
1

Optimizing Regularized Cholesky Score for
Order-Based Learning of Bayesian Networks

Qiaoling Ye, Arash A. Amini, and Qing Zhou

Abstract—Bayesian networks are a class of popular graphical models that encode causal and conditional independence relations
among variables by directed acyclic graphs (DAGs). We propose a novel structure learning method, annealing on regularized Cholesky
score (ARCS), to search over topological sorts, or permutations of nodes, for a high-scoring Bayesian network. Our scoring function is
derived from regularizing Gaussian DAG likelihood, and its optimization gives an alternative formulation of the sparse Cholesky
factorization problem from a statistical viewpoint. We combine simulated annealing over permutation space with a fast proximal
gradient algorithm, operating on triangular matrices of edge coefficients, to compute the score of any permutation. Combined, the two
approaches allow us to quickly and effectively search over the space of DAGs without the need to verify the acyclicity constraint or to
enumerate possible parent sets given a candidate topological sort. The annealing aspect of the optimization is able to consistently
improve the accuracy of DAGs learned by greedy and deterministic search algorithms. In addition, we develop several techniques to
facilitate the structure learning, including pre-annealing data-driven tuning parameter selection and post-annealing constraint-based
structure refinement. Through extensive numerical comparisons, we show that ARCS outperformed existing methods by a substantial
margin, demonstrating its great advantage in structure learning of Bayesian networks from both observational and experimental data.
We also establish the consistency of our scoring function in estimating topological sorts and DAG structures in the large-sample limit.
Source code of ARCS is available at https://github.com/yeqiaoling/arcs bn.

Index Terms—Bayesian networks, proximal gradient, regularized likelihood, simulated annealing, sparse Cholesky factorization,
structure learning, topological sorts.

F

1 INTRODUCTION

BAYESIAN networks (BNs) are a class of graphical mod-
els, whose structure is represented by a directed acyclic

graph (DAG). They are commonly used to model causal net-
works and conditional independence relations among ran-
dom variables. The past decades have seen many successful
applications of Bayesian networks in computational biology,
medical science, document classification, image processing,
etc. As the relationships among variables in a BN are en-
coded in the underlying graph, various approaches have
been put forward to estimate DAG structures from data.
Constraint-based approaches, such as the PC algorithm [1],
perform a set of conditional independence tests to detect
the existence of edges. In score-based approaches, a network
structure is identified by optimizing a score function [2, 3].
There are also hybrid approaches, such as the max-min
hill-climbing algorithm [4], which use a constraint-based
method to prune the search space, followed by a search for
a high-scoring network structure.

The score-based search has been applied to three dif-
ferent search spaces: the DAG space [2, 5], the equivalence
classes [2, 6] and the ordering space (or the space of topolog-
ical sorts) [7, 8]. In this paper, we focus on the order-based
search, which has two major advantages. First, the existence
of an ordering among nodes guarantees a graph structure
that satisfies the acyclicity constraint. Second, the space of
orderings is significantly smaller than the space of DAGs
or of the equivalence classes. Consequently, several lines of
research have developed efficient order-based methods for
DAG learning. Some methods adopt a greedy search in con-

Department of Statistics, University of California, Los Angeles. Email:
yeqiaoling@g.ucla.edu, aaamini@stat.ucla.edu, zhou@stat.ucla.edu.

junction with various operators that propose moves in the
ordering space [8, 9, 10, 11]. A greedy search, however, may
easily be trapped in a local minimum, and thus different
techniques were proposed to perform a more global search
[7, 12, 13, 14]. In particular, stochastic optimization, such as
the genetic algorithm [7, 11, 15] and Markov chain Monte
Carlo [16, 17, 18], has been advocated as a promising way
to perform global search over the ordering space. Under
certain identifiability assumptions, sequential order search
algorithms have been developed recently as well [19].

In spite of these methodological and algorithmic ad-
vances, there are a few difficulties in score-based learning
of topological sorts for DAGs. First, the score of an ordering
is usually defined by the score of the optimal DAG com-
patible with the ordering. The computational complexity
of finding the optimal DAG given an ordering, typically
by enumerating all possible parent sets for each node [20],
can be as high as O(pk+1) for p nodes and a pre-specified
maximum indegree of k. Such computation is needed for
every ordering evaluated by a search algorithm, which
becomes prohibitive when k is large. Second, although the
ordering space is smaller than the graph space, optimization
over orderings is still a hard combinatorial problem due to
the NP-hard nature of structure learning of BNs [21]. It is
not surprising that the performance of the above stochastic
optimization algorithms degrades severely for large graphs.

Motivated by these challenges, we develop a new order-
based method for learning Gaussian DAGs by optimizing
a regularized likelihood score. Representing an ordering
by the corresponding permutation matrix P , the weighted
adjacency matrix of a Gaussian DAG can be coded into
a lower triangular matrix L. We add a continuous and

https://github.com/yeqiaoling/arcs_bn

2

concave penalty function to the likelihood to encourage
sparsity in L, and thus achieve the goal of structure learning.
Instead of a prespecified maximum indegree, which is ad
hoc in nature, we provide a principled data-driven way to
determine the tuning parameters for the penalty function.
Finding the optimal DAG given P is then reduced to p de-
coupled penalized regression problems, which are solved by
proximal gradient, an efficient first-order method, without
enumerating possible parent sets for any node. Searching
over P is done by simulated annealing (SA). We may
also incorporate informative initial orderings, learned by an
existing method, by setting a low starting temperature. Our
numerical results demonstrate that this combined strategy
substantially improves the accuracy of an estimated DAG.
We note an interesting connection between our formulation
and the sparse Cholesky factorization problem, and thus
name our scoring function the regularized Cholesky score of
orderings or permutations.

Regularizing likelihood with a continuous penalty func-
tion has been shown to be effective in learning Gaussian
DAGs [22, 23, 24]. These methods optimize a regularized
likelihood score over the DAG space by continuous opti-
mization. They are likely to be trapped in a suboptimal
structure due to the nonconvexity of the DAG parameter
space. Using DAGs learned by such methods to generate
initial orderings, our method can significantly improve the
accuracy in structure learning. More recently, Champion
et al. [15] developed a genetic algorithm optimizing over
a triangular coefficient matrix and a permutation to learn
Gaussian BNs. However, the authors did not provide a
principled method to select the tuning parameter for the
`1 penalty. Given a permutation, they optimize the network
structure by an adaption of the least angle regression [25],
which is closely related to the Lasso. In contrast, we use a
more general and effective first-order method, the proximal
gradient algorithm, which is applicable to many regular-
izers, including the `1 and concave penalties. As shown
by our numerical experiments, our method substantially
outperforms their genetic algorithm.

The paper is organized as follows. Section 2 covers some
background on Gaussian BNs and the role of permutations
in identifying the underlying DAGs. We introduce the reg-
ularized Cholesky loss and set up the optimization problem
for BN learning in Section 3. Then we establish consis-
tency results under our scoring function in the classical
asymptotic setting in Section 4. In Section 5, we develop the
annealing on regularized Cholesky score (ARCS) algorithm
which combines simulated annealing to search over the
permutation space and a proximal gradient algorithm to
optimize the network structure given an ordering. We also
propose a constraint-based approach to prune the estimated
network structure after annealing process and a data-driven
model selection technique to choose tuning parameters for
the penalty function. Section 6 and 7 consist of exhaustive
numerical experiments, where we compare our method to
existing ones using both observational and experimental
data in terms of structure learning accuracy and model fit-
ting. Throughout the paper, experimental data refer to data
generated under experimental interventions; see more de-
tailed discussion in Section 3.3. We also study the empirical
loss of our estimates and the effects of various components

of our method. We conclude with a discussion in Section 8.
All proofs and some additional numerical experiments are
relegated to supplementary materials.

2 BACKGROUND

We start with some background on Bayesian networks. A
Bayesian network for a set of variables {X1, . . . , Xp} consists
of 1) a directed acyclic graph G that encodes a set of
conditional independence assertions among the variables,
and 2) a set of local probability distributions associated with
each variable. It can be considered as a recipe for factorizing
a joint distribution of {X1, . . . , Xp}with probability density

p(x1, . . . , xp) =

p∏

j=1

p(xj | ΠGj = paj), (1)

where ΠGj ⊂ {X1, . . . , Xp} \ {Xj} is the parent set of
variable Xj in G and paj its value. The DAG G is de-
noted by G = (V,E), where V = {1, . . . , p} is the ver-
tex set corresponding to the set of random variables and
E = {(i, j) : i ∈ ΠGj } ⊂ V × V is the edge set. We
use variable Xj and node j exchangeably throughout the
paper. DAGs contain no directed cycles, making the joint
distribution in (1) well-defined.

2.1 Gaussian Bayesian networks

In this paper, we focus on Gaussian BNs that can be equiv-
alently represented by a set of linear structural equation
models (SEMs):

Xj =
∑

i∈ΠGj

β0
ijXi + εj , j = 1, . . . , p, (2)

where εj ∼ N (0, (ω0
j)2) are mutually independent and in-

dependent of {Xi : i ∈ ΠGj }. Defining B0 := (β0
ij) ∈ Rp×p,

ε := (ε1, . . . , εp)
> ∈ Rp, and X := (X1, . . . , Xp)

> ∈ Rp, we
rewrite (2) as

X = B>0 X + ε. (3)

The model has two parameters: 1) B0 as a coefficient matrix,
sometimes called the weighted adjacency matrix, where β0

ij

specifies a weight associated with the edge i→ j and β0
ij =

0 for i /∈ ΠGj , and 2) Ω0 := diag((ω0
j)2) as a noise variance

matrix. The SEMs in (2) define a joint Gaussian distribution,
X ∼ N (0,Σ0), where Σ0 is positive definite and given by

Σ−1
0 = (I −B0)Ω−1

0 (I −B0)>. (4)

2.2 Acyclicity and permutations

The support of B0 in (3) defines the structure of G, and thus
it must satisfy the acyclicity constraint so that G is indeed a
DAG. To facilitate the development of our likelihood score
for orderings, we express the acyclicity constraint on B0 via
permutation matrices. Let {e1, . . . , ep} be the canonical basis
of Rp. To each permutation π on the set [p] := {1, . . . , p}, we
associate a permutation matrix Pπ whose ith row is e>π(i). For
a vector v = (v1, . . . , vp)

>, we have

Pπv = vπ = (vπ(1), . . . , vπ(p))
>, (5)

3

G X2

X3 X1

X4

B0 =

X1 X2 X3 X4
0
BB@

1
CCA

X1 0 0 0 0
X2 �0

21 0 �0
23 0

X3 0 0 0 �0
34

X4 0 0 0 0

⇡ = [4,1,3,2]

P⇡ =

0
BB@

1
CCA

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

B⇡ = P⇡B0P
>
⇡ =

X4 X1 X3 X2
0
BB@

1
CCA

X4 0 0 0 0
X1 0 0 0 0
X3 �0

34 0 0 0
X2 0 �0

21 �0
23 0

1

Fig. 1: An example DAG G, its coefficient matrix B0, and a
permutation π. Bπ permutes columns and rows of B0 and is
strictly lower triangular.

that is, Pπ permutes the entries of v according to π. Since
P>π Pπ = I , we can rewrite (3) as

PπX = B>π PπX + Pπε,

where Bπ := PπB0P
>
π is obtained by permuting the rows

and columns of B0 simultaneously according to π. Then,
Bπ will be a strictly lower triangular matrix if and only if
π is the reversal of a topological sort of G, i.e., i ≺ j in
π for j ∈ ΠGi . See Figure 1 for an illustration. Under this
reparametrization, the acyclicity constraint on B0 translates
to Bπ being strictly lower triangular for some permutation
π. Define Ωπ := PπΩ0P

>
π . Equivalently, one may think of

node π(i) as having been relabeled node i in Bπ and Ωπ .
For simplicity, we drop the subscript π from Pπ , Bπ and

Ωπ if no confusion arises. Therefore, throughout the paper,
P defines a permutation π, B and Ω label nodes according
to π and we write the permuted SEM as

PX = B>PX + Pε. (6)

Denote by cov(X) the covariance matrix of X . Then we
have Σ := cov(PX) = PΣ0P

>, obtained by permuting the
rows and columns of Σ0 (4) according to P .

3 REGULARIZED LIKELIHOOD SCORE

In this section, we construct the objective function to esti-
mate BN structure given data from the Gaussian SEM (2).
We first focus on observational data in Sections 3.1 and 3.2:
We re-parametrize the negative log-likelihood as a Cholesky
loss and then impose sparse regularization to define our
scoring function over permutations and DAG structures.
In Section 3.3, we discuss how to modify the likelihood
function for experimental data.

3.1 Cholesky loss

Let X := [X1, . . . ,Xp] ∈ Rn×p be a data matrix where each
row is an i.i.d. observation from (2). According to (6), we
obtain a similar SEM on the data matrix:

XP> = XP>B + EP>, (7)

where each row of E ∈ Rn×p is an i.i.d. error vector from
N (0,Ω0). In (7), XP> and EP> are X and E with columns
permuted according to P = Pπ . It then follows that each
row of XP> is an i.i.d. observation from N (0,Σ) with

Σ−1 = (I − B)Ω−1(I − B)>, and thus the negative log-
likelihood of (7) is

`(B,Ω, P | X)

=
1

2
tr
[
PX>XP>(I −B)Ω−1(I −B)>

]
+
n

2
log |Ω|. (8)

Recall thatB and Ω = diag((ωj)
2) are defined by permuting

the rows and columns of B0 and Ω0 by the permutation
matrix P . In particular, B is strictly lower triangular and we
write its columns as βj ∈ Rp.

Denote by L := (I − B)Ω−
1
2 a weighted coefficient

matrix, where each column Lj = (ej −βj)/ωj is a weighted
coefficient vector for node π(j). We define what we call the
Choleskly loss function

Lchol(L;A) :=
1

2
tr
(
ALL>

)
− log |L|, (9)

where |L| denotes the determinant of L. Noting that |L| =
|(I − B)Ω−

1
2 | = |Ω|− 1

2 and denoting by Σ̂ := 1
nX
>X

the sample covariance matrix, one can re-parametrize the
negative log-likelihood (8) with L and P and connect it to
the Cholesky loss:

Lemma 1. The negative log-likelihood (8) for observational data
can be re-parametrized as

`(L,P) = n ·Lchol(L;P Σ̂P>)

=
n

2
tr
(
P Σ̂P>LL>

)
− n log |L|, (10)

where L = (I −B)Ω−
1
2 is a lower triangular matrix and P is a

permutation matrix.

The reason for naming (9) the Cholesky loss is that it
provides an interesting variational characterization of the
Cholesky factor of the inverse of a matrix as the following
proposition shows. Let Lp be the set of p×p lower triangular
matrices with positive diagonal entries, and for any positive
definite matrix M , let C(M) be its unique Cholesky factor,
i.e., the unique lower triangular matrix L with positive
diagonal entries such that M = LL>. Let λmin(A) and
‖A‖F denote, respectively, the minimum eigenvalue and the
Frobenius norm of a matrix A.

Proposition 1 (Curvature). For any positive definite matrix
A ∈ Rp×p and lower triangular matrix L ∈ Lp,

Lchol(L;A)−Lchol(L
∗;A) ≥ 1

2
λmin(A)‖L− L∗‖2F ,

where L∗ = C(A−1). Consequently, L∗ is the unique minimizer
of Lchol(· ;A) with optimal value

L ∗chol(A) := Lchol(C(A−1);A) =
1

2
(p+ log |A|) .

In particular, L ∗chol(A) = L ∗chol(PAP
>) for any permutation

matrix P .

Proposition 1 states that C(A−1) is the unique minimizer
of Lchol(· ;A) and bounds the curvature of the Cholesky
loss near its minimum. The curvature bound will be used in
the proof of consistency (cf. Theorem 1 in Section 4).

Now consider finding the maximum likelihood DAG for
a fixed permutation P , which corresponds to minimizing
L 7→ `(L,P) given by (10). Let `∗(P) be the optimal value

4

of this problem, i.e.,

`∗(P) := min
L∈Lp

`(L,P).

Then, Proposition 1 implies

`∗(P) = n ·L ∗chol(P Σ̂PT) = n ·L ∗chol(Σ̂), (11)

showing that `∗ is invariant to permutations, hence max-
imum likelihood estimation does not favor any particu-
lar ordering. In other words, all the maximum likelihood
DAGs corresponding to different permutations give the
same Gaussian likelihood. Moreover, they will always be
complete DAGs, which has negative implications for both
computational and interpretability concerns. These motivate
our development of sparse regularization for this problem.

3.2 Sparse regularization

To break the permutation equivalence of the maximum
likelihood (11), we add a regularizer to the Cholesky loss to
favor sparse DAGs. Under faithfulness [26], the true DAG
G in (2) and its equivalence class are the sparsest among all
DAGs that can parameterize the joint distributionN (0,Σ0).
To start, let us point out some connections to the well-
known “sparse Cholesky factorization” problem from linear
algebra.

According to Proposition 1, the minimizer of `(L,P)
over L is the Cholesky factor of (P Σ̂P>)−1 = P Σ̂−1P>.
For a sparse Σ̂−1, it is well-known that the choice of P
greatly affects the sparsity of the resulting Cholesky factor.
Heuristic approaches have been developed in numerical
linear algebra to find a permutation that leads to a sparse
factorization by trying to minimize the so-called “fill-in”.
An example is the maximum cardinality algorithm [27].

From a statistical perspective, however, Σ̂−1 is, in gen-
eral, not sparse (due to noise) even if the inverse of pop-
ulation covariance matrix Σ = E[Σ̂] is so. In such cases,
one can first estimate a sparse precision matrix and then
use the sparse estimate as the input to the sparse Cholesky
factorization problem. We take a more direct alternative
approach by adding a sparsity-measuring penalty to the
Cholesky loss.

Let ρθ : R 7→ [0,∞) be a nonnegative and nondecreasing
regularizer with some tuning parameter(s) θ. We consider
the following penalized loss function:

fθ(L;P) := n ·Lchol(L;P Σ̂P>) +
∑

i>j

ρθ(Lij), (12)

where the penalty is only applied to the off-diagonal entries
of a lower triangular matrix L. The loss depends on the
regularization parameter θ, and for simplicity we write
fθ(L;P) as f(L;P). In this paper, we focus on the class of
regularizers called the minimax concave penalty (MCP) [28]
which includes `1 and `0 as extreme cases; see (15) below.
MCP is a sparsity-favoring penalty and adding it breaks the
symmetry of the Cholesky loss w.r.t. permutations as in (11).
As a result, the permutations leading to sparser lower-
triangular factors L will have smaller loss values f(L;P).

Let Pp be the set of p × p permutation matrices. Given
P ∈ Pp, the minimizer of f(L;P) over L is a sparse DAG

-3 -2 -1 0 1 2 3
x

0

0.5

1

1.5

2

2.5

3

;
(x
)

MCP
`1

Fig. 2: A comparison between the MCP (solid line) and the `1
penalty (dashed line).

G(P) with a score f(P) defined as

f(P) := min
L∈Lp

f(L;P). (13)

We minimize permutation score f(P) over Pp to obtain an
estimated ordering. The overall sparse BN learning problem
is then

min
P∈Pp

f(P) = min
P∈Pp

min
L∈Lp

{n
2

tr
(
P Σ̂P>LL>

)

− n log |L|+
∑

i>j

ρθ(Lij)
}
. (14)

In this formulation, the objective function only depends on
the p × p sample covariance matrix Σ̂ = 1

nX
>X. Thus, the

computational complexity is determined by the dimension
p once Σ̂ has been computed. In Section 5, we discuss our
approach to solve this problem by optimizing over (L,P).
It is worth noting that problem (14) can be considered both
as 1) a penalized maximum likelihood BN estimator in the
Gaussian case, and 2) a variational formulation of the sparse
Cholesky factorization problem when the input matrix Σ̂ is
noisy (hence its inverse usually not sparse). According to the
second interpretation, we call f(L;P) in (12) the regularized
Cholesky (RC) loss function and f(P) in (13) the RC score of a
permutation P .

Throughout, let ρ(·) := ρθ(·) be the MCP with two
parameters θ = (γ, λ) [28]:

ρ(x; γ, λ) =

{
λ|x| − x2

2γ , |x| < γλ,
1
2γλ

2, |x| ≥ γλ,
(15)

where λ ≥ 0 and γ > 1. Parameter λ measures the penalty
level, while γ controls the concavity of the function. For
a fixed value of λ, the MCP approaches the `1 penalty as
γ →∞, and the `0 penalty as γ → 0+.

Figure 2 compares the MCP with (γ, λ) = (2, 1) and the
`1 penalty. The right derivative of MCP at zero is λ, which
is the same as the derivative of the `1 penalty. The MCP
function flats out when |x| ≥ γλ.

Remark 1. Aragam and Zhou [23] use an MCP regularized
likelihood to estimate Gaussian DAGs as well. However,
rather than searching over permutations, which automat-
ically satisfies the acyclicity constraint, they perform a
greedy coordinate descent to minimize the regularized loss

5

over DAGs. Thus, at each update in their algorithm the
acyclicity constraint must be carefully checked.

Remark 2. For a given permutation P , the minimizer of
the RC loss f(L;P) (13) estimates a sparse Cholesky fac-
tor of PΣ−1

0 P>, the precision matrix Σ−1
0 with rows and

columns permuted. This is related to recent methods on
covariance matrix estimation by Cholesky decomposition
[29, 30, 31, 32, 33], which make two main assumptions: (i) a
fixed variable ordering is provided, i.e. P is given, and (ii)
the precision matrix has certain sparse structures, say it is
banded. See [34] for a recent review on covariance matrix
estimation. The key differences between these methods and
our BN learning approach are: (i) We impose sparsity on
the Cholesky factor L, which encodes a DAG structure with
P , while those precision matrix estimation methods either
impose sparsity on Σ−1

0 , such as in [29, 30], or assume L
is banded [32]. (ii) More importantly, instead of assuming a
known ordering, we minimize the RC score (14) jointly over
(L,P) to estimate an ordering and a sparse DAG structure.
Once an estimated P̂ and the associated L̂ have been found,
we can estimate the precision matrix Σ−1

0 by P̂>L̂L̂>P̂ .
Under the Gaussian SEM (2), our estimate of Σ−1

0 will be
more accurate than the above precision matrix estimation
methods when the true ordering is unknown. See Section 6.5
for relevant numerical comparisons.

3.3 Likelihood for experimental data

It is well-known that DAGs in the same Markov equivalence
class are observationally equivalent, and thus we cannot
distinguish such DAGs from observational data alone. How-
ever, experimental interventions can help distinguish equiv-
alent DAGs and construct causal networks. Following [35],
intervention on a node Xj in a DAG is to impose a fixed
external distribution on this node, denoted by p(xj | •),
independent of all X−j , while keeping the structural equa-
tions (2) of the other nodes unchanged.

Suppose that our data X ∈ Rn×p consists of M blocks,
where each block Xm ∈ Rnm×p and n =

∑M
m=1 nm.

Denote by Xm
I ⊂ {X1, . . . , Xp} the set of variables under

experimental interventions in block m. Then, the data for
Xj ∈ Xm

I in this block are generated independently from
the distribution p(xj | •), while for Xi /∈ Xm

I from the
conditional distribution [Xi | ΠGi]. Note that multiple nodes
could be intervened for a block of data, in which case
|Xm
I | ≥ 2.
Let Ij ⊂ {1, 2, . . . , n} be the set of observations for

which Xj is under experimental intervention, and let Oj =
{1, 2, . . . , n}\Ij be its complement. By the truncated factor-
ization formula [26, 35, 36], the joint density of experimental
data is

p(X) =

p∏

j=1

∏

h∈Oj

p(xhj | pahj)
∏

k∈Ij

p(xkj | •), (16)

where xhj is the value of the jth variable in the hth observa-
tion and pahj is the value for its parents. Let XOπ(j)

be the
submatrix of X with rows in Oπ(j) and

Σ̂j :=
1

|Oπ(j)|
X>Oπ(j)

XOπ(j)

be the sample covariance matrix computed from data in
these rows. Then the log-likelihood of experimental data can
be re-parametrized into the Cholesky loss functions as well:

Lemma 2. The negative log-likelihood for experimental data (16)
can be written as

`O(L,P) =

p∑

j=1

|Oπ(j)|Lchol

(
Lj ;P Σ̂jP>

)
, (17)

where Lj = (ej − βj)/ωj ∈ Rp, L = (Lj) ∈ Lp, and |Lj | :=
Ljj in Lchol(·) (9).

Though experimental data likelihood `O(L,P) in (17) is
not identical to the observational `(L,P) in (10), searching
strategies described in Section 5 can be applied to both
observational and experimental data.

4 CONSISTENCY

We now show that the estimator that minimizes the regu-
larized Cholesky score (14) is consistent as the sample size
n→∞, while the dimension of the problem p remains fixed
(the classical asymptotic setting). We establish the result for
a general class of regularizers that contains MCP as a special
case. We show two levels of consistency: (1) permutation
consistency, in the sense of recovering a topological sort that
is consistent with a DAG in the true Markov equivalence
class, and (2) structure consistency or support recovery,
showing that the estimated DAG has the same support as a
DAG in the true equivalence class.

Let us give the high level ideas behind our proof of
the consistency results. First, in the large-sample limit, the
empirical loss f(Pπ)/n (13) converges to Fn,π uniformly
in π, where Fn,π is its population version, obtained by
replacing Σ̂ with Σ0 in definition (12). Second, under cer-
tain identifiability assumptions, the population loss satisfies
Fn,π∗ < Fn,π , for any permutation π∗ associated with
the true Markov equivalence class and any π that is not.
Together these two results allow us to guarantee both the
permutation and structure consistency of the minimizers
of the regularized Cholesky loss. We give a more detailed
sketch in Section 4.3, after stating the main result.

To make the notion of permutation consistency more pre-
cise, we review some background on Markov equivalence
classes and introduce the notion of score-identifiability.

4.1 Score-identifiability
Let P ∗ be the true data-generating distribution. We write
I(P ∗) for the set of conditional independence (CI) state-
ments that hold in P ∗. Similarly, we write I(B) for the set
of CIs, implied by DAG B, in the sense of d-separation.
Then, B is an I-map for P ∗ if I(B) ⊂ I(P ∗) and is perfect
for (or faithful to) P ∗ if I(B) = I(P ∗). Two DAGs B and
B′ are (Markov) equivalent if I(B) = I(B′). We write E(B)
for the equivalence class of B.

By a well-known result, all the DAGs in a Markov
equivalence class have the same skeleton (hence the same
number of edges) and the same v-structures. We write E
for a generic equivalence class and ‖E‖0 for the number of
edges of any DAG in the equivalence class. Consider the
following definition:

6

Definition 1. We say that a Markov equivalence class E is score-
identifiable (for P ∗) if for any DAG B which is an I-map for P ∗,
either B ∈ E or ‖B‖0 > ‖E‖0.

The case that this definition is ruling out is when there
exists a DAG outside equivalence class E that has the
same number of edges but a different set of v-structures.
By definition, if a score-identifiable class exists, it is “the
unique” sparsest equivalence class that is an I-map for P ∗.
We have the following which is essentially the same as [6,
Proposition 8]:

Lemma 3. If E is perfect for P ∗, then E is score-identifiable.

Therefore, score-identifiability is implied by, and thus no
stronger than, faithfulness.

4.2 Consistent structure learning

With some abuse of notation, throughout this section, let
B = P>π (I −A)Ω−1/2Pπ denote a normalized DAG, where
A is a strictly lower triangular matrix and Ω is a diagonal
matrix with positive diagonal elements. Note that L := (I−
A)Ω−1/2 ∈ Lp is a lower triangular matrix with positive
diagonals, and π is a reversed topological sort (RTS) of the
DAG defined by the support of B (cf. Figure 1). Let Dπ be
the set of DAGs whose RTS is consistent with permutation
π, that is,

Dπ = {P>π LPπ : L ∈ Lp}
and let Kπ be the (unique) complete DAG reversely sorted
by π. For every B ∈ Dπ , we have supp(B)⊂Kπ , where
supp(B) denotes the “off-diagonal” support of B, i.e., the
set of indices of nonzero off-diagonal elements of B. Unless
otherwise stated, the support of B refers to this off-diagonal
support. We let Bπ be the unique minimizer of the (unregu-
larized) population Cholesky loss over Dπ in this section:

Bπ = arg min
B ∈Dπ

Lchol(B; Σ0) (18)

and let Sπ = supp(Bπ) be its (off-diagonal) support. It is
not hard to see that the support of Bπ is the (minimal) I-
map corresponding to permutation π. We simply refer to
Bπ as the I-map associated with π.

Let Σ̂n be the sample covariance matrix. Consider the
following permutation score

F̂n,π := min
L∈Lp

[
Lchol(L;PπΣ̂nP

>
π) +

ρn(L)

n

]
, (19)

for some permutation-invariant penalty ρn = ρθn . Note that
F̂n,π = f(Pπ)/n, where f(·) is the regularized Cholesky
score in (13). We assume that ρn is defined over all n ×
n matrices (not just lower triangular ones). Then, we can
alternatively write

F̂n,π = min
B ∈Dπ

[
Lchol(B; Σ̂n) +

ρn(B)

n
:= Ln(B; Σ̂n)

]
.

(20)

Let B̂n,π be a (global) minimizer ofB 7→ Ln(B; Σ̂n) over Dπ

so that F̂n,π = Ln(B̂n,π; Σ̂n). We estimate the permutation
by minimizing π 7→ F̂n,π , with a minimizer denoted as
π̂n. Then, our estimated weighted adjacency matrix will be

B̂n,π̂n , and its support defines the structure of an estimated
DAG Ĝn.

We need some regularity conditions on the regularizer
ρn(·) and the collection {Bπ} of I-maps of Σ0. Let λmin =
λmin(Σ0) be the minimum eigenvalue of Σ0, and assume
that ρn(B) =

∑
i 6=j rn(|Bij |) for some rn : R+ → R+ that

satisfies the following:
(R1) We say that rn is (an, bn)-flat if it is bounded by an and

rn(t) = an for t ≥ bn.
for some bn = O(1).

(R2) Assume that rn is twice differentiable on [0, bn), with
the derivatives at 0 interpreted as one-sided, and as-
sume that r′′n has a left limit at bn. Moreover r′′n(·)/n is
C0-Lipschitz on [0, bn), for some constant C0 ≥ 0, and

|r′′n(0+)| ≤ C1n, |r′′n(bn−)| = O(n),

with C1 ≤ λmin/2. Let λn := r′n(0+) be the right
derivative of rn at 0.

Consider the so-called βmin condition

2bn ≤ min
π
τ(Bπ), (21)

where τ(B) = min{|Bij | : (i, j) ∈ supp(B)}. Assume
further that

lim inf
nb2n
an

>
2

λmin
max
π
|Sπ|. (22)

Let us write Π(E) for the collection of RTSs for some
DAGs in equivalence class E . If E∗ is the true equivalence
class, then Π(E∗) is the collection of true RTSs. We have the
following consistency result:

Theorem 1. Assume that P ∗, or equivalently Σ0 in (4), has a
(unique) score-identifiable Markov equivalence class E∗, and let

π̂n ∈ arg min
π

F̂n,π.

(a) Assume that rn(·) is (an, bn)-flat for sequences that satisfy
(21), (22), n−1/2an → ∞ and n1/4bn → ∞, and (R2)
holds with n−1λn = O(1). Then, P

(
π̂n ∈ Π(E∗)

)
→ 1

as n→∞. Moreover, B̂n,π̂n is a
√
n-consistent estimate of

Bπ̂n .

(b) If in addition n−1λn → 0 and n−1/2λn →∞, then we also
have P

(
Ĝn ∈ E∗

)
→ 1 as n → ∞, where Ĝn is the DAG

defined by supp(B̂n,π̂n).

Part (a) of Theorem 1 establishes permutation consis-
tency by guaranteeing that π̂n eventually does not leave
Π(E∗), although it can move around in this set indefinitely.
Part (b) establishes the structure consistency.

In the case of the MCP, we can take rn(t)/n = ρ(t; γn, ξn)
giving λn = r′n(0+) = nξn. Then, (R1) holds with an =
1
2nγnξ

2
n and bn = γnξn, and we have r′′n(t)/n = 1/γn for

t ∈ [0, bn). Assuming 1/γn ≤ λmin/2 after proper re-scaling
of the data or the regularizer, (R2) holds with C0 = 0.
Since the right-hand sides of (21) and (22) are constants,
these conditions hold if γn is sufficiently large and ξn → 0.
Conditions for part (a) of the theorem hold if ξn = O(1),√
nγnξ

2
n → ∞ and n1/4γnξn → ∞, so it suffices to have

n−1/4 � ξn . 1 and γn & 1. For part (b), we need ξn = o(1)

7

and
√
nξn →∞, that is, n−1/2 � ξn � 1. All the conditions

are satisfied if γn & 1 and n−1/4 � ξn � 1. In particular, if
we let γn → ∞ and γnξn → 0 at a rate slower than n−1/4,
then our consistency results apply to the capped `1 penalty,
i.e. rn(t)/n = ξnt ∧ γnξ2

n.

Remark 3. Aragam and Zhou [23] also provide asymptotic
results for the estimator we consider here. Under appropri-
ate conditions, they show that (i) in small neighborhoods
(of radius ∼ n−1/2) of every Bπ (18), there are “good”
local minimizers of (20) (i.e., with correct support) and (ii)
if one Bπ has more edges than the other, the corresponding
nearby local minimizer gives a higher value of the objective
function. Their results, however, provide no guarantee for
all local minimizers of the problem. In particular, their
results are silent about the global minimizer(s) of (20). In
contrast, we provide conditions, under which, any “global
minimizer” of (20) is both permutation and structure consis-
tent. Proving such global results requires significantly more
technical effort. For example, even showing that a global
minimizer is within a neighborhood of radius ∼ n−1/2 of
some Bπ is nontrivial, as the proof demonstrates.

4.3 Proof sketch

We give a brief sketch of the proof of Theorem 1 here. A
detailed proof can be found in the supplement. For two
symmetric matrices A and B of the same dimension, we
write A � B if A−B is positive semidefinite.

First, we show that under (21), for any π and B ∈ Dπ ,

Ln(B; Σ0)− Ln(Bπ; Σ0) ≥ λmin

2

(
‖B −Bπ‖2F ∧ cn,π

)
,

(23)

where cn,π := b2n − 2an|Sπ|/(λminn). Combined with (22),
this implies that the population version of (20), namely,

Fn,π := min
B ∈Dπ

Ln(B; Σ0), (24)

has Bπ as its unique (isolated) minimizer. A so-called “basic
inequality argument” further implies that Ln(B̂n,π; Σ0) −
Ln(Bπ; Σ0) = Op(n

−1/2). Together with (23), we get
‖B̂n,π −Bπ‖F = Op(n

−1/4), that is, B̂n,π is n1/4-consistent
for Bπ .

Using n1/4bn → ∞, we conclude that ‖B̂n,π − Bπ‖F <
bn, eventually. Recalling assumption (21), this implies that
for any DAG B which is between B̂n,π and Bπ element-
wise, the absolute coordinates |Bij | are either in [0, bn) or
(bn,∞). Since rn(·) is smooth over each of these intervals,
we can apply a Taylor expansion of Ln(· , Σ̂n) around Bπ .
Taking into account the one-sided differentiability of the
regularized loss at zero, we obtain a quadratic inequality
for ∆n,π = B̂n,π − Bπ , where the quadratic term is con-
trolled by the Hessian ∇2Ln(B̃n,π; Σ̂n) for some B̃n,π that
is between B̂n,π and Bπ elementwise. A further argument
shows that ∇2Ln(B̃n,π; Σ̂n) � 1

2λminIp2 when n is large,
which together with the quadratic equality implies

‖∆n,π‖F ≤
2

λmin
‖∇Lchol(Bπ; Σ̂n)−∇Lchol(Bπ; Σ0)‖F .

Algorithm 1 Annealing on regularized Cholesky score
(ARCS).

Input: Dataset X, initial permutation matrix P0,
a temperature schedule {T (i), i = 0, . . . , N},
constant m.

Output: Adjacency matrix B̂.
1: Select tuning parameters (γ, λ) for f(L;P) according to

Algorithm 4 (Section 5.4).
2: P̂ ← P0, L̂ ← arg minL∈Lp f(L; P̂) by Algorithm 2,
f(P̂)← f(L̂; P̂).

3: for i = 0, . . . , N do
4: T ← T (i).
5: Propose P ∗ by flipping a random length-m interval

in the permutation defined by P̂ .
6: L∗ ← arg minL∈Lp f(L;P ∗) using Algorithm 2,

f(P ∗)← f(L∗;P ∗).
7: α← min

{
1, exp

(
− 1
T [f(P ∗)− f(P̂)]

)}
.

8: Set (P̂ , L̂, f(P̂))← (P ∗, L∗, f(P ∗)) with prob. α.
9: end for

10: Refine adjacency matrix B̂ given (L̂, P̂) by Algorithm 3
(Section 5.3).

The right-hand side can be shown to be Op(n
−1/2) from

which we conclude the
√
n-consistency of B̂n,π for Bπ . All

the consistency arguments hold uniformly over π.
Equipped with

√
n-consistency, we then show that

F̂n,π − Fn,π = Op(n
−1/2), uniformly in π. For any π∗ ∈

Π(E∗) and any π 6∈ Π(E∗),

F̂n,π − F̂n,π∗ ≥ Fn,π − Fn,π∗ −Op(n−1/2)

=
an
n

(|Sπ| − |S∗π|)−Op(n−1/2).

See the supplement for the details of getting to the second
line. Since by score-identifibility |Sπ| ≥ |Sπ∗ | + 1, and by
assumption n−1/2an → ∞, with high probability (w.h.p.)
F̂n,π − F̂n,π∗ > 0 for all π /∈ Π(E∗), when n is sufficiently
large. This proves permutation consistency.

For the structure consistency, since B̂n,π is within a
neighborhood of radius Op(n

−1/2) around Bπ , an argu-
ment similar to that of Lemma 1 in [37] shows that
supp(B̂n,π) = supp(Bπ) for all π w.h.p. In particular,
supp(B̂n,π̂n) = supp(Bπ̂n), w.h.p. and the proof is complete.

5 OPTIMIZATION

We now describe how we solve the optimization prob-
lem (14). The main steps are outlined in Algorithm 1, where
we use simulated annealing to search over the permutation
space to minimize the RC score defined in (13). To obtain
the RC score for a given permutation, we need to solve a
continuous optimization problem (line 2 and 6) for which
we propose a proximal gradient algorithm (Algorithm 2).

5.1 Searching over permutations

The ARCS algorithm is detailed in Algorithm 1. At each iter-
ation, we propose a permutation P ∗ and decide whether to
stay at the current permutation or move to the proposed one

8

with probability α given in line 7. The probability is deter-
mined by the difference between the proposed and current
scores f(P ∗)−f(P̂) normalized by a temperature parameter
T . For T → ∞, the jumps are completely random and for
T → 0+ completely determined by the RC score f(·). The
algorithm follows a temperature schedule which is often
taken to be a decreasing sequence T (0) ≥ T (1) ≥ . . . ≥ T (N)

allowing the algorithm to explore more early on and zoom
in on a solution as time progresses.

The proposed permutation matrix P ∗ is constructed as
follows. Let π̂ and π∗ be the permutations associated with P̂
and P ∗ as in (5). We propose π∗ by flipping (i.e., reversing
the order of) a random interval of length m in the current
permutation π̂. For example, with m = 3 we may flip π̂ =
(1, 2, 3, 4, . . . , p) to π∗ = (1, 4, 3, 2, . . . , p) in the proposal.
Equivalently, we flip a contiguous block of m rows of P̂ to
generate P ∗.

As a byproduct of evaluating the RC score for the
proposed permutation P ∗, we also obtain the correspond-
ing lower triangular matrix L∗, representing the associated
DAG. We keep track of these DAGs as well as the permuta-
tions throughout the algorithm (line 6).

Remark 4. There is no theoretical guarantee for ARCS to
find a global minimizer using simulated annealing. In this
sense, ARCS performs a heuristic search over the permuta-
tion space to learn a topological sort. For smaller DAGs,
however, our numerical results in Section 6.8 show that
ARCS often finds solutions that are close to the global
minimizers.

5.2 Computing RC score

We propose a proximal gradient algorithm to evaluate the
RC score f(P) at each permutation matrix P (line 2 and 6,
Algorithm 1). This algorithm belongs to a class of first-order
methods that are quite effective at optimizing functions
composed of a smooth loss and a nonsmooth penalty [38].

The RC score is obtained by minimizing the RC loss
f(L;P) over L as shown in (13). Recall that Lp is the set
of p× p lower triangular matrices, and let

ρ(u) :=
∑

i>j

ρ(uij), for u = (uij) ∈ Lp. (25)

Note that we are leaving out the diagonal elements of u in
defining ρ(u). Then, the RC loss is f(u;P) = `(u, P)+ρ(u),
where `(u, P) (10) is differentiable and ρ(u) is nonsmooth.
The idea of the proximal gradient algorithm is to replace
`(u, P) with a local quadratic function at the current esti-
mate L and optimize the resulting approximation to f(u;P)
to get a new estimate L+:

L+ = arg min
u∈Lp

`(L) +∇`(L)>(u− L) +
1

2t
‖u− L‖2+ρ(u)

= arg min
u∈Lp

1

2t
‖L− t∇`(L)− u‖2 + ρ(u), (26)

where `(L) = `(L,P),∇`(L) := ∇L`(L,P) is the gradient
of `(L,P) w.r.t. L, and t > 0 is a step size. Consider the
proximal operator proxρ : Lp → Lp associated with ρ

Algorithm 2 Compute the RC score by proximal gradient.

Input: P , L(0) ∈ Lp, t(0) > 0, κ ∈ (0, 1), max-iter,
tol.

Output: L.
1: k ← 0, err←∞, L← L(0).
2: while k < max-iter and err > tol do
3: Compute ∇`(L) using either Lemma 4 or 5.
4: t← t(0)/‖∇`(L)‖F .
5: repeat
6: L̃← L− t∇`(L).
7: L+

ij ← proxtρ(L̃ij) for i > j (using Lemma 6).
8: L+

ii ← L̃ii.
9: break if ` (L+, P) ≤ ` (L,P) + 〈∇`(L), L+ − L〉

+ 1
2t‖L+ − L‖2F .

10: t← κt.
11: err← maxj δ(L

+
j , Lj) where δ(x, y) := ‖x−y‖

max{1,‖y‖} .
12: L← L+ and k ← k + 1.
13: end while

defined by

proxρ(x) := arg min
u∈Lp

(
ρ(u) +

1

2
‖x− u‖2

)
,

where x ∈ Lp and ‖ · ‖ is the usual Euclidean norm. Then,
(26) is equivalent to

L+ = proxtρ (L− t∇`(L)) , (27)

where proxtρ(·) is the proximal operator applied to the
scaled function tρ(·). Since ρ(u) is separable across the
coordinates {uij , i ≥ j}, we have for x ∈ Lp,

(
proxρ(x)

)
ij

=

{
proxρ(xij), i > j,

prox0(xii) = xii, i = j.

The proximal operators on the RHS are univariate, and the
distinction between the two cases is because we do not
penalize the diagonal entries, i.e., ρ(uii) = 0.

The overall procedure is summarized in Algorithm 2. To
choose the step size t normalized by ‖∇`(L)‖F (line 4), we
have used a line search strategy [38], where we repeatedly
reduce the step size by a factor κ ∈ (0, 1) until a quadratic
upper bound is satisfied by the new update (line 9). To
implement Algorithm 2, we need two more ingredients,
∇`(L) and the univariate proxρ(·), both of which have nice
closed-form expressions:

Lemma 4. The gradient of `(L,P) in (10) w.r.t. L is

∇`(L) = n
(

ΠL(P Σ̂P>L)− diag ({1/Lii}pi=1)
)
,

where ΠL : A 7→ (Aij1{i ≥ j})p×p maps a matrix to its lower
triangular projection.

Lemma 5. The gradient of `O(L,P) in (17) w.r.t. Lj is

∇Lj `O(L,P) =
∣∣Oπ(j)

∣∣
(

Πj

(
P Σ̂jP>Lj

)
− ej
Ljj

)
,

where Πj : v 7→ (vi1{i ≥ j})p×1 and {ej} is the canonical
basis of Rp.

Lemma 6. Let ρ be the scalar MCP with parameter (γ, λ) defined

9

in (15), and let ρ1 be the same penalty for λ = γ = 1. Then, for
any t > 0,

proxtρ(x) = λγ prox(t/γ)ρ1

(x
λγ

)
, (28)

and for any α > 0,

proxαρ1(x) =

0,
0 ≤ x < min{α, 1} or
1 < x <

√
α;

x− α
1− α , α < x ≤ 1;

x,
x > max{α, 1} or
1 <
√
α < x ≤ α.

(29)

Moreover, proxαρ1(−x) = −proxαρ1(x) for all x ∈ R.

We have excluded two special cases in (29) in which the
minimizer is not unique: 1) If x = α = 1, proxαρ1(x) =
[0, 1]; 2) If x =

√
α > 1, proxαρ1(x) = {0,√α}. We set

proxαρ1(x) = 0 in our implementation if these special cases
occur. The MCP has parameter γ > 1, and usually the step
size t < 1. Thus, the cases with α < 1 are the most common
scenario in our numerical study.

5.3 Structure refinement after annealing
At the end of the annealing loop (line 9, Algorithm 1), a
pair (L̂, P̂) is found. Accordingly, an estimated reversal of
a topological sort is π̂ = P̂ (1, . . . , p)>. Define L̃ = P̂>L̂P̂ ,
and B̂ by B̂ij = −L̃ij/L̃jj for i 6= j and B̂ii = 0. Then, B̂
is the estimated weighted adjacency matrix for a DAG, i.e.,
an estimate for B0. The support of B̂ gives the estimated
parent sets p̂aj = {i : B̂ij 6= 0} for j = 1, . . . , p. The use of
a continuous regularizer, i.e. MCP, eases our optimization
problem; however, this may lead to more false positive
edges compared to `0 regularization. To improve structure
learning accuracy, we add a refinement step to remove some
predicted edges by conditional independence tests, which
borrows the strength from a constraint-based approach.

The refinement step outlined in Algorithm 3 is based on
the following fact. If k ≺ j in a topological sort and there is
no edge k → j, then Xk ⊥ Xj | Πj , where Πj is the parent
set of Xj . For each k ∈ p̂aj , we test the null hypothesis
that Xk and Xj are conditionally independent given p̂aj \
{k} using the Fisher Z-score. We remove the edge k → j
if the null hypothesis is not rejected at a given significance
level. The conditional independence tests are performed in
a sequential manner for the nodes in p̂aj according to the
estimated topological sort: For k1, k2 ∈ p̂aj , if k1 ≺ k2 in the
sort, we carry out the test for k2 prior to that for k1.

5.4 Selection of the tuning parameters
Before starting the iterations in Algorithm 1, we select and
fix the tuning parameters θ = (γ, λ) of MCP (line 1), hence
fixing a particular scoring function f(L,P) = fθ(L,P)
throughout the algorithm.

We use the Bayesian information criterion (BIC) [39] to
select the tuning parameters, given an initial permutation
P0. The details are summarized in Algorithm 4. For every
pair (γ(i), λ(i)) over a grid of values, we evaluate the BIC
score given in line 2, where ‖L̂(·)‖0 is the number of nonzero
entries in L̂(·), and then we output the one with the lowest

Algorithm 3 Constraint-based structure refinement.

Input: X, adjacency matrix B̂, significance level α.
Output: Adjacency matrix B̂.

1: Zα ← Φ−1(1− α
2), where Φ(x) is the CDF of N (0, 1).

2: for j = 1, . . . , p do
3: p̂aj ← {i : B̂ij 6= 0}.
4: for k ∈ p̂aj do
5: s← p̂aj \ {k}.
6: Xj ← observations for which j is not intervened
7: n← number of rows in Xj .
8: rj,k|s ← sample partial correlation between Xj

and Xk given Xs based on Xj .
9: z ← 1

2

√
n− |s| − 3 log

(
1+rj,k|s
1−rj,k|s

)
.

10: Remove k from p̂aj , if |z| < Zα.

11: end for
12: B̂ij ← 1 if i ∈ p̂aj and B̂ij ← 0 otherwise.

13: end for

Algorithm 4 Tuning parameter selection by BIC.
Input: Initial permutation P0 and a grid of values

{θ(i)} = {(γ(i), λ(i))}.
Output: Optimal index i∗ in the grid.

1: Define L̂(θ) := arg minL∈Lp fθ(L;P0) computed by
Algorithm 2.

2: Let BIC(θ) := 2`
(
L̂(θ), P0

)
+ ‖L̂(θ)‖0 log (max{n, p}) .

3: Output i∗ = arg mini BIC(θ(i)).

BIC score. The regularization parameter in BIC(θ) is adapted
to log(max{n, p}), which works well for both low and high-
dimensional data. To construct the grid, possible choices for
the concavity parameter γ are {2, 10, 50, 100} based on our
tests. Note that γ > 1 is required in the definition of MCP
(15), while the behavior of MCP for γ ≥ 100 is essentially
the same as the `1 penalty. For the regularization param-
eter λ, we select 20 equi-spaced points from the interval
[0.1
√
n,
√
n]. The choice of

√
n often leads to an empty

graph when the data are standardized, hence a natural end
point.

6 RESULTS ON OBSERVATIONAL DATA

6.1 Methods and data

Recall that p is the number of variables and n is the number
of observations. For a thorough evaluation of the algorithm,
we simulated data for both n > p and n < p cases.

We used real and synthetic networks to simulate data.
Real networks were downloaded from the Bayesian net-
works online repository [40]. We duplicated some of them to
further increase the network size. Synthetic DAG structures
were constructed using the sparsebn package [41]. Given
a DAG structure, we sampled the edge coefficients βij
uniformly from [−0.8,−0.5] ∪ [0.5, 0.8] and set the noise
variance to one. We then calculated the covariance matrix
according to (4) and normalized its diagonal elements to
one. Consequently, the variances of {X1, . . . , Xp} were
identical. We used the following networks to generate ob-
servational data, denoted by the network name and (p, s0),

10

where s0 is the number of edges after duplication: 4 copies
of Hailfinder (224, 264), 1 copy of Andes (223, 338), 2
copies of Hepar2 (280, 492), 4 copies of Win95pts (304,
448), 1 copy of Pigs (441, 592), and random DAGs, rDAG1
(300, 300) and rDAG2 (300, 600). The sample size n = 200
for real networks and n = 240 for synthetic graphs in the
n < p case. In the low-dimensional setting n > p, the sample
size n = 450, 500, 600, 600 for rDAG1, Win95pts, Pigs and
rDAG2, respectively, and n = 400 for the other networks.

In the observational data setting, we compared our
algorithm with the following BN learning algorithms: the
coordinate descent (CD) algorithm [23], the standard greedy
hill climbing (HC) algorithm [5], the greedy equivalence
search (GES) [6], the Peter-Clark (PC) algorithm [1], the max-
min hill-climbing (MMHC) algorithm [4], and the genetic
algorithm (GA) [15].

The CD algorithm optimizes a regularized log-likelihood
function by a blockwise update on (βij , βji) while check-
ing the acyclicity constraint before each update. The HC
algorithm performs a greedy search over the DAG space
by starting from a certain initial state, performing a finite
number of local changes and selecting the DAG with the
best improvement in each local change. The GES algorithm
searches over the equivalence classes and utilizes greedy
search operators on the current state to find the next one,
of which the output is an equivalence class of DAGs. The
PC algorithm performs conditional independence tests to
identify edges and orients edge directions afterwards. The
MMHC algorithm constructs the skeleton of a Bayesian
network via conditional independence tests and then per-
forms a greedy hill climbing search to orient the edges via
optimizing a Bayesian score. The GA decomposes graph
estimation into two optimization sub-problems: node or-
dering search with mutation and crossover operators, and
structure optimization by an adaption of the least angle
regression [25].

Among these methods, PC is a constraint-based method,
and MMHC is a hybrid method. Other methods, CD, HC,
GES and GA, are all score-based, where CD and HC search
over the DAG space, GES searches over the equivalence
classes, and GA searches over the permutation space. Our
method is a score-based search over the permutation space,
similar to GA.

Our ARCS algorithm (Algorithm 1) may take an initial
permutation P0 provided by a local search method. In this
study, we use the CD and GES algorithms to provide an
initial permutation, and call the corresponding implemen-
tation ARCS(CD) and ARCS(GES). To partially preserve
properties of the input initial permutation, we start with a
low temperature T (0) = 1. The output of the CD algorithm
is a DAG for which we find a topological sort to define P0.
The GES algorithm outputs a completed partially directed
acyclic graph (CPDAG). We then generate a DAG in the
equivalence class of the estimated CPDAG, and initialize
ARCS with a topological sort of this DAG.

We implemented the ARCS algorithm in MATLAB, with
source code available at https://github.com/yeqiaoling/
arcs bn. We used the following R packages for other meth-
ods: sparsebn [41] for the CD algorithm, rcausal [42] for
the GES, GIES (for experimental data) and PC algorithms,
bnlearn [43] for the MMHC and HC algorithms, and

GADAG [15] for the GA. Among score-based methods, HC
and GES used the BIC scoring function for Gaussian data;
CD used an MCP-regularized likelihood scoring function,
with an internal tuning parameter selection method; GA
used an `1-regularized likelihood, for which we applied grid
search for tuning parameter selection.

6.2 Accuracy metrics
Among all methods applied to observational data, ARCS,
CD, HC and MMHC output DAGs, while the GES and PC
algorithms output CPDAGs. Given these estimates, we need
to evaluate the performance of each method. To standardize
the performance metrics in observational data setting, we
transfer an estimated DAG into its CPDAG before calculat-
ing the following metrics.

Define P, TP, FP, M, R as the numbers of estimated edges,
true positive edges, false positive edges, missing edges and
reversed edges, respectively, all with respect to CPDAGs. P
is the number of edges in the estimated graph. FP is the
number of edges in the estimated graph skeleton but not in
the true skeleton. M counts the number of edges in the true
skeleton but not in the skeleton of the estimated graph. TP
reports the number of consistent edges, including edge ori-
entation for directed edges, between the estimated CPDAG
and the true CPDAG. Lastly, the number of reversed edges
R = P−TP−FP and so R includes both incorrectly oriented
edges and those edges that are oriented in one CPDAG but
undirected in the other.

Denote by s0 the number of edges in the true CPDAG.
The overall accuracy of a method is measured by the struc-
tural Hamming distance (SHD) and Jaccard index (JI), where
SHD = R + FP + M and JI = TP/(s0 + P − TP). A method
has better performance if it achieves a lower SHD and/or a
higher JI.

6.3 Structure learning accuracy
We used large networks, where p ∈ (200, 450) and s0 ∈
(250, 600], to simulate observational data with n < p and
n > p. For each setting (p, s0, n), we generated 20 datasets,
and ran CD, ARCS(CD), GES, ARCS(GES) and other meth-
ods (PC, HC, MMHC and GA) with a maximum time
allowance of 10 minutes per dataset. The HC and MMHC
algorithms had an upper-bound of the in-degree number
as 2. We tried a higher maximum in-degree, but it resulted
in a large FP. MMHC and PC were run with a significance
level of 0.01 in conditional independence tests. We ran the
CD algorithm with an MCP regularized likelihood, in which
γ = 2 and λ was chosen by a default model selection
mechanism. GA was run for a maximum of 104 iterations,
using the default population size and the default rates of
mutation and crossover. We tried a larger population size
for GA, but it was too time-consuming.

Our methods, ARCS(CD) and ARCS(GES), initialized
with permutations from CD and GES estimates, were run
for a maximum of N = 104 iterations, with T (0) = 1,
T (N) = 0.1, and reversal length m = 4 (Algorithm 1).
The temperature decreased geometrically as T (i) = αiT (0),
where α is determined by T (0), T (N) and N . A p-value cut-
off of 10−5 was used in the refinement step (Algorithm 3).
For the networks we considered, on average, 500 tests were

https://github.com/yeqiaoling/arcs_bn
https://github.com/yeqiaoling/arcs_bn

11

TABLE 1: Comparison between ARCS and initial estimates on observational data. ARCS improved GES and CD
estimates, and ARCS(GES) achieved the best accuracy for every network.

Network Method n < p n > p
(p, s0) TP R FP SHD (sd) JI (sd) TP R FP SHD (sd) JI (sd)

Hailfinder ARCS(GES) 203 42 16 76 (25) 0.64 (0.11) 237 21 15 42 (13) 0.79 (0.06)
(224, 264) ARCS(CD) 183 58 33 114 (18) 0.51 (0.06) 195 60 41 110 (26) 0.54 (0.07)

GES 180 53 10 94 (22) 0.56 (0.10) 228 26 18 54 (12) 0.74 (0.05)
CD 145 93 31 150 (17) 0.38 (0.05) 150 94 34 148 (13) 0.38 (0.04)

Andes ARCS(GES) 274 33 27 91 (33) 0.69 (0.10) 295 27 26 70 (29) 0.76 (0.08)
(223, 338) ARCS(CD) 228 75 65 174 (37) 0.48 (0.07) 238 72 66 166 (63) 0.51 (0.10)

GES 218 36 17 137 (18) 0.56 (0.06) 271 35 36 103 (32) 0.67 (0.09)
CD 169 112 63 232 (15) 0.33 (0.03) 184 112 70 223 (35) 0.36 (0.05)

Hepar2 ARCS(GES) 300 119 64 255 (27) 0.45 (0.04) 309 121 74 257 (41) 0.45 (0.05)
(280,492) ARCS(CD) 263 155 82 312 (37) 0.36 (0.04) 284 152 87 294 (55) 0.39 (0.06)

GES 238 110 62 316 (24) 0.36 (0.04) 299 126 84 277 (28) 0.43 (0.04)
CD 205 156 100 388 (20) 0.27 (0.03) 229 168 121 384 (31) 0.29 (0.04)

Win95pts ARCS(GES) 348 69 34 134 (21) 0.63 (0.05) 379 58 38 107 (19) 0.70 (0.04)
(304, 448) ARCS(CD) 301 104 59 206 (22) 0.49 (0.04) 318 114 111 241 (51) 0.48 (0.07)

GES 236 78 21 232 (17) 0.43 (0.04) 320 88 64 192 (17) 0.53 (0.03)
CD 177 169 47 317 (26) 0.27 (0.04) 187 172 39 300 (26) 0.28 (0.04)

Pigs ARCS(GES) 446 102 27 172 (90) 0.62 (0.13) 466 107 46 172 (40) 0.63 (0.05)
(441, 592) ARCS(CD) 401 145 47 239 (73) 0.51 (0.10) 437 136 57 212 (55) 0.56 (0.06)

GES 432 112 38 198 (18) 0.58 (0.03) 467 122 57 182 (23) 0.61 (0.04)
CD 324 224 106 374 (26) 0.35 (0.02) 334 243 175 433 (43) 0.33 (0.03)

rDAG1 ARCS(GES) 289 7 1 12 (7) 0.94 (0.03) 297 3 1 4 (6) 0.98 (0.03)
(300,300) ARCS(CD) 253 43 9 56 (14) 0.72 (0.06) 264 35 20 56 (20) 0.75 (0.08)

GES 274 8 1 27 (6) 0.89 (0.03) 293 4 2 9 (8) 0.96 (0.04)
CD 189 104 21 132 (18) 0.45 (0.05) 196 98 24 127 (17) 0.47 (0.05)

rDAG2 ARCS(GES) 562 20 12 51 (12) 0.89 (0.03) 584 13 11 27 (14) 0.94 (0.03)
(300,600) ARCS(CD) 481 90 52 171 (41) 0.65 (0.06) 491 99 106 215 (62) 0.61 (0.06)

GES 470 29 6 136 (20) 0.74 (0.04) 558 21 17 58 (15) 0.88 (0.03)
CD 382 159 59 276 (32) 0.47 (0.03) 379 165 61 283 (25) 0.46 (0.03)

In this and all subsequent tables, reported results are rounded averages over 20 datasets.

performed in the refinement step, and the cutoff was chosen
by Bonferroni correction to control the familywise error rate
at level 0.005. In fact, our results were almost identical for
any p-value cutoff between 10−3 and 10−5.

To perform a complete comparison, we applied the
structure refinement step (Section 5.3) to other competing
methods as well. It turned out that ARCS, CD, HC and
MMHC benefitted from this additional step. Therefore, in
this section, we report the results of these methods with
the refinement step. Section 6.6 evaluates the effect of this
structure refinement step, including results of these methods
before refinement.
ARCS versus CD and GES. Table 1 reports the average
performance metrics across 20 datasets for 7 networks (5
real and 2 random networks) using CD, ARCS(CD), GES
and ARCS(GES). We were interested in the potential im-
provement of ARCS upon its initial permutations. It is
indeed confirmed by the results in the table that ARCS(CD)
and ARCS(GES) outperformed CD and GES, respectively,
for every network, achieving lower SHDs and higher JIs.
The reduction in SHD was close to or above 20% across
networks. ARCS always increased TP, while maintaining
or slightly reducing FP. The annealing process identified
more TP edges, while the refinement step (Algorithm 3)

cut down the FP edges given the ordering and parent sets
learned through simulated annealing. In the case of n < p
for the Pigs network, the high standard deviation of the
SHDs of ARCS was caused by a couple of outliers. If we
excluded the corresponding data sets, the average SHD of
ARCS(GES) and ARCS(CD) would decrease to 153 and 225
with standard deviations of 23 and 41, respectively.
ARCS(GES) versus other methods. We also compared
ARCS(GES) with other existing methods, including HC,
PC, MMHC and GA. Table 2 summarizes the average per-
formance, where ARCS(GES) outperforms competing algo-
rithms by a great margin. The HC algorithm tended to out-
put a denser DAG than the truth, leading to a large FP. The
PC algorithm had a relatively large number of reverse edges,
causing a high SHD. The MMHC algorithm had a lower
SHD than some other algorithms, but the SHD difference
between ARCS(GES) and MMHC was still large. The PC
and MMHC algorithms were slow for some networks, and
thus are absent in the results for these networks. The GA
was formulated in a similar way as ARCS(GES), but the TPs
of GA estimates were much lower, resulting in large SHDs
for the tested networks.

It is worth mentioning that ARCS(GES) outperformed
other methods substantially for larger networks such as

12

TABLE 2: ARCS against other methods on observational data. ARCS(GES) achieved the best SHD and JI among all
methods for every network.

Network Method n < p n > p
(p, s0) TP R FP SHD (sd) JI (sd) TP R FP SHD (sd) JI (sd)

Hailfinder ARCS(GES) 203 42 16 76 (25) 0.64 (0.11) 237 21 15 42 (13) 0.79 (0.06)
(224, 264) HC 151 80 31 144 (13) 0.40 (0.04) 151 87 50 163 (19) 0.38 (0.06)

PC 41 167 13 236 (7) 0.09 (0.02) 45 191 14 233 (14) 0.10 (0.03)
GA 51 70 72 284 (14) 0.13 (0.02) 43 68 28 248 (13) 0.12 (0.03)

Andes ARCS(GES) 274 33 27 91 (33) 0.69 (0.10) 295 27 26 70 (29) 0.76 (0.08)
(223, 338) HC 142 112 62 258 (19) 0.28 (0.03) 148 121 85 275 (27) 0.27 (0.04)

PC 84 169 13 267 (10) 0.16 (0.02) 85 202 16 269 (10) 0.15 (0.02)
GA 57 87 72 352 (14) 0.12 (0.02) 36 84 33 335 (9) 0.08 (0.02)

MMHC 147 88 3 194 (15) 0.34 (0.05) 171 98 4 171 (16) 0.39 (0.05)
Hepar2 ARCS(GES) 300 119 64 255 (27) 0.45 (0.04) 309 121 74 257 (41) 0.45 (0.05)

(280, 492) HC 170 149 83 405 (20) 0.24 (0.03) 174 155 95 413 (19) 0.23 (0.02)
PC 96 154 30 427 (13) 0.14 (0.02) 108 189 33 417 (15) 0.15 (0.02)
GA 70 107 143 565 (14) 0.09 (0.01) 51 98 77 518 (14) 0.08 (0.02)

MMHC 86 156 20 426 (15) 0.13 (0.02) 130 158 21 383 (15) 0.19 (0.02)
Win95pts ARCS(GES) 348 69 34 134 (21) 0.63 (0.05) 379 58 38 107 (19) 0.70 (0.04)
(304, 448) HC 147 177 54 355 (19) 0.22 (0.03) 148 212 111 410 (17) 0.19 (0.02)

PC 124 207 28 352 (12) 0.18 (0.02) 134 264 27 341 (12) 0.18 (0.02)
GA 83 114 57 422 (12) 0.13 (0.02) 41 86 12 419 (7) 0.07 (0.01)

MMHC 157 147 4 295 (12) 0.26 (0.02) 177 191 3 274 (11) 0.28 (0.02)
Pigs ARCS(GES) 446 102 27 172 (90) 0.62 (0.13) 466 107 46 172 (40) 0.63 (0.05)

(441, 592) HC 353 174 102 341 (30) 0.41 (0.04) 367 173 132 357 (41) 0.41 (0.04)
GA 79 187 91 605 (12) 0.09 (0.01) 46 150 22 569 (10) 0.06 (0.01)

rDAG1 ARCS(GES) 289 7 1 12 (7) 0.94 (0.03) 297 3 1 4 (6) 0.98 (0.03)
(300, 300) HC 176 108 29 153 (13) 0.40 (0.03) 178 113 45 168 (18) 0.39 (0.04)

PC 90 202 30 240 (11) 0.17 (0.02) 83 215 31 248 (11) 0.15 (0.02)
GA 64 81 33 269 (9) 0.15 (0.02) 54 75 6 253 (10) 0.14 (0.03)

MMHC 193 89 1 108 (8) 0.50 (0.03) 191 103 0 109 (8) 0.47 (0.03)
rDAG2 ARCS(GES) 562 20 12 51 (12) 0.89 (0.03) 584 13 11 27 (14) 0.94 (0.03)

(300, 600) HC 253 180 51 398 (20) 0.31 (0.02) 248 201 76 428 (17) 0.28 (0.02)
PC 194 307 7 413 (16) 0.21 (0.02) 175 389 6 431 (13) 0.18 (0.02)
GA 108 140 63 555 (15) 0.14 (0.02) 42 96 5 563 (7) 0.06 (0.01)

MMHC 277 156 0 323 (10) 0.37 (0.02) 284 191 0 316 (17) 0.36 (0.03)

If a method is absent for a network, that means, it took more than 10 minutes to run on a singe dataset, and
thus is excluded from the comparison.

Pigs (p = 441, s0 = 592). MMHC and PC failed to
complete a single run on the Pigs network within 10
minutes, while HC and GA had very low accuracies. We
suspect that the Pigs network has a certain structure that
is particularly difficult to estimate, a hypothesis that merits
more investigation.

Additional tests. We also compared ARCS with DAGs with
NO TEARS (NOTEARS), a continuous optimization method
for structure learning of BNs developed recently [24]. This
method is not restricted to continuous data, and thus more
general than ARCS. The current version of NOTEARS re-
quired a very large amount of memory for large DAGs
such as those in Tables 1 and 2. Therefore, we restricted
the comparison to relatively small DAGs. To this end, we
generated observational data from 9 graphs (with at most 20
nodes), and then applied grid search to choose NOTEARS’s
tuning parameter since it required a pre-fixed tuning pa-
rameter. ARCS achieved higher accuracy than NOTEARS

consistently for most graphs (8 out of 9), except Sachs
(p = 11, s0 = 17). The advantage of ARCS over NOTEARS
grew with the size and complexity of the true DAG. Detailed
comparison results are provided in the supplementary ma-
terial, Section S1.1.

We also tested another order-based algorithm, linear
structural equation model learning (LISTEN) [19], which
estimates Gaussian DAG structure by a sequential detection
of ordering. A key assumption of LISTEN is that the noise
variables have equal variances. Moreover, the algorithm
requires a prespecified regularization parameter for the
score metric. To compare with this algorithm, we adapted
our data generation process to satisfy the equal-variance
assumption. ARCS(GES) achieved a much higher accuracy,
with SHD as small as 13% to 18% of the SHD achieved
by LISTEN. Full results are reported in the supplementary
material, Section S1.2.

13

0.0 0.2 0.4 0.6 0.8 1.0
Method

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 lo

g-
lik

el
ih

oo
d

-0.15

-0.10

-0.05

0.00

Hailfinder

-0.20

-0.15

-0.10

-0.05

0.00

Andes

ARCS GES CD HC GA
-0.20

-0.10

0.00

Hepar2

ARCS GES CD HC GA
-0.15

-0.10

-0.05

0.00
Win95pts

Fig. 3: Test data log-likelihood comparison among BN learning
methods. Log-likelihoods are shifted by the median of ARCS
(the dashed line).

6.4 Test data likelihood comparison

As discussed in Remark 2, an estimated DAG (or CPDAG)
defines a multivariate Gaussian distribution for X via (4).
To evaluate the accuracy in estimating the covariance matrix
Σ0, we compared test data log-likelihood as follows. Given
an estimated DAG, we applied least-squares regression of
each node on its parents to estimate B0 and Ω0. Then we
simulated test data under the same Gaussian SEM with the
true parameters (B0,Ω0) and calculated log-likelihood of
the test data. A higher test data log-likelihood indicates a
better estimate of Σ0.

Figure 3 shows the test data log-likelihood of a few BN
learning methods, including ARCS(GES), GES, CD, HC and
GA, on four networks in the case of n < p. The case of
n > p shows a similar pattern and is thus omitted for
brevity. We shifted test data log-likelihoods by the median of
ARCS, so that the ARCS medians were always zero. The log-
likelihood distributions for all other methods were below
zero, indicating that ARCS achieved significantly higher
accuracy in estimating Σ0. Additional results for three other
networks (supplementary Figure S3) support exactly the
same conclusion here. In all these results, we normalized
the log-likelihood by the sample size n and the dimension
of the problem p.

6.5 Precision matrix estimation

For a given P , the minimizer of the RC loss f(L;P) (13) is
a sparse Cholesky factor of PΣ−1

0 P>, the precision matrix
Σ−1

0 after permuting rows and columns according to P .
Instead of joint optimization over (L,P) in (14), one could
first estimate a sparse precision matrix Θ̂ and then learn
a DAG structure though Cholesky decomposition of Θ̂ as
in (4). The Cholesky decomposition can be done with a
given ordering or by searching for an order that leads
to a sparse Cholesky factor. In this section, we compare
ARCS(GES), or simply ARCS, against two precision matrix
estimation methods, followed by Cholesky decomposition,
to clarify their differences.

The first approach estimates a precision matrix via mod-
ified Cholesky decomposition (MCD) [30] which requires
an input ordering of the variables. We provided MCD with
ARCS initial and final orders, which we have called MCD
and MCD*, respectively. The initial order of ARCS was
found by GES. Given an estimated sparse precision matrix
and the input order, we found the corresponding DAG
structure encoded by the Cholesky factor, and then refined
the DAG structure using Algorithm 3, the same refinement
step used by ARCS. The comparison against MCD will show
the advantage of joint minimization over (L,P), while the
comparison against MCD* demonstrates the effectiveness
of ARCS in terms of estimating precision matrices, since
the two methods use exactly the same ordering in Cholesky
decomposition.

The second approach is graphical Lasso [44] followed by
a Cholesky decomposition. Given a sparse precision matrix
Θ̂ estimated by graphical Lasso, we used the approximate
minimum degree ordering algorithm [45], a heuristic com-
mon in numerical linear algebra, to find a permutation P
such that the Cholesky factor of P Θ̂P> is sparse. We call
this approach GC. We also applied the Cholesky decom-
position to P̂ Θ̂P̂>, where P̂ is the permutation found by
ARCS. We call this approach GC*. The comparison between
ARCS and GC will highlight the importance of imposing
sparsity on L in our formulation (14), rather than on Σ−1

as in GC. The difference between GC* and GC will show
the effectiveness of the ordering obtained by ARCS, relative
to the minimum degree ordering, in achieving a sparse
Cholesky factorization.

We used R package CovTools to run MCD, the glasso
package to run graphical Lasso, and MATLAB function chol
for the approximate minimum degree algorithm. Based on
a grid search on a sample dataset, we chose the tuning
parameter of 0.001 for graphical Lasso. The upper bound
on the bandwidth of the precision matrix, as required by
CovTools, was set to 10.

Table 3 compares the structure recovery accuracy among
ARCS, GC*, GC, MCD* and MCD. ARCS showed the best
performance with a great margin, followed by GC* which
used the permutation found by ARCS to complete the
Cholesky decomposition. The observation that GC* consis-
tently outperformed GC indicates that ARCS found a better
topological sort than the minimum degree algorithm. Both
MCD and MCD* suffered from high SHDs and low JIs,
which shows that imposing sparsity on the precision matrix
and decoupling its estimation from the order search would
be suboptimal for DAG structure learning.

We also compared test data log-likelihood among these
methods in supplementary Figure S4. Interestingly, al-
though not designed for precision matrix estimation, ARCS
achieved a much higher test data likelihood compared to
all the precision matrix estimation methods. In particular,
the fact that ARCS outperformed MCD* implies that our
method did a better job at estimating precision matrices
compared to MCD, even though the latter was provided
with the same ordering finally used by ARCS.

6.6 Effectiveness of refinement
Recall that we employed the constraint-based refinement
step in ARCS after annealing (Section 5.3). To analyze the

14

TABLE 3: ARCS against precision matrix estimation methods

Network Method n < p n > p
(p, s0) SHD(sd) JI(sd) SHD(sd) JI(sd)

Hailfinder ARCS 76 (25) 0.64 (0.11) 42 (13) 0.79 (0.06)
(224, 264) GC* 128 (15) 0.53 (0.06) 82 (15) 0.64 (0.06)

GC 297 (10) 0.09 (0.01) 236 (19) 0.16 (0.05)
MCD* 290 (7) 0.03 (0.02) 304 (11) 0.06 (0.02)
MCD 285 (10) 0.06 (0.02) 300 (12) 0.10 (0.03)

Andes ARCS 91 (33) 0.69 (0.10) 70 (29) 0.76 (0.08)
(223, 338) GC* 98 (24) 0.67 (0.08) 169 (19) 0.51 (0.05)

GC 597 (114) 0.04 (0.05) 266 (75) 0.29 (0.17)
MCD* 335 (16) 0.07 (0.05) 345 (25) 0.11 (0.04)
MCD 322 (14) 0.09 (0.04) 321 (15) 0.14 (0.03)

Hepar2 ARCS 255 (27) 0.45 (0.04) 257 (41) 0.45 (0.05)
(280, 492) GC* 392 (24) 0.32 (0.03) 328 (35) 0.38 (0.04)

GC 546 (27) 0.16 (0.02) 497 (28) 0.19 (0.02)
MCD* 594 (16) 0.02 (0.01) 659 (22) 0.02 (0.01)
MCD 557 (13) 0.07 (0.02) 596 (15) 0.09 (0.02)

Win95pts ARCS 134 (21) 0.63 (0.05) 107 (19) 0.70 (0.04)
(304, 448) GC* 160 (17) 0.58 (0.04) 402 (11) 0.10 (0.02)

GC 390 (14) 0.16 (0.02) 428 (7) 0.06 (0.01)
MCD* 450 (4) 0.01 (0.01) 462 (7) 0.03 (0.01)
MCD 446 (5) 0.03 (0.01) 453 (9) 0.06 (0.01)

benefit of this post-processing step, we applied the same
refinement step to other methods except PC and GA. We
excluded PC because as a constraint-based method, it has
already performed all conditional independence tests. The
GA estimated graphs had the lowest TPs in Table 2, and
thus further removing edges by the refinement step would
not improve its overall accuracy. Note that GES outputs
a CPDAG, so we applied the refinement step on a ran-
domly chosen DAG in the equivalence class of the estimated
CPDAG.

We summarize the mean SHDs before and after the
refinement step for each method in Table 4. The refinement
step reduced the SHDs for most of the methods included in
this comparison. It worked particularly well for HC with a
substantial decrease in SHD. The improvements for ARCS,
CD and MMHC were quite substantial for some datasets
while marginal for other datasets. There was no change in
the GES estimates after the refinement step. It is observed
that ARCS(GES) achieved the smallest SHD, after the re-
finement step was applied to all the methods. Moreover,
ARCS(GES) without refinement had already outperformed
the majority of the competing methods, except for the case
Hailfinder (n < p) when compared against GES.

6.7 Effectiveness of BIC selection
Given an initial permutation, we used the BIC to choose
tuning parameters (γ, λ) before applying the ARCS algo-
rithm (Section 5.4). In Tables 2, the number of predicted
edges (TP+R+FP) by ARCS(GES) is closer to s0 than any
other competing method in every network. This observation
signifies the effectiveness of our parameter selection method
by BIC. To further study its effect, we compared DAGs
estimated with all values on a grid of (γ, λ) by ARCS(GES),
or simply ARCS.

Figure 4 shows the histograms of the SHDs of ARCS es-
timates for a grid of tuning parameters. We used the Andes
datasets with (p, s0) = (223, 338) and n ∈ {200, 400} here.
The shaded part of a histogram reports SHDs achieved with

TABLE 4: Comparison on SHDs before (B) and after (A) the
refinement step.

SHD ARCS(GES) ARCS(CD) CD HC MMHC GES
B A B A B A B A B A

Hailfinder 129 76 165 114 151 150 344 144 − − 94
Andes 125 91 256 174 237 232 356 258 203 194 137
Hepar2 290 255 425 312 411 388 513 405 430 426 316
Win95pts 205 134 293 206 319 317 544 355 316 295 232
Pigs 193 172 263 239 974 374 547 341 − − 198
rDAG1 13 12 62 56 137 132 437 153 143 108 27
rDAG2 68 51 200 171 389 276 483 398 328 323 136

Hailfinder 43 42 112 110 148 148 335 163 − − 54
Andes 71 70 174 166 224 223 341 275 181 171 103
Hepar2 273 257 304 294 385 384 505 413 389 383 277
Win95pts 110 107 244 241 300 300 519 410 295 274 192
Pigs 173 172 214 212 436 433 518 357 − − 182
rDAG1 5 4 56 56 128 127 420 168 146 109 9
rDAG2 27 27 221 215 283 283 481 428 320 316 58

The top panel shows results for n < p and the bottom for n > p.

Fr
eq

ue
nc

y

50 100 150 200 250 300 350

0
10

20

BIC selection with a GES initial permutation

Andes (p, s0, n) = (223, 338, 200)

Fr
eq

ue
nc

y

50 100 150 200 250 300 350
0

10
20

BIC selection with a GES initial permutation

Andes (p, s0, n) = (223, 338, 400)

SHD

Fr
eq

ue
nc

y

Fig. 4: Performance of the BIC selected parameter among a grid
of (γ, λ) given an initial permutation. Tuning parameters that
lead to lower SHDs than the BIC selection are shown in gray.

choices of tuning parameters on the grid that were smaller
than the SHD corresponding to the BIC selected parameters.
Each histogram has a high spike of large SHD, correspond-
ing to large values of λ that generate almost empty graphs.
The SHDs of ARCS with BIC selection corresponded to
the 16th and 3rd percentiles in low and high sample sizes,
respectively. These low percentiles confirm that the BIC
selection works well for choosing the tuning parameters.
Moreover, in our tests, the BIC usually selected γ∗ = 2, the
smallest provided value for γ. Since for small γ, the MCP is
closer to the `0 penalty and far from the `1 norm, this choice
of γ indicates the preference of concave penalties over `1
in estimating sparse DAGs. Some of CD’s and GA’s inferior
performances, such as CD on the Pigs network (Table 1)
and the overall performance of GA (Tables 2), were poten-
tially caused by a bad choice of their tuning parameters. This
demonstrates the importance of our data-driven selection
scheme for a regularized likelihood method.

6.8 Empirical loss evaluation

To quantify the empirical loss and global search ability of
our ARCS algorithm, we compared the BIC score of an
ARCS estimate against the global minimum BIC score. A
global minimum can be identified by integer linear pro-
gramming (ILP) [46]. With a properly chosen upper bound
on the parent size, and given sufficient computing budget,
this method is guaranteed to find a global minimizer. We

15

Asia (8,8) Sachs (11, 17) rDAG3 (20, 20)
Network

0.0%

0.5%

1.0%

1.5%

2.0%

re
la

tiv
e

BI
C

in
cr

ea
se

Fig. 5: Distributions of the relative BIC increase. The numbers
following each DAG report its (p, s0).

set the upper bound to the maximum parent size in the
DAG estimated by ARCS(GES), and then calculated local
BIC scores of all possible parent sets for each node, which
were input to ILP implemented in the GOBNILP software
package [46].

We chose relatively small DAGs (p ≤ 20) in this compar-
ison and simulated datasets with sample size n = 5p. For
each dataset, we computed the BIC score of the DAG esti-
mated by ARCS(GES) and found the minimum BIC score by
ILP. Define the relative BIC increase of ACRS compared to
ILP as (BIC(ARCS)−BIC(ILP))/BIC(ILP). Figure 5 shows the
relative increase distribution across 20 datasets generated
from each of the selected DAGs. Since an upper bound on
parent set size has been given to ILP, its minimum score may
not be best possible BIC score. As expected, the BIC score of
ARCS was slightly higher than the minimum score found by
ILP. However, it is comforting to see the relative BIC increase
of ARCS was less than 2% for almost all the datasets. Note
that the loss function of ARCS may be quite different from
the BIC when n is small. This is the reason why ARCS
had the largest relative BIC increase for the smallest 8-node
graph Asia for which the sample size n = 40.

Note that ILP is computationally intensive. In our tests,
we allocated 20 hours to ILP for each single dataset gen-
erated from four graphs, the three reported in Figure 5
and rDAG4 (p = 20, s0 = 40). Yet it still failed to find an
optimum within the time constraint for the largest graph
rDAG4. Therefore, we excluded this graph from the figure.
Meanwhile ARCS took less than one minute to complete
every single run for these graphs.

7 RESULTS ON EXPERIMENTAL DATA

To generate experimental datasets, we generated p blocks of
observations, in each of which a single variable was under
intervention. For each block, we generated 5 observations,
and thus n = 5p. Networks in this experiment were smaller,
with p ≤ 50 and s0 ≤ 100 (see Table 5). Using these
networks, we also simulated observational data of the same
sample size, n = 5p, to study the effect of experimental in-
terventions. Since the number of conditional independence
tests were smaller in this setting, we used a p-value cutoff
of 10−3 in each refinement test of the ARCS algorithm
(Algorithm 3) to control the overall false discovery rate.

To assess the accuracy on experimental data, we com-
pare an estimated DAG with the true one to calculate the

TABLE 5: Performance comparison on experimental data.

Network Method P TP R FP SHD JI
(p, s0, n)
Asia CD 14 6 1 7 8 0.47

(8, 8, 40) ARCS(CD) 5 5 1 0 4 0.53
GIES 9 1 6 2 9 0.07

ARCS(GIES) 5 5 1 0 4 0.53
Sachs CD 23 9 5 10 17 0.34

(11, 17, 55) ARCS(CD) 12 10 2 1 8 0.50
GIES 17 4 10 4 17 0.13

ARCS(GIES) 12 10 2 1 8 0.51
Ins. CD 56 30 12 14 36 0.39

(27, 52, 135) ARCS(CD) 54 40 7 7 18 0.63
GIES 72 14 34 24 62 0.13

ARCS(GIES) 57 38 10 10 24 0.56
Alarm CD 51 35 9 7 16 0.57

(37, 46, 185) ARCS(CD) 48 43 3 2 5 0.86
GIES 70 6 40 24 65 0.05

ARCS(GIES) 51 40 6 6 12 0.70
Barley CD 85 52 17 16 48 0.45

(48, 84, 240) ARCS(CD) 103 67 13 23 41 0.58
GIES 146 21 58 67 129 0.10

ARCS(GIES) 122 44 35 44 84 0.28
rDAG3 CD 25 15 5 6 11 0.49

(20, 20, 100) ARCS(CD) 20 18 1 1 2 0.84
GIES 29 4 15 10 25 0.09

ARCS(GIES) 20 18 2 1 3 0.83
rDAG4 CD 43 25 8 10 24 0.45

(20, 40, 100) ARCS(CD) 39 34 3 2 8 0.76
GIES 48 6 30 11 46 0.07

ARCS(GIES) 38 35 2 1 6 0.82
rDAG5 CD 55 39 10 6 17 0.60

(50, 50, 250) ARCS(CD) 51 48 2 1 3 0.90
GIES 87 7 43 37 80 0.05

ARCS(GIES) 52 47 3 2 5 0.86
rDAG6 CD 101 70 17 13 43 0.54

(50, 100, 250) ARCS(CD) 106 94 5 7 12 0.86
GIES 155 15 81 58 143 0.06

ARCS(GIES) 159 59 36 64 105 0.34

The best SHD and JI for each network are highlighted in
boldface.

numbers of false positives (FP), missing edges (M), reverse
edges (R) and true positives (TP). FP and M follow the same
calculations as in the observational settings. R counts the
number of edges whose orientations are opposite between
the two DAGs, and TP = P−R−FP. Note that the definitions
of R and TP are different from those for observational
data, because under the intervention setting used in this
comparison, the true causal DAG is identifiable [22]. The
structural Hamming distance (SHD) and the Jaccard index
(JI) are then calculated as in the observational case.

7.1 Comparison on experimental data

In this setting, we compared ARCS with the CD algorithm
[22] and the greedy interventional equivalence search (GIES)
algorithm [47], both of which can handle experimental inter-
ventions. We initialize ARCS with CD and GIES estimates
and call them ARCS(CD) and ARCS(GIES), respectively.

Table 5 compares the CD, ARCS(CD), GIES and
ARCS(GIES) algorithms, averaging over 20 datasets for

16

0
20

40
60

80

SHD comparison

data_type : my_order

S
H

D

Asia rDAG3 rDAG5 Alarm Sachs rDAG4 rDAG6 Ins. Barley

interventional data
observational data

0.
0

0.
2

0.
4

0.
6

reversed edge proportion comparison

R
/P

rDAG6 rDAG5 Alarm rDAG4 rDAG3 Asia Barley Ins. Sachs

interventional data
observational data

Fig. 6: Comparison of SHD and reversed edge proportion
between experimental and observational data with ARCS(CD).

each type of networks. Both ARCS(GIES) and ARCS(CD)
achieved dramatic improvements upon GIES and CD algo-
rithms for every single network. This observation is con-
sistent with the findings from the observational data and
further confirms that the ARCS algorithm is a powerful tool
for improving local estimates. Different from the observa-
tional data results (Table 1), ARCS(CD) usually had better
performance than ARCS(GIES) on experimental data. The
standard deviation, relative to the mean, of the results here
was comparable to that of the observational data results,
and thus is not reported in Table 5 for brevity.

We also compared the performance of our method
ARCS(CD) on experimental and observational data with
the same sample size n = 5p. Figure 6 plots the SHDs of
ARCS(CD) on 20 datasets, with a side-by-side comparison
between observational and experimental data. For some
networks, such as rDAG6 and Ins., the estimated DAGs
using experimental data had much lower SHDs than using
the observational data. For some small networks, such as
Asia (p = 8, s0 = 8), ARCS(CD) achieved a low SHD
on observational data and the improvement when using
experimental data was not substantial.

Because estimated DAGs did not have the same number
of predicted edges, we further compared the reversed edge
proportion (R/P). The DAGs estimated by ARCS(CD) had
a lower R/P on the experimental than the observational
data for all networks. The decrease in R/P with experimen-
tal interventions was remarkable, as Figure 6 shows. This
finding supports the idea that experimental interventions
help correct the reversed edges and distinguish equivalent
DAGs. Note that for the 20 observational datasets generated
from Asia (p = 8, s0 = 8), ARCS(CD) output 16 estimated
DAGs with P = 8 and R = 1, resulting in a very thin
interquantile range in the boxplots of Asia in Figure 6.

0
20

40
60

80

Performance comparison for ARCS(RND) and ARCS(CD)

S
H

D

rDAG3 Asia rDAG5 rDAG4 Alarm Sachs Ins. rDAG6 Barley

ARCS(RND) with a high initial temperature
ARCS(CD) with a low initial temperature

Fig. 7: A comparison between ARCS(RND) with a high initial
temperature and ARCS(CD) on experimental data.

7.2 Random initialization with a high temperature

Recall that we started ARCS(CD) and ARCS(GIES) with
T (0) = 1. To test its global search ability over the permu-
tation space, we may initialize the annealing process with
a random permutation and a high temperature, which we
denote by ARCS(RND). For a random initial permutation,
we do not need to preserve its properties, so we use a high
initial temperature T (0) = 100 to help the algorithm traverse
the search space.

We compared ARCS(RND) and ARCS(CD) on experi-
mental data for 9 networks. We chose ARCS(CD) due to its
superior performance on these networks in the experimental
setting (Table 5). As shown in Figure 7, ARCS(RND) and
ARCS(CD) had comparable performances on all networks.
Both of them learned DAGs with small SHDs. ARCS(RND)
was slightly better on rDAG4 and Ins., and slightly worse
on Alarm and rDAG6. For the other networks, the two meth-
ods were quite comparable, demonstrating the effectiveness
of ARCS(RND).

The networks in this experiment had p ≤ 50. For p = 50,
there are 50! ≈ 3×1064 possible permutations. ARCS(RND)
managed to learn a network structure within 104 iterations,
which is much smaller than p!. However, the performance
of ARCS(RND) was not competitive on large networks. The
reason is that for large p, it takes much more time for the
annealing to thoroughly search the huge permutation space.
Therefore, for large networks, it is better to initialize the
ARCS algorithm with estimates from other local methods
and choose a low temperature. Given a good initial estimate,
ARCS searches over the permutation space and improves
the accuracy of the initial estimate as demonstrated in
Tables 1 and 5. This study suggests that, by searching
over the permutation space under a regularized likelihood
framework, our ARCS algorithm is a promising approach to
the challenging problem of DAG structure learning.

8 DISCUSSION

In this paper, we developed a method to learn Gaussian
BN structures by minimizing the MCP regularized Cholesky
score over topological sorts, through a joint iterative update
on a permutation matrix and a lower triangular matrix.
We search over the permutation space and optimize the
network structure encoded by a lower triangular matrix

17

given a topological sort. This approach relates BN learning
problem to sparse Cholesky factorization, and provides an
alternative formulation for the order-based search. The pro-
posed regularized Cholsky score is shown to be consistent
for estimating topological sorts and DAG structures. Our
method can serve as an improvement of a local search or
a stand-alone method with a best-guess initial permutation.
Although we formulated this order-based search for Gaus-
sian BNs, it can potentially be extended to discrete BNs and
other scoring functions. A main difference in the extension
to discrete data is the proximal gradient step, where we can
borrow the regularized multi-logit model in [48] or develop
a continuous regularizer for multinomial likelihood.

With a proper temperature schedule, simulated anneal-
ing may search over the permutation space effectively, and
there are several interesting aspects to investigate in the an-
nealing process. For instance, various operators of moving
from one permutation to another have been proposed for
greedy order-based search, which could better guide the
annealing process in traversing the search space. The nu-
merical results in this paper demonstrate the advantage and
potential application of local search and global annealing in
learning BNs. Left as future work are theoretical properties
of our method in high-dimensional settings, such as the
consistency of the regularized Cholesky score when p� n.

ACKNOWLEDGMENT

This work was supported by NSF grant IIS-1546098.

REFERENCES

[1] P. Spirtes and C. Glymour, “An Algorithm for Fast
Recovery of Sparse Causal Graphs,” Social Science Com-
puter Review, vol. 9, no. 1, pp. 62–72, 1991.

[2] D. Heckerman, D. Geiger, and D. M. Chickering,
“Learning Bayesian Networks: The Combination of
Knowledge and Statistical Data,” Machine Learning,
vol. 20, pp. 197–243, 1995.

[3] J. Suzuki, “A Construction of Bayesian Networks from
Databases Based on an MDL Scheme,” in Proceedings
of the Ninth International Conference on Uncertainty in
Artificial Intelligence, pp. 266–273, 1993.

[4] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The
Max-Min Hill-Climbing Bayesian Network Structure
Learning Algorithm,” Machine Learning, vol. 65, no. 1,
pp. 31–78, 2006.

[5] J. A. Gámez, J. L. Mateo, and J. M. Puerta, “Learning
Bayesian Networks by Hill Climbing: Efficient Meth-
ods Based on Progressive Restriction of the Neighbor-
hood,” Data Mining and Knowledge Discovery, vol. 22,
pp. 106–148, 2011.

[6] D. M. Chickering, “Optimal Structure Identification
with Greedy Search,” Journal of Machine Learning Re-
search, vol. 3, pp. 507–554, 2002.

[7] P. Larrañaga, M. Poza, Y. Yurramendi, R. H. Murga, and
C. M. H. Kuijpers, “Structure Learning of Bayesian Net-
works by Genetic Algorithms: A Performance Analysis
of Control Parameters,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 18, no. 9, pp. 912–
926, 1996.

[8] M. Teyssier and D. Koller, “Ordering-Based Search: A
Simple and Effective Algorithm for Learning Bayesian
Networks,” in Proceedings of the 21st Conference on Un-
certainty in Artificial Intelligence, pp. 584–590, 2005.

[9] J. I. Alonso-Barba, L. delaOssa, and J. M. Puerta,
“Structural Learning of Bayesian Networks Using Lo-
cal Algorithms Based on the Space of Orderings,” Soft
Computing, vol. 15, no. 10, pp. 1881–1895, 2011.

[10] M. Scanagatta, C. P. de Campos, G. Corani, and M. Zaf-
falon, “Learning Bayesian Networks with Thousands
of Variables,” in Advances in Neural Information Process-
ing Systems, pp. 1864–1872, 2015.

[11] M. Scanagatta, G. Corani, and M. Zaffalon, “Improved
Local Search in Bayesian Networks Structure Learn-
ing,” in Proceedings of Machine Learning Research, vol. 73,
pp. 45–56, 2017.

[12] T. Silander and P. Myllymäki, “A Simple Approach
for Finding the Globally Optimal Bayesian Network
Structure,” in Proceedings of the 22nd Conference Annual
Conference on Uncertainty in Artificial Intelligence, pp.
445–452, 2006.

[13] M. Bartlett and J. Cussens, “Advances in Bayesian Net-
work Learning using Integer Programming,” in Pro-
ceedings of the 29th Conference on Uncertainty in Artificial
Intelligence, pp. 182–191, 2013.

[14] C. Lee and P. van Beek, “Metaheuristics for Score-
and-Search Bayesian Network Structure Learning,” in
Proceedings of the 30th Canadian Conference on Artificial
Intelligence, pp. 129–141, 2017.

[15] M. Champion, V. Picheny, and M. Vignes, “Inferring
Large Graphs Using `1-Penalized Likelihood,” Statistics
and Computing, vol. 28, pp. 905–921, 2018.

[16] N. Friedman and D. Koller, “Being Bayesian about
Network Structure. A Bayesian Approach to Structure
Discovery in Bayesian Networks,” Machine Learning,
vol. 50, pp. 95–125, 2003.

[17] B. Ellis and W. H. Wong, “Learning Causal Bayesian
Network Structures from Experimental Data,” Journal
of the American Statistical Association, vol. 103, no. 482,
pp. 778–789, 2008.

[18] Q. Zhou, “Multi-Domain Sampling with Applications
to Structural Inference of Bayesian Networks,” Journal
of the American Statistical Association, vol. 106, pp. 1317–
1330, 2011.

[19] A. Ghoshal and J. Honorio, “Learning Linear Struc-
tural Equation Models in Polynomial Time and Sam-
ple Complexity,” in Proceedings of Machine Learning
Research, vol. 84, pp. 1466–1475, 2018.

[20] G. F. Cooper and E. Herskovits, “A Bayesian Method
for the Induction of Probabilistic Networks from Data,”
Machine Learning, vol. 9, pp. 309–347, 1992.

[21] D. M. Chickering, “Learning Bayesian Networks is NP-
Complete,” in Learning from Data, ser. Lecture Notes in
Statistics. Springer, 1996.

[22] F. Fu and Q. Zhou, “Learning Sparse Causal Gaussian
Networks with Experimental Intervention: Regulariza-
tion and Coordinate Descent,” Journal of the American
Statistical Association, vol. 108, pp. 288–300, 2013.

[23] B. Aragam and Q. Zhou, “Concave Penalized Estima-
tion of Sparse Gaussian Bayesian Networks,” Journal of
Machine Learning Research, vol. 16, pp. 2273–2328, 2015.

18

[24] X. Zheng, B. Aragam, P. Pavikumar, and E. P. Xing,
“Dags with NO TEARS: Continuous Optimization for
Structure Learning,” in Advances in Neural Information
Processing Systems, 2018.

[25] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani,
“Least Angle Regression,” The Annals of Statistics,
vol. 32, no. 2, pp. 407–499, 2004.

[26] P. Spirtes, C. Glymour, and R. Scheines, Causation, Pre-
diction, and Search. Springer-Verlag, New York, 1993.

[27] L. Vandenberghe and M. S. Andersen, “Chordal
Graphs and Semidefinite Optimization,” Foundations
and Trends in Optimization, vol. 1, no. 4, pp. 241–433,
2014.

[28] C.-H. Zhang, “Nearly Unbiased Variable Selection un-
der Minimax Concave Penalty,” The Annals of Statistics,
vol. 38, no. 2, pp. 894–942, 2010.

[29] Z. Chen and C. Leng, “Local Linear Estimation of Co-
variance Matrices via Cholesky Decomposition,” Statis-
tica Sinica, vol. 15, no. 1249-1263, 2015.

[30] K. Lee and J. Lee, “Estimating Large Precision Matri-
ces via Modified Cholesky Decomposition,” Statistica
Sinica Preprint No: SS-2018-0476, 2018.

[31] S. Touchette, W. Gueaieb, and E. Lanteigne, “Efficient
Cholesky Factor Recovery for Column Reordering in
Simultaneous Localisation and Mapping,” Journal of
Intelligent & Robotic Systems, vol. 84, pp. 859–875, 2016.

[32] N. Verzelen, “Adaptive Estimation of Covariance Ma-
trices via Cholesky Decomposition.” Electronic Journal
of Statistics, vol. 4, pp. 1113–1150, 2010.

[33] Q. Li and X. S. Zhang, “Bayesian Estimation of Large
Precision Matrix Based on Cholesky Decomposition,”
Acta Mathematica Sinica, English Series, vol. 35, pp. 619–
631, 2019.

[34] M. Pourahmadi, “Covariance Estimation: The GLM
and Regularization Perspectives,” Statistical Science,
vol. 26, pp. 369–387, 2011.

[35] J. Pearl, “Causal Diagrams for Empirical Research,”
Biometrika, vol. 82, pp. 669–710, 1995.

[36] J. Robins, “A New Approach to Causal Inference in
Mortality Studies with a Sustained Exposure Period -
Application to Control of the Healthy Worker Survivor
Effect,” Mathematical Modelling, vol. 7, pp. 1393–1512,
1986.

[37] J. Fan and R. Li, “Variable selection via nonconcave
penalized likelihood and its oracle properties,” Journal
of the American statistical Association, vol. 96, no. 456, pp.
1348–1360, 2001.

[38] N. Parikh and S. Boyd, “Proximal Algorithms,” Foun-
dations and Trends in Optimization, vol. 1, no. 3, pp. 123–
231, 2013.

[39] G. Schwarz, “Estimating the Dimension of a Model,”
The Annals of Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[40] M. Scutari. Bayesian network repository. Accessed:
2019-01-21. [Online]. Available: http://www.bnlearn.
com/bnrepository/

[41] B. Aragam, J. Gu, and Q. Zhou, “Learning Large-Scaled
Bayesian Networks with the sparsebn Package,” Jour-
nal of Statistical Software, vol. 91, no. 11, pp. 1–38, 2019.

[42] J. D. Ramsey, “Scaling up Greedy Causal Search for
Continuous Variables,” arXiv:1507.07749, 2015.

[43] M. Scutari, “Learning Bayesian Networks with the bn-

learn R Package,” Journal of Statistical Software, vol. 35,
no. 3, pp. 1–22, 2010.

[44] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse
Inverse Covariance Estimation with the Graphical
Lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

[45] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An Approx-
imate Minimum Degree Ordering Algorithm,” SIAM
Journal on Matrix Analysis and Application, vol. 17, no. 4,
pp. 886–905, Dec. 1996.

[46] J. Cussens, M. J’́arvisalo, J. H. Korhonen, and
M. Bartlett, “Bayesian Network Structure Learning
with Integer Programming: Polytopes, Facets and
Complexity,” Journal of Artificial Intelligence Research,
vol. 58, pp. 185–229, 2017.

[47] A. Hauser and P. Bühlmann, “Characterization and
Greedy Learning of Interventional Markov Equiva-
lence Classes of Directed Acyclic Graphs,” The Journal of
Machine Learning Research, vol. 13, pp. 2409–2464, 2012.

[48] J. Gu, F. Fu, and Q. Zhou, “Penalized Estimation of
Directed Acyclic Graphs from Discrete Data,” Statistics
and Computing, vol. 29, pp. 161–176, 2019.

Qiaoling Ye received her B.S. degree from
UCLA Department of Mathematics in 2014. She
has been working on causal graphical models for
her Ph.D. in Statistics at UCLA since 2015.

Arash A. Amini received his Ph.D. in electrical
engineering from University of California, Berke-
ley, in 2011. He is currently an Assistant Profes-
sor of Statistics at UCLA. His research interests
lie in high-dimensional statistics, functional and
nonparametric estimation, network data analy-
sis, optimization and graphical models.

Qing Zhou received his Ph.D. in Statistics from
Harvard University in 2006. He is currently Pro-
fessor of Statistics at UCLA. His research in-
terests include causal inference, graphical mod-
els, machine learning, high-dimensional statis-
tics, Monte Carlo methods, and bioinformatics.
He received an NSF Career Award in 2011.

http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/

	Introduction
	Background
	Gaussian Bayesian networks
	Acyclicity and permutations

	Regularized likelihood score
	Cholesky loss
	Sparse regularization
	Likelihood for experimental data

	Consistency
	Score-identifiability
	Consistent structure learning
	Proof sketch

	Optimization
	Searching over permutations
	Computing RC score
	Structure refinement after annealing
	Selection of the tuning parameters

	Results on observational data
	Methods and data
	Accuracy metrics
	Structure learning accuracy
	Test data likelihood comparison
	Precision matrix estimation
	Effectiveness of refinement
	Effectiveness of BIC selection
	Empirical loss evaluation

	Results on experimental data
	Comparison on experimental data
	Random initialization with a high temperature

	Discussion
	Biographies
	Qiaoling Ye
	Arash A. Amini
	Qing Zhou

