representatives for the low-energy portion of the
overall landscape.

B. Visit-enhancement factor

In principle, large K is preferred, because more local
minima can be recorded, which would be helpful to guide the
random walk. However, the conformation space of a HP lattice
protein, as well as the total number of local minima, grows
exponentially with the chain length [33]. Clearly, K cannot
scale exponentially due to limited computing resources. For a
long chain (e.g., 100 residues),

⋃K
k=1 Dk usually represents

only a small portion of the conformation space, and its
complement D0 takes up the major part. Various portions in D0

may be connected to unknown global minima or low-energy
local minima, and thus adequate transitions between D0 and
other basins are important. In fact, considering the huge
number of conformations in D0, it is unfair to treat it as an
ordinary domain for building a flat histogram. Consequently,
we increase the chance to visit D0 by the use of a visit-
enhancement factor A.

Suppose the desired frequency of visiting each Dkj (k � 1)
is ψ and that of each D0j is Aψ (A > 1). To achieve the
desired frequencies, one can modify (3) to

ln θ
(t+1)
kj = ln θ

(t)
kj + [1(xt+1 ∈ Dkj ) − ψ] ln f, for k � 1,

(4)

ln θ
(t+1)
0j = ln θ

(t)
0j + [1(xt+1 ∈ D0j ) − Aψ] ln f, (5)

as shown by Liang et al. [29]. Since adding a constant ψ ln f

to the right-hand sides of the above recursions does not change
the Metropolis ratio (2) for the (t + 1)th iteration, we may still
use (3) for k � 1 but use

ln θ
(t+1)
0j = ln θ

(t)
0j + [1(xt+1 ∈ D0j ) − (A − 1)ψ] ln f (6)

for D0. The exact value of ψ is determined by the numbers
of nonempty subregions in Dk (k � 1) and D0, which may
change when the set of stored minima V is updated. Since the
visit-enhancement factor A is essentially a tuning parameter to
tune the search from depth first to breadth first as A increases,
we simply fix ψ to 1/(A + K), which is the exact value
when L = 1. The weight θ

(t+1)
0j decreases if the domain D0

is not visited. The larger the A is, the faster θ
(t+1)
0j decreases.

Hence, acceptance of proposals to D0 becomes easier over
time. The domain D0 contains high-energy “open” protein
conformations, and the chain needs to first unfold from a
“close” form and then may be able to fold into a different
conformation. Therefore, D0 serves as a pathway for the
sampler to jump between different local basins and visit
unexplored part of the space.

Now we give a complete outline of the MDS for the HP
model. Define the domain partition index of a state s by I (s) =
k if s ∈ Dk and the energy partition index J (s) = j if E(s) ∈
[uj ,uj+1). Given xt and {θ (t)

kj }, one iteration of our algorithm
is composed of the following steps.

(1) Propose a conformation y with probability Ppm by a
pull move or with probability 1 − Ppm by a bond-rebridging
move.

(2) Perform a steepest descent search to find v(y). Update
the set of local minima V and the energy ladder if needed.
Then determine the domain partition index I (y) and the energy
partition index J (y).

(3) Accept or reject y via the Metropolis ratio (2) with k =
I (xt ), j = J (xt ), � = I (y), and i = J (y) to obtain the updated
conformation xt+1. Use (3) and (6) to update the weights θ

(t+1)
kj

for all k,j .

C. H-residue subchain distance

In step 2 of the algorithm outline, when a new conformation
y is proposed and v(y) is found, a one-by-one comparison
between v(y) and V is performed to determine whether v(y)
matches any of the K stored minima. The comparison is
achieved by computing a distance metric d(s(1),s(2)) between
two conformations s(1) and s(2). If d(s(1),s(2)) = 0, then we say
s(1) matches s(2). Obviously, identical conformations should
match each other under any distance metric. For a specific
distance, if d(s(1),s(2)) = 0 only when s(1) and s(2) are identical,
then we say it is a strict distance definition; otherwise it is
a loose distance definition. An example of a strict distance
definition is described in Ref. [4]. Each residue is coded using
the direction of its following bond with respect to its previous
bond, which is either 0 (collinear), +1 (right turn), or −1
(left turn). Therefore, each conformation can be described
by a vector, and the distance between two conformations is
defined by the L1 norm (sum of the absolute value of each
component) of the difference between their corresponding
vectors. However, in the HP model, only the arrangement of
H residues determines the total energy of the chain, and P
residues are “dummy.” A strict distance metric differentiates
similar conformations like the two shown in Fig. 1, which
have the same H-residue arrangement but differ in P residues.
In our algorithm, since only a limited number K of local
minima can be stored to guide the search, it is a good idea to
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FIG. 1. (Color online) Different folding structures in a strict
distance definition but having zero HSC distance. H and P residues
are represented by � and ©, respectively.

make them as diverse as possible, so that the K local minima
can represent a larger portion of the space as a whole. We
thus introduce a new distance metric that only measures the
difference in the H-residue subchain (HSC) when comparing
two conformations. Consequently, the basins of minima having
the same arrangement of the HSC are merged into one domain
in our algorithm.

Assuming the length of a chain is l, which contains n H
residues, the HSC of the chain s = (s1,s2, . . . , sl) is defined
as sH = (s1,H ,s2,H , . . . , sn,H ), where sj,H is the j th H residue.
For two conformations of the chain, s(1) and s(2), their HSC
distance is

d(s(1),s(2)) =
n−1∑
j=2

dj

(
s(1)

H
,s(2)

H

)
, (7)

with s
(k)
H (k = 1,2) being the conformation of the HSC. The

definition of dj (s(1)
H ,s

(2)
H ) is described below and illustrated in

Fig. 2(a). Let �w(k)
j = s

(k)
j,H − s

(k)
j−1,H , where s

(k)
j,H is the vector of

the coordinates of the j th H residue in conformation s(k). When
calculating dj (s(1)

H ,s
(2)
H ), s(2) is rotated so that �w(2)

j is parallel

to �w(1)
j [see Fig. 2(a)]. Denote �w(k)

j and �w(k)
j+1 after rotation by

�w(k,r)
j and �w(k,r)

j+1 . Then, dj (s(1)
H ,s

(2)
H ) = ‖ �w(2,r)

j+1 − �w(1)
j+1‖, where

‖ · ‖ is the Euclidean norm of a 2D vector. The HSC distance

satisfies the general requirements of a distance definition. First,
it is always non-negative. Second, if instead, s(1) is rotated to
align �w(1)

j to �w(2)
j , it is easy to show that

dj

(
s(2)

H
,s(1)

H

) = ∥∥ �w(1,r)
j+1 − �w(2)

j+1

∥∥ = ∥∥ �w(2,r)
j+1 − �w(1)

j+1

∥∥
= dj

(
s(1)

H
,s(2)

H

)
. (8)

The distance is symmetric at each residue and thus symmetric
for the whole chain. Third, when comparing three conforma-
tions s(1), s(2), and s(3), s(2) and s(3) are rotated to align �w(2)

j

and �w(3)
j to �w(1)

j . Note that the inequality

dj

(
s(1)

H
,s(2)

H

) + dj

(
s(1)

H
,s(3)

H

)
= ∥∥ �w(2,r)

j+1 − �w(1)
j+1

∥∥ + ∥∥ �w(3,r)
j+1 − �w(1)

j+1

∥∥
�

∥∥ �w(2,r)
j+1 − �w(3,r)

j+1

∥∥ = dj

(
s(2)

H
,s(3)

H

)
(9)

holds at each residue, which implies that the distance definition
satisfies triangle inequality. See Fig. 2(b) for an illustration.
The HSC distance definition is also extensible to a 3D chain,
with an additional rotation operation. Similarly, we first align
�w(2)

j to �w(1)
j . Then rotate s(2) around �w(2,r)

j such that ‖ �w(2,r)
j+1 −

�w(1)
j+1‖ is minimized, which occurs when �w(2,r)

j+1 is in the plane

spanned by �w(1)
j and �w(1)

j+1. After the rotation, the same HSC
distance definition can be used.

To demonstrate the efficiency of our algorithm, we compare
it with a two-step search algorithm, which first uses the GWL
algorithm [29] with f ≡ e to sample conformations and then
find the associated minimum of each conformation by steepest
descent. This two-step approach does not utilize the partition
by the basins of attraction of local minima, but other parameter
settings are exactly identical to those used in the MDS. The
probability to accept a new conformation y given the current
xt is

r(xt → y) = min

{
1,eβ[E(xt )−E(y)]

θ
(t)
J (xt )

θ
(t)
J (y)

P (y → xt )

P (xt → y)

}
, (10)

s
(1)
j−1,H

s
(2)
j−1,H

(2,r)
j

(1)
j ,

s
(1)
j,H ,s

(2)
j,H

s
(1)
j+1,H

s
(2)
j+1,H

(1)
j+1

(2,r)
j+1

dj(s
(1)
H , s

(2)
H ) =

(2,r)
j+1 − (1)

j+1

s
(1)
j+1,H

s
(2)
j+1,H

(1)
j+1

(2,r)
j+1

(3,r)
j+1

dj(s
(1)
H , s

(2)
H ) + dj(s

(1)
H , s

(3)
H ) ≥ dj(s

(2)
H , s

(3)
H )

s
(3)
j+1,H

(a) (b)

FIG. 2. (Color online) (a) Schematics of the HSC distance definition. HSC in two conformations is represented by circles of different sizes
and colors. Conformation s(2) in red has been rotated so that �w(2,r)

j is parallel to �w(1)
j . Dashed lines indicate that the H residues are not necessarily

adjacent to each other. The Euclidean norm of the dotted line segment gives dj (s(1)
H ,s

(2)
H ). (b) Triangle inequality in the HSC distance definition.

Conformations in red and blue (light and dark grey) have been rotated. Three conformations involved are distinguished by circles with different
sizes.
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TABLE I. Residual sequences of three benchmark lattice proteins.

Name Residue sequence

seq48 PPHPPHHPPHHPPPPPHHHHHHHH
HHPPPPPPHHPPHHPPHPPHHHHH

seq64 HHHHHHHHHHHHPHPHPPHHPPHH
PPHPPHHPPHHPPHPPHHPPHHPPH
PHPHHHHHHHHHHHH

seq100b PPPHHPPHHHHPPHHHPHHPHHPHH
HHPPPPPPPPHHHHHHPPHHHHHHP
PPPPPPPPHPHHPHHHHHHHHHHHP
PHHHPHHPHPPHPHHHPPPPPPHHH

where J (·) gives the energy partition index and θ
(t)
j is the

current estimate of the weight of the j th energy interval, j =
1, . . . ,L. These weights are then updated by

ln θ
(t+1)
j = ln θ

(t)
j + 1[J (xt+1) = j ] (11)

as ln f ≡ 1, where xt+1 is the updated conformation according
to the above Metropolis ratio.

III. RESULTS

The proposed algorithm was applied to three benchmark 2D
protein sequences: seq48, seq64, and seq100b [6]. See Table I
for their residue sequences. The number of MC steps was
5 × 106 for each individual run. The energy ladder generally
included ten evenly distributed intervals and we chose K =
500. The initial conformations were straight chains for all
sequences in all runs.

A. Performance evaluation

We first examined the effect of the visit-enhancement factor
A on finding low-energy minima. Figure 3(a) shows the energy
distributions of the K lowest-energy minima of seq64 found
by the MDS across a wide range of values of A, from 1 to
100. The counts reported are the sums of five individual runs.
Figure 3(b) shows the total number of global minima (energy
Eg = −42) found over five individual runs with different A.

TABLE II. Statistics of minima found by the MDS and the GWL.
E∗

g : reported lowest minimum energy in the literature; Eg: global
minimum energy found in this work; Ng: total number of global
minima found; Ē: average energy of all stored local minima; SD:
standard deviation of the energies of all stored local minima; Distance:
average pairwise distance between stored local minima. Results from
five runs are pooled together in the table.

Sequence Method E∗
g Eg Ng Ē SD Distance

seq48 MDS −23 −23 70 −22.0 0.4 23.6
GWL −23 32 −21.2 0.4 24.5

seq64 MDS −42 −42 271 −40.6 0.7 31.8
GWL −42 4 −38.2 0.7 40.1

seq100b MDS −50 −50 12 −47.7 1.0 43.7
GWL −48 0 −45.0 1.2 54.0

The sampler showed optimal and comparable performance in
finding global and low-energy minima for A between 5 and
30, and it found significantly fewer low-energy minima for
A � 50. In the extreme scenario, the sampler failed to find any
global minima when A � 80. This is expected as the sampler
tends to spend too much time in the complement domain D0

when A is too big, and thus may not explore thoroughly those
basins of low-energy minima. In practice, we found that the
optimal value of A is not sensitive to the length of a chain
and thus fixed A = 20 for simulating all the sequences in this
study.

Table II gives a summary of the results for all three
sequences. The energy of the lowest minimum found in
the literature [6–8,13,34] for each sequence is reported in
the table. If our algorithm finds a minimum with that energy, we
call it a global minimum. The total numbers of global minima
found by the MDS over five individual runs were 70, 271, and
12 for seq48, seq64, and seq100b, respectively. This shows
that the MDS indeed is able to identify multiple, sometimes
many, global minima. Note that our algorithm stored 500 local
minima (including global minima) in every run. Statistics such
as the average and the standard deviation of the energies of all
2500 minima over five runs are reported in the table. The

(a) (b)

FIG. 3. (Color online) (a) Energy distributions of the K lowest minima found for different visit-enhancement factor A. The counts are the
sums of five individual runs. The curves for A � 30 are summarized into a single curve of the mean values, due to their similarity, with standard
deviations indicated by error bars. (b) Number of global minima found for different A, where the error bar of a data point is the estimated
standard deviation of the total count. A missing error bar implies that the standard deviation is very small.
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FIG. 4. Hierarchical clustering of global
minima found in a single run: (a) seq48,
(b) seq64.

average energies were often only one to two units higher than
the global minima and the standard deviations were also small.
This shows that our algorithm also detected a large number of
local minima with energy very comparable to that of the global
minima. On the other hand, the average pairwise HSC distance
between the identified minima confirms that these folding
conformations were quite different in their hydrophobic cores.
These results clearly demonstrate that the HP model has a
large number of minimum-energy conformations, and thus
it is a great advantage for understanding the overall energy
landscape to be able to find a substantial number of these
minima with high diversity.

To further benchmark the performance of the MDS, we
applied the GWL-based two-step approach to the same set of
sequences, with the same number of MC steps and the same
energy ladders. A side-by-side comparison between the two
methods is given in Table II. It is noted that the MDS always
found much more global minima than the GWL algorithm did,
and the latter failed to find any global minima for seq100b.
The average energy of identified local and global minima
by our algorithm was lower than the GWL algorithm, which
demonstrates the effectiveness of the MDS in folding lattice
proteins. Because high-energy conformations are often more
open and therefore dissimilar, the minima found by the GWL
had a higher average pairwise distance. This comparison shows
the usefulness of generating a random walk over different
basins of attraction via the double-partitioning design in
detecting low-energy minima.

B. Clustering global minima

As demonstrated by Table II, the MDS can efficiently find
multiple global minima and many low-energy local minima of
a given protein chain. It is helpful to examine systematically
the diversity among all the global minima found for a
specific protein sequence. To this end, we used single-linkage

hierarchical clustering to group global minima with the HSC
distance as the measure of dissimilarity. Figures 4 and 5
show example cluster trees for the three chains. The height
of an internal node represents the HSC distance between the
nearest neighbors in the two subclusters. Two major clusters
are readily distinguishable in Figs. 4(a) and 4(b), where the
conformations in one cluster are the mirror images of those
in the other cluster. In our HSC distance measure, a certain
conformation and its mirror image are treated as different
conformations. In fact, molecules may have different chemical
properties from their mirror images, which is referred to as
chirality, and thus it is biologically meaningful to treat a
conformation and its mirror image differently.

For seq48, all the individual runs identified the same set
of 14 global minima, with seven in each of the mirror image
clusters [Fig. 4(a)], even without visit enhancement for D0 (i.e.,
A = 1). Therefore the introduction of A seems less important
for short chains. There were 78 global minima found for seq64
in the most successful run (finding the most global minima),
with 39 in each of the two mirror image clusters [Fig. 4(b)]. The
hierarchical structures within the two clusters are essentially
identical, up to a permutation of the horizontal placement of
the global minima in one cluster. All the global minima found
in other runs were subsets of the above 78 global minima,
which suggests they may represent a complete set of the global
minima for this sequence. For seq100b, the minima found were
relatively diverse, but did not contain the corresponding mirror
image cluster due to the large conformation space and a limited
number of search steps. A protein in a compact folding state
cannot easily evolve to its mirror image conformation unless
the chain sufficiently unfolds. Therefore a high percentage
of minima that form mirror image pairs may be regarded as
evidence of an efficient random walk in the conformation
space. The match percentage is defined as 2k

nT
, where k is

the number of matched mirror image pairs and nT is the
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FIG. 5. (Color online) Hierarchical cluster-
ing of global minima of seq100b found in a single
run and the folding conformations of four global
minima, each from a cluster.

total number of global minima found. For example, the match
percentages of the global minima on the two cluster trees in
Fig. 4 are both 100%. The overall match percentages across
five independent runs for seq48, seq64, and seq100b were
100%, 63%, and 0%, respectively. The low match quality of
the global minima found for seq100b implies an insufficient
random walk over the space. However, this sequence has been
challenging for many algorithms. For example, the equienergy
sampler failed to find any global minima for this sequence [6].
Although the MDS could not move around the space so freely
as to reach mirror image pairs, it indeed identified in a single
run 12 distinct global minima, with pairwise HSC distances
between 6 and 11 (Fig. 5). If we use a distance cutoff around
9, these global minima can be grouped into four clusters
according to the cluster tree. The conformations of four global
minima, one from each cluster, are shown below the cluster
tree in Fig. 5. One sees that these conformations all have quite
different hydrophobic cores, and a direct proposal from one of
them to another by the move set is almost impossible. Thus the
sampler must first climb up a high energy barrier by sufficiently
unfolding a compact conformation and then move downhill to

reach another global minimum. The double-partitioning design
is the key to achieving such free moves between different
energy levels and across different basins of attraction. To
the best of our knowledge, this result is the first explicit
demonstration of finding multiple diverse global minima for
this sequence in a single MCMC simulation. Last, to facilitate
future analysis, all the distinct global minima found for the
three sequences in this study are provided (see Refs. [39,40]
for URL and Supplemental Material).

IV. DISCUSSION

In this work, we have demonstrated the power of the MDS
in searching for multiple distinct global minima of various
benchmark HP lattice protein sequences. By extending the idea
in the WL algorithm of partitioning energy space, the MDS
introduces additional partitioning of the conformation space
into the basins of attraction of local minima. This double-
partitioning design significantly increases the efficiency of
the sampler in exploring the unvisited part of the space
by avoiding redundant sampling from the same domain. A
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visit-enhancement factor is introduced to facilitate jumps
between {Dk : k = 1, . . . ,K} and their complement D0, as the
latter usually contains important pathways to the unexplored
portion of the space.

One unique aspect of the MDS is that it utilizes information
on local basin structures. In addition to the advantage in finding
minima reported in this paper, this information is also useful for
estimating barriers between different basins and constructing
disconnectivity graphs [35,36] as demonstrated in Ref. [28]
on spin glasses. Practically, when a protein misfolds into a
metastable state with a high barrier to access other domains,
the protein will be trapped in this local basin and therefore
lose its desired function. Estimating cross-domain barriers
helps to identify those deep metastable states, and may provide
crucial fundamental understandings of protein behavior in drug
design. One of our future directions is to develop efficient
methods to construct energy barriers based on conformations
simulated from the MDS.

Moreover, in the MDS algorithm, we use information from
K stored minima to define domains and to guide the search
for global minima. We would like to maximize the volume
represented by the K domains in the conformation space,
while keeping the number K relatively small so that each
domain can have sufficient samples given an upper limit on
the total number of conformations in a simulation. Proper

schemes to merge similar and locally connected domains are
therefore highly desired. To this end, we have defined a new
HSC distance for the HP model, which implicitly merges those
basins whose local minima only differ in the arrangement of
P residues. Development of more general schemes to dynam-
ically merge basins or domains separated by low barriers [37]
is another interesting topic for future investigation.

It is noted that modifications of the WL algorithm have been
proposed in the literature to improve its sampling efficiency.
For example, multiple runs of the WL algorithm have been
used to generate multiple random walks, each restricted to an
energy window that slightly overlaps adjacent ones. Cunha-
Netto et al. developed an adaptive window approach to allevi-
ate the border effect when multiple energy windows are used
for a large system [38]. This approach is clearly different from
the MDS, where a random walk is simulated over the entire
energy range. The additional domain partitioning is on the con-
formation space, not the energy space. However, our algorithm
may also benefit by similar ideas as the adaptive window ap-
proach when sampling from or optimizing over large systems.
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