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Multi-Domain Sampling With Applications to
Structural Inference of Bayesian Networks

Qing ZHOU

When a posterior distribution has multiple modes, unconditional expectations, such as the posterior mean, may not offer informative sum-
maries of the distribution. Motivated by this problem, we propose to decompose the sample space of a multimodal distribution into domains
of attraction of local modes. Domain-based representations are defined to summarize the probability masses of and conditional expecta-
tions on domains of attraction, which are much more informative than the mean and other unconditional expectations. A computational
method, the multi-domain sampler, is developed to construct domain-based representations for an arbitrary multimodal distribution. The
multi-domain sampler is applied to structural learning of protein-signaling networks from high-throughput single-cell data, where a signal-
ing network is modeled as a causal Bayesian network. Not only does our method provide a detailed landscape of the posterior distribution
but also improves the accuracy and the predictive power of estimated networks. This article has supplementary material online.
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1. INTRODUCTION

In Bayesian inference the information on an unknown pa-
rameter θ given an observed dataset yobs is contained in the
posterior distribution p(θ | yobs). When a posterior distribution
does not belong to a well-characterized family of distributions,
Markov chain Monte Carlo (MCMC) is a standard computa-
tional approach to Bayesian inference via sampling from the
posterior distribution. Typical examples of MCMC include the
Metropolis–Hastings (MH) algorithm (Metropolis et al. 1953;
Hastings 1970) and the Gibbs sampler (Geman and Geman
1984; Tanner and Wong 1987; Gelfand and Smith 1990). Thor-
ough reviews of recent developments on Monte Carlo methods
and their applications in Bayesian computation can be found in
the work of Chen, Shao, and Ibrahim (2001) and Liu (2008).
The posterior mean E(θ | yobs) and other expectations are usu-
ally approximated from a Monte Carlo sample to summarize
the posterior distribution. However, these unconditional expec-
tations may not offer good summaries of the information for
Bayesian inference when a posterior distribution has multiple
local modes. One can easily construct a multimodal posterior
distribution of which the mean is located in a low-density re-
gion and thus using it as an estimator for θ lacks a conventional
interpretation. To extract more information contained in a mul-
timodal posterior distribution, it is desired to identify all major
modes and calculate various statistics in appropriate neighbor-
hoods of these modes.

To achieve these tasks, we propose to partition the sample
space of θ into a collection of domains such that the poste-
rior distribution restricted to each domain is unimodal. The
most parsimonious partition that minimizes the number of do-
mains is to use the domains of attraction (to be defined rig-
orously later) of the local modes. Take the trimodal distribu-
tion p(θ) in Figure 1 as an illustration. The space is parti-
tioned into three domains, denoted by �1,�2, and �3: Each
domain contains exactly one local mode; if we move any θ ∈ �k
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(k = 1,2,3) along the trajectory that always follows the gradi-
ent direction of p(θ), it will eventually reach the mode in the
domain �k. We may then calculate various conditional expec-
tations on these domains, E[h(θ) | θ ∈ �k] (k = 1,2,3), for dif-
ferent functions h. Together with the probability masses of the
domains, P(θ ∈ �k), they provide more informative summaries
of the distribution p(θ) than unconditional expectations. Such
a summary is called a domain-based representation (DR) for
p(θ).

Although desired, construction of DRs for an arbitrary dis-
tribution is very challenging in practice. Sufficient Monte Carlo
samples from domains of all local modes are necessary for es-
timating DRs, but efficient sampling from a multimodal distri-
bution has always been a hard problem. In this article, we de-
velop a computational method that is able to construct domain-
based representations for an arbitrary multimodal distribution.
We partition the sample space into domains of attraction and
utilize an iterative weighting scheme aiming at sampling from
each domain with an equal frequency. The weighting scheme
was proposed by Wang and Landau (2001), and further devel-
oped and generalized by Liang (2005), Liang, Liu, and Carroll
(2007), and Atchadé and Liu (2010), among others. However,
a direct application of these existing methods cannot provide
accurate estimation of DRs, due to at least two reasons. First,
sample space partition used in these methods is usually pre-
determined according to a set of selected density levels. But
partitioning the space into domains of attraction, as employed
in our method, cannot be completed beforehand because it is
a nontrivial job to detect all local modes and their domains in
real applications. Second, the above methods mostly rely on
simple local moves and lack a coherent global move to jump
between different local modes. To obtain accurate estimation
of DRs, we propose a dynamic scheme to partition the sample
space into domains of attraction and devise a global move that
utilizes estimated DRs along sampling iterations to enable fast
transitions between multiple domains. Since the main feature of
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Figure 1. Contour plot of a two-dimensional density with three
modes labeled A, B, and C. The numbers report log densities of con-
tours and the dashed curves mark the boundaries between domains of
attraction.

our method is to sample from multiple domains and construct
DRs, we call it the multi-domain (MD) sampler.

The MD sampler can be applied to a wide range of Bayesian
inference problems and it is particularly powerful in tackling
problems with complicated posterior distributions. Although
there are many such applications in different fields, this arti-
cle mainly concerns structural learning of causal Bayesian net-
works from experimental data. Learning network structure via
Monte Carlo sampling is very challenging as the multimodality
of the posterior distribution is extremely severe (Friedman and
Koller 2003; Ellis and Wong 2008; Liang and Zhang 2009). In
this problem, a domain of attraction is defined by a set of net-
work structures, each represented by a directed acyclic graph
(DAG). In a sense, the goal of the MD sampler is to construct
a detailed landscape of the posterior distribution, which can
provide new insights into the structural learning problem. Ap-
plication of our method to a scientific problem is illustrated
by a study on constructing protein-signaling networks from
single-cell experimental data. A living cell is highly respon-
sive to its environment due to the existence of widespread and
diverse signal transduction pathways. These pathways consti-
tute a complex signaling network as cross-talks usually exist
between them. Knowledge of the structure of this network is
critical to the understanding of various cellular behaviors and
human diseases. Recent advances in biotechnology allow the
biologist to measure the states of a collection of molecules on
a cell-by-cell basis. Such large-scale data contain rich informa-
tion for statistical inference of signaling networks, but powerful
computational methods are needed given the complexity in the
likelihood function and the posterior distribution. With the MD
sampler, not only can we build a signaling network from the
posterior mean graph, but also we may discover new pathway
connections revealed by different domains of the posterior dis-
tribution, which are not accessible by other approaches.

The remaining part of this article is organized as follows.
Section 2 defines the domain of attraction and domain-based
representation. In Section 3 we develop the MD sampler and
its estimation of DRs, with convergence and ergodicity of the
sampler established in the Appendix. The method is tested in

Section 4 on an example in Euclidean space and implemented
in Section 5 for Bayesian inference of network structure with a
simulation study. Section 6 is the main application to the con-
struction of signaling networks in human T cells. The article
concludes with a discussion on related and future works.

2. DOMAIN–BASED REPRESENTATION

Let p(x), x ∈ X ⊆ R
m, be the density of the target distribu-

tion. Suppose that p(x) is differentiable and denote by ∇p(x)

the gradient of p at x. Define a differential equation

dx(t)

dt
= ∇p(x(t)) (1)

and write a solution path of this equation as x(t), t ∈ [0,∞),
where x(0) is a chosen initial point. Under some mild regular-
ity conditions, x(∞) converges to a local mode of p(x), which
is the basic intuition behind the gradient ascent algorithm to
maximize p(x). Denote by {ν1, . . . ,νK} all the local modes, in-
cluding the global mode, of p(x). For x ∈ X , let x(0) = x and
define the domain partition index by

I(x) =
{

k, if x(∞) = νk, for k = 1, . . . ,K
0, otherwise.

(2)

It maps x to the index of the local mode to which the solution
path starting at x converges.

Definition 1. The domain of attraction of νk is Dk = {x ∈
X : I(x) = k} for k = 1, . . . ,K. For simplicity we may call Dk

an attraction domain or a domain of p.

If the stationary points of p(x) have zero probability mass,
then {Dk : k = 1, . . . ,K} form a partition of the sample space

X except for a set of zero probability mass. This is the default
setting for this article.

Let h(x) be a p-integrable function of x. Write the probability
mass of Dk and the conditional expectation of h(X) given X ∈
Dk as

λk = P(X ∈ Dk) =
∫

Dk

p(x)dx, (3)

μh,k = E[h(X) | X ∈ Dk] = 1

λk

∫
Dk

h(x)p(x)dx, (4)

respectively, for k = 1, . . . ,K.

Definition 2. The domain-based representation of h with
respect to the distribution p is a 2 × K array, DRp(h) =
{(μh,k, λk) : k = 1, . . . ,K}.

The DR is equivalent to the probability mass function of
E[h(X) | I(X)] that assigns probability λk to μh,k for k =
1, . . . ,K. It provides the expectation E[h(X)] = ∑

k λkμh,k

and the decomposed contributions from the attraction do-
mains of p(x). Such a representation gives an informative low-
dimensional summary of a multimodal distribution. For a com-
plex distribution with many local modes, however, we cannot
afford to estimate (μh,k, λk) for every domain when K is too
large and are less interested in domains of negligible proba-
bility masses (λk very close to zero). Due to these reasons we
define domain-based representations with respect to a set of
local modes {νk : k = 1, . . . ,M}. Index all the local modes as
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ν1, . . . ,νM, . . . ,νK (M ≤ K). Define the domain partition in-
dex with respect to {νk}M

k=1 by IM(x) = I(x) if 1 ≤ I(x) ≤ M
and IM(x) = 0 otherwise. Then the sample space X can be
partitioned into Dk = {x ∈ X : IM(x) = k} for k = 0, . . . ,M,
where Dk is the domain of νk (k ≥ 1) and D0 = X − ⋃M

k=1 Dk.
The DR of h with respect to {νk}M

k=1 is defined by the array
{(μh,k, λk) : k = 0, . . . ,M}, where λ0 and μh,0 are defined for
D0 similarly as in Equations (3) and (4), respectively. Note
that one can still obtain E[h(X)] = ∑M

k=0 λkμh,k after merging
DM+1, . . . ,DK into D0.

There is a geometric interpretation for the attraction domains
of a posterior distribution. Suppose that Y = (Y1, . . . ,Yn) is a
sample from an unknown distribution ψ(y). We assume a para-
metric family fθ = f (· | θ), θ ∈ �, as the model for Y and put a
prior π(θ) on the unknown parameter θ . The posterior distribu-
tion of θ is given by

p(θ | Y) ∝ π(θ)

n∏
i=1

f (Yi | θ) ≈ enE[log f (Y1|θ)]

when the sample size n is large, where E[log f (Y1 | θ)] =∫
log[f (y | θ)]ψ(y)dy. Denote the Kullback–Leibler (KL) di-

vergence between ψ and fθ by

dKL(ψ‖fθ ) =
∫

log

[
ψ(y)

f (y | θ)

]
ψ(y)dy.

Then, p(θ | Y) ∝ exp[−ndKL(ψ‖fθ )] when n is large. In the
space of density functions, we can regard dKL(ψ‖fθ ) as the “dis-
tance” to the point ψ from a point in the manifold M = {fθ : θ ∈
�}. Note that ψ is not necessarily in M if our model assump-
tion on Y is incorrect. Then p(θ | Y) may be interpreted as a
Boltzmann distribution on the manifold M under a potential
field ndKL(ψ‖fθ ). This potential pushes every fθ , indexed by θ ,
toward ψ , and the collection of θ which will be driven to an
identical stationary point in M forms an attraction domain of
p(θ | Y).

3. THE MULTI–DOMAIN SAMPLER

To develop an algorithm that is able to construct domain-
based representations with respect to the target distribution p,
it is necessary to identify the attraction domain of any x ∈ X .
When p(x) is differentiable, this can be achieved by application
of the gradient ascent (GA) algorithm that finds local modes of
p(x), or log p(x) for computational convenience. Generalization
to the space of network structures will be discussed later.

A naive two-step approach to the construction of DRs is quite
obvious. We may first apply a Monte Carlo algorithm to simu-
late a sample {Xt}n

t=1 from p(x) or from a diffuse version of
p(x), for example, [p(x)]1/τ for τ > 1 as used in parallel tem-
pering (Geyer 1991). Then, for every t we determine I(Xt) by
a GA search initiated at Xt to find to which domain it belongs.
This approach partitions the sample into attraction domains so
that we can estimate the probability masses and conditional ex-
pectations for all identified domains. Although simple to im-
plement, this two-step approach has a few drawbacks in terms
of efficiency. Without a careful and specific design the Monte
Carlo algorithm, even targeting at a diffuse version of p(x), may
not generate enough samples from all major domains or may
completely miss some modes. As a result, estimation on some

attraction domains may be inaccurate or unavailable. In addi-
tion, this approach does not utilize the information on the tar-
get distribution provided by the constructed DRs. To overcome
these drawbacks, we develop the MD sampler that may achieve
simultaneously an efficient simulation from a multimodal dis-
tribution and an accurate construction of domain-based repre-
sentations, with comparable computational complexity as the
naive two-step approach.

3.1 The Main Algorithm

We wish to sample sufficiently from the majority of attrac-
tion domains. However, the density at the boundary between
two neighboring domains is often exponentially low (e.g., Fig-
ure 1), which makes it difficult for an MH algorithm or a Gibbs
sampler to jump across multiple domains. Thus, we need to al-
low the sampler to generate enough samples from such low-
density regions that connect different domains. These consider-
ations motivate the following double-partitioning design in the
MD sampler.

Suppose that we are given a set of local modes of p(x),
{ν1, . . . ,νM}, which may include the global mode. Given ∞ =
H0 > H1 > · · · > HL = −∞, define the density partition index
J(x) = j if log p(x) ∈ [Hj,Hj−1) for j = 1, . . . ,L. We partition
the space X into (M + 1) × L subregions,

Dkj = {x ∈ X : IM(x) = k, J(x) = j},
k = 0, . . . ,M, j = 1, . . . ,L, (5)

where IM(x) is the domain partition index with respect to
{νk}M

k=1. Then, the attraction domain of the local mode νk is
Dk = ⋃

j Dkj (1 ≤ k ≤ M). Note that some Dkj may be empty;
if log p(νk) < Hi, then all Dkj for j ≤ i are empty. In what fol-
lows, we only consider nonempty subregions. For a given ma-
trix W = (wkj)(M+1)×L, define a working density

p(x;W) ∝
M∑

k=0

L∑
j=1

p(x)1(x ∈ Dkj)

exp(wkj)
, (6)

where 1(·) is an indicator function. Let W∗ = (w∗
kj) such that

exp(w∗
kj) = ∫

Dkj
p(x)dx. Then, the probability masses of Dkj are

identical under p(x;W∗). Sampling from p(x;W∗) has two im-
mediate implications. First, the sample sizes on the attraction
domains, {Dk}M

k=1, will be comparable, and thus, domain-based
representations can be constructed with a high accuracy. Note
that commonly used MCMC strategies for multimodal distribu-
tions, such as tempering, cannot generate samples of compara-
ble sizes from different domains. Second, the sampler will stay
in low-density regions (e.g., DkL) for a substantial fraction of
time, which makes it practically possible to jump between do-
mains. Conversely, domain-based representations may be uti-
lized to design efficient local and global moves for sampling
from p(x;W∗). We may construct online estimate of the co-
variance matrix on the domain of a local mode, which can be
used for tuning the step size of a local move in this domain. For
a multimodal distribution, tuning step size for each domain is
more useful than tuning the overall step size (Haario, Saksman,
and Tamminen 2001). Once we have identified sufficient local
modes and estimated covariances of their respective domains,
we can use them to design global moves that may jump from
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one domain to another. As one can see, these proposals can be
implemented only if we have partitioned samples into attraction
domains.

For x,y ∈ X , let q(x,y) be a proposal from x to y and
r(x; θ,V) a distribution with parameters θ and V ∈ V . We first
develop the main algorithm of the MD sampler, assuming that
the density ladder {Hj} is fixed and M local modes {νk}M

k=1 have
been identified. Dynamic update of these parameters will be
discussed in Section 3.2 as the burn-in algorithm. Let gk(x) be
a map from X to V for k = 1, . . . ,M.

Algorithm 1 (The main algorithm). Initialize W1 = (w1
kj),

parameters V1
k ∈ V (k = 1, . . . ,M), pmx ∈ [0,1), and X1 ∈ X .

Set γ1 ≤ 1. For t = 1, . . . ,n:

1. Draw Y from q(Xt,y) with probability (1 − pmx) or from
the mixture distribution 1

M

∑M
k=1 r(y; νk,Vt

k) with proba-
bility pmx.

2. Determine the density partition index J(Y) and perform a
GA search initiated at Y to determine the domain partition
index IM(Y).

3. Accept or reject Y according to the MH ratio targeting at
p(x;Wt) to obtain Xt+1.

4. For k = 0, . . . ,M and j = 1, . . . ,L update

wt+1
kj = wt

kj + γt1
(
IM(Xt+1) = k, J(Xt+1) = j

)
, (7)

for k = 1, . . . ,M update

Vt+1
k = Vt

k + γt

2
[gk(Xt+1) − Vt

k]1(IM(Xt+1) = k), (8)

and determine γt+1.

We may regard wt
kj as a weight for the subregion Dkj. After

each visit to Dkj, the weight wt+1
kj increases by γt unit (7), which

decreases the probability mass of Dkj under the working density
p(x;Wt+1) (6). Such a weighting scheme aims to visit every Dkj

uniformly. There are two typical choices of {γt}. The first choice
follows the standard design in stochastic approximation which
employs a predetermined sequence such that

∑∞
t=1 γt = ∞ and∑∞

t=1 γ
ζ
t < ∞ for ζ ∈ (1,2) (Andrieu, Moulines, and Priouret

2005; Andrieu and Moulines 2006; Liang, Liu, and Carroll
2007). The second design, originally proposed by Wang and
Landau (2001), adjusts γt in an adaptive way. However, there
is difficulty in establishing its convergence (Atchadé and Liu
2010), and thus we adopt a modified Wang–Landau (MWL)
design to update {γt} in the MD sampler. Initialize c1

kj = 0 for
all k and j in Algorithm 1. The MWL update at iteration t
(t = 1, . . . ,n) is given below.

Routine 1 (MWL update). If γt < εγ , set γt+1 = γt(γt +
1)−1; otherwise:

• Set ct+1
kj = ct

kj + 1(Xt+1 ∈ Dkj) for all k, j and calculate


ct+1
max = maxk,j |ct+1

kj − c̄t+1|, where c̄t+1 is the average of

all ct+1
kj .

• If 
ct+1
max ≥ ηc̄t+1, set γt+1 = γt; otherwise, set γt+1 = ργt

and ct+1
kj = 0 for all k, j.

That is, if γt ≥ εγ we decrease γt (ρ < 1) only when the sam-
pler has visited every subregion Dkj with a roughly equal fre-
quency since our last modification of γt. Let tc = min{t :γt <

εγ }. For t > tc the update becomes deterministic with γt =
1/(t + ξ), where ξ = γ −1

tc − tc. The default setting for all
the results in this article is given by ρ = 0.5, η = 0.25, and
εγ = 10−4.

Under some regularity conditions and the MWL update of
{γt},

exp(wn
kj)

a.s.−→
∫

Dkj

p(x)dx = exp(w∗
kj), (9)

after being normalized to sum up to one,

Vn
k

a.s.−→
∫

Dk
gk(x)p(x;W∗)dx∫
Dk

p(x;W∗)dx

= V∗

k , (10)

1

n

n∑
t=1

h(Xt)
a.s.−→

∫
X

h(x)p(x;W∗)dx, (11)

as n → ∞. See Theorem A.1 in the Appendix for more details.
If X ⊆ R

m, we often choose gk(x) = (x − νk)(x − νk)
T so that

V∗
k is close to the covariance matrix of the conditional distri-

bution [X | X ∈ Dk], where X ∼ p(x;W∗). We use the mode
νk instead of the mean because the mode can be obtained accu-
rately via a GA algorithm. The use of γt/2(< 1) in Equation (8)
ensures that Vt+1

k is positive definite if Vt
k is positive definite.

There are two types of proposals in step 1 of the algorithm,
a local proposal q(Xt,y) and a mixture distribution proposal.
One advantage of partitioning samples into attraction domains
is embodied in the mixture distribution proposal, in which we
randomly draw a domain partition index k ∈ {1, . . . ,M} and
then propose a sample Y from r(y; νk,Vt

k). Equal mixture pro-
portions (1/M) are used because a uniform sampling across
domains is preferred. The default choice of the distribution
r(y; νk,Vt

k) in R
m is N (νk,Vt

k) for k = 1, . . . ,M, which gives
a mixture normal proposal that matches the mode and the co-
variance on each domain of the working target p(x;Wt). This
proposal uses a mixture distribution to approximate the multi-
modal target. It can generate efficient global jumps from one
domain to another if p(x;Wt) on the domain Dk can be well
approximated by r(x; νk,Vt

k) with the identified mode νk and
the estimated Vt

k. For simplicity we call this proposal the mixed
jump. The typical design for q(Xt,y) in R

m is to proposal
Y ∼ N (Xt, σ 2I), where σ 2 is a scalar and I is the identity ma-
trix. However, when the covariances are very different between
domains, using a single local proposal may cause high autocor-
relation, since the step size might be either too big for domains
with small covariances or too small for those with large covari-
ances, or both. In this case, we may incorporate an adaptive
local proposal, Y ∼ N (Xt, σ 2Vt

IM(Xt)
), in addition to q(Xt,y),

such that the learned covariance structure of a domain is uti-
lized to guide the local proposal. This shows another advantage
of the domain-partitioning design.

Remark 1. We summarize the unique features of the main al-
gorithm. First, domain partitioning is incorporated in the frame-
work of the Wang–Landau (WL) algorithm. This allows a more
uniform sampling from different domains, which facilitates
construction of DRs. At each iteration, a GA search is employed
to determine IM(Y) and thus the computational complexity of
this algorithm is comparable to the naive two-step approach.
Second, an adaptive global move, the mixed jump, is proposed



Zhou: Multi-Domain Sampler 1321

given DRs constructed along the iteration, which utilizes identi-
fied modes and learned covariances to achieve between-domain
moves.

Remark 2. Verification of the regularity conditions for con-
vergence of the algorithm (see the Appendix) is recommended
before application. Furthermore, we suggest a few convergence
diagnostics that can be conveniently used in practice. First, γn

should be small enough at the final iteration and the frequency
of visiting different Dkj should be roughly identical. Second,
Wn and Vn

k should have converged with an acceptable accuracy.
Violations of these two criteria indicate that more iterations may
be necessary. Third, the adaptive parameters used in the mixed
jump (Vt

k) should always stay in a reasonable range. For exam-
ple, if Vt

k is a covariance matrix, one may check whether its
eigenvalues are close to zero or unreasonably large, which may
indicate divergence of the current run. If the last criterion is not
satisfied, it is suggested to reinitialize the MD sampler with a
smaller γ1.

3.2 The Burn-in Algorithm

In practical applications of the MD sampler, the density lad-
der {Hj} and the local modes {νk} are updated dynamically in a
burn-in period before the main algorithm (Algorithm 1). The
dynamic updating schemes are crucial steps for constructing
domain-based representations in real applications, as one can-
not partition the sample space into domains of attraction be-
forehand. We set H1, . . . ,HL−1 as an evenly spaced sequence
so that 
H = Hj − Hj+1 is a constant for j = 1, . . . ,L − 2. Let
{Ht

j} be the density ladder and �t = {νt
k : k = 1, . . . ,Mt} be the

set of Mt identified modes at iteration t. Let K∗ be the maxi-
mum number of modes to be recorded and denote by ν(x) the
mode of the domain that x belongs to. Let 0 be the zero ma-
trix with dimension determined by the context. The following
routine is used to update �t when a new sample Y is proposed.

Routine 2. Let st = arg min1≤k≤Mt p(νt
k).

• If ν(Y) /∈ �t and Mt < K∗, set �t+1 = �t ∪{ν(Y)}, Mt+1 =
Mt + 1, and initialize wt

Mt+1j
= 0 for all j;

• if ν(Y) /∈ �t, Mt = K∗, and p(ν(Y)) > p(νt
st), set νt+1

st =
ν(Y), νt+1

k = νt
k for k �= st, Mt+1 = Mt, and assign wt

0j ⇐
wt

0j + wt
stj and wt

stj ⇐ 0 for all j.

• otherwise set �t+1 = �t and Mt+1 = Mt.

According to this routine, we record at most the K∗ highest
modes identified during the burn-in period. If there are more
than K∗ modes, Algorithm 1 will construct DRs with respect
to the recorded modes. The weights (wt

kj) are updated when a
new mode replaces an old one in �t, for which the assignment
operator “⇐” is used to distinguish from equality.

The density ladder {Ht
j} is adjusted such that Ht

1, the lower
bound of the highest density partition interval, is close to log u∗,
where u∗ is the density of the highest mode identified so far. If
log u∗ > Ht

1 + 
H, we move upward the density ladder by 
H
unit and update the weights (wt

kj) accordingly, with details pro-
vided in Routine 3. This strategy helps the sampler to explore
the high-density part, which is important for statistical estima-
tion and finding the global mode.

Routine 3. Given �t+1, find ut+1 = max{p(νt+1
k ) : k = 1,

. . . ,Mt+1}.
• If log ut+1 > Ht

1 + 
H, set Ht+1
j = Ht

j + 
H for j =
1, . . . ,L−1; for k = 0, . . . ,Mt+1, assign wt

kL ⇐ wt
k(L−1) +

wt
kL, wt

kj ⇐ wt
k(j−1) for j = L − 1, . . . ,2, and wt

k1 ⇐ 0;

• otherwise set {Ht+1
j } = {Ht

j}.
Algorithm 2 (The burn-in algorithm). Input L,
H, and K∗.

Set γ0 = 1. Initialize X1 ∈ X , �1 = {ν(X1)}, M1 = 1, W1 =
(w1

kj)2×L = 0, and V1
1. Set H1

1 = log p(ν(X1)) and H1
j = H1

j−1 −

H for j = 2, . . . ,L − 1. For t = 1, . . . ,B:

1. Draw Y ∼ q(Xt,y) and find ν(Y) by a GA search.
2. Given ν(Y), update �t+1 and Mt+1 by Routine 2; if νt+1

� =
ν(Y) is a new mode in �t+1, initialize Vt

�. Given �t+1,
update {Ht+1

j } by Routine 3.

3. Given �t+1 and {Ht+1
j }, accept or reject Y with the MH

ratio targeting at p(x;Wt) to obtain Xt+1.
4. Execute step 4 of Algorithm 1 with γt = γ0.

Remark 3. Note that γt = 1 for every iteration in the burn-in
algorithm. This pushes the sampler to explore different regions
in the sample space so that more local modes can be identified.
In this case, the weight wt

kj records the number of visits to Dkj

before the tth iteration, which is the reason for our updating
schemes on {wt

kj} in Routine 2 when a mode is updated in �t+1

and in Routine 3 when the density ladder changes.

Remark 4. The burn-in algorithm can be used as an opti-
mization method that searches for up to K∗ local modes of
the highest densities. As demonstrated in the Bayesian network
applications, this algorithm is very powerful in finding global
modes.

The MD sampler requires only a few input parameters,
L,
H,pmx, and K∗. A practical rule is to choose L and 
H
such that the range of the density partition intervals, L
H in
log scale, is wide enough to cover important regions. In this ar-
ticle, we set L
H around 20 for the low-dimensional test exam-
ple in Section 4 and around 200 for learning Bayesian networks
in Sections 5 and 6. By default the probability of proposing a
mixed jump pmx = 0.1. The effect of keeping only K∗ modes
will be studied later with the examples.

3.3 Statistical Estimation

The domain-based representation of h is constructed by es-
timating λk (3) and μh,k (4) for k = 0, . . . ,M with post burn-
in samples, denoted by {Xt+1}n

t=1. Let kt = IM(Xt+1), jt =
J(Xt+1), at = ∑

k,j exp(wt
kj), and exp(w̃t

kj) = exp(wt
kj)/at such

that
∑

k,j exp(w̃t
kj) = 1. The key identity for our estimation is∑∞

t=1 h(Xt+1) exp(w̃t
ktjt)∑∞

t=1 exp(w̃t
ktjt)

a.s.−→
∫

X
h(x)p(x)dx, (12)

which follows from (11) as exp(w̃t
ktjt)

a.s.−→ exp(w∗
ktjt) ∝

p(Xt+1)/p(Xt+1;W∗) asymptotically (9). See the articles by
Liang (2009) and Atchadé and Liu (2010) for similar results.
However, W̃t = (w̃t

kj) may be far from W∗ even for post burn-
in iterations. Thus, it is desired to use a weighted version of (12)
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so that Xt+1 will carry a higher weight if W̃t is closer to W∗.
Since decrease in γt indicates convergence of the MD sampler
and at+1/at

a.s.−→ ecγt for c ∈ (0,1) (supplementary document),
a reasonable choice is to weight Xt+1 by at so that unnormal-
ized (wt

kj) will be used in (12). Consequently, DRp(h) is con-
structed with

λ̂k =
∑n

t=1 1(Xt+1 ∈ Dk) exp(wt
ktjt)∑n

t=1 exp(wt
ktjt)

,

μ̂h,k =
∑n

t=1 h(Xt+1)1(Xt+1 ∈ Dk) exp(wt
ktjt)∑n

t=1 1(Xt+1 ∈ Dk) exp(wt
ktjt)

,

for k = 0, . . . ,M. Then, μh = E[h(X)] is estimated by μ̂h =∑
k λ̂kμ̂h,k. Please see supplementary document for more dis-

cussion on this weighted estimation.
In the next three sections we demonstrate the effectiveness of

the MD sampler in statistical estimation, especially estimation
of DRs, compared to the naive two-step approach. For all exam-
ples, we employ the WL algorithm with the MWL update (Rou-
tine 1) as the Monte Carlo method in the two-step approach. To
minimize hidden artifacts in a comparison due to coding differ-
ences, we implement the WL algorithm with the same burn-in
and main algorithms of the MD sampler. In the main algorithm
(Algorithm 1) we replace the updating scheme in Equation (7)
with

wt+1
kj = wt

kj + γt1(J(Xt+1) = j) (13)

for k = 0, . . . ,M and j = 1, . . . ,L and modify the burn-in al-
gorithm accordingly, so that wt

0j = · · · = wt
Mj


= wt
j for every

iteration. Consequently, the working density is effectively

p(x;Wt) ∝
L∑

j=1

p(x)1(J(x) = j)

exp(wt
j)

(14)

as used in the WL algorithm, which is a diffuse version of p(x)

such that each density partition interval will be equally sampled
after convergence. Note that the same GA search is applied at
each iteration to partition samples into attraction domains for
estimating DRs. Our comparison aims to highlight the effect
of domain partitioning and the mixed jump in the MD sampler
which are the key differences from the WL algorithm.

4. A TEST EXAMPLE

We test the MD sampler with an example in R
m. For this ex-

ample, domain-based representations can be obtained via one-
dimensional numerical integration with a high accuracy, which
provides the basis to evaluate our estimation. We choose K∗ =

100, which is greater than the total number of local modes, to
construct complete DRs.

Let x = (x1, . . . , xm). The Rastrigin function (Gordon and
Whitley 1993) is defined as

R(x) =
m∑

i=1

x2
i + A

[
m −

m∑
i=1

cos(πxi)

]
, (15)

where A is a positive constant. We set A = 2 and m = 4 in (15)
to obtain our target distribution p(x) ∝ exp[−R(x)], which has
34 = 81 local modes formed by all the elements of the prod-
uct set {−1.805,0,1.805}4. These local modes have five dis-
tinct log density values, 0, −3.62, −7.24, −10.87, and −14.49,
dependent on the combinations of their coordinates. They are
grouped accordingly into five layers so that the number of ze-
ros and the number of ±1.805 in the coordinates of a local
mode at the kth layer are (5 − k) and (k − 1), respectively,
for k = 1, . . . ,5. The attraction domains of local modes at the
same layer have identical probability masses and identical con-
ditional means up to a permutation and change of signs of the
coordinates.

We applied the MD sampler 100 times independently, each
run with L = 10 density partition intervals, 
H = 2, B =
50K burn-in iterations, and a total of 5 million (M) itera-
tions (including the burn-in iterations). The local proposal
was simply N (Xt, I). The average acceptance rate was 0.26
for the local move and was 0.56 for the mixed jump. Let
X = (X1, . . . ,X4) and S = ∑

i Xi. We estimated E(X), E(e2S),
E(

∏
i Xi), E(

∑
i X5

i ), and E(
∑

i X6
i ), all via domain-based rep-

resentations. Since the target density of this example is a prod-
uct of one-dimensional marginal densities, the above expec-
tations can be calculated accurately through one-dimensional
numerical integration. We compared our estimates from MD
sampling with the results from numerical integration by com-
puting mean squared errors (MSEs). We report the average
MSE of the estimated log probability masses (logλk) and the
average MSE of the estimated conditional means (μX,k) over
all the local modes at the same layer (k = 1, . . . ,5), and for
other functions we only report the MSEs of the estimated ex-
pectations to save space (Table 1).

As a comparison, we also applied the WL algorithm (as in
the naive two-step approach) to this problem with the same pa-
rameter setting. The ratio (RMSE) of the MSE of the WL algo-
rithm over that of the MD sampler for each estimate is given in
Table 1. The WL algorithm showed larger MSEs than the MD
sampler for almost all the estimates, especially for those on do-
mains at layers 3, 4, and 5. For example, the MD sampler was at

Table 1. MSE comparison on the Rastrigin function

MSE
MD

RMSE
MSE
MD

RMSE
MSE
MD

RMSE

WL MD0 WL MD0 WL MD0

logλ1 1.1e−5 1.93 2.24 μX,1 2.3e−4 0.83 2.87 X 1.7e−4 1.22 3.19
logλ2 3.6e−3 2.35 2.47 μX,2 2.5e−4 2.88 2.96 e2S 0.59 3.25 3.09
logλ3 3.5e−3 4.64 3.22 μX,3 2.8e−4 6.16 3.34

∏
i Xi 1.6e−9 2.84 2.70

logλ4 3.3e−3 8.63 3.92 μX,4 2.9e−4 12.0 4.09
∑

i X5
i 6.1e−3 2.71 2.06

logλ5 3.2e−3 16.8 4.66 μX,5 3.3e−4 21.1 5.06
∑

i X6
i 0.11 1.95 2.26

NOTE: RMSE is the ratio of the MSE of the alternative method (WL or MD0) to the MSE of the MD method.
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least 16 times more efficient than the WL algorithm for estimat-
ing logλ5 and μX,5. The WL algorithm did not simulate suffi-
cient samples from these domains, although it visited uniformly
different density partition intervals. On the contrary, the double-
partitioning design facilitated the MD sampler to explore every
domain in a uniform manner, which led to a substantial im-
provement in estimation for these layers. This shows the criti-
cal role of domain partitioning in estimating DRs. To study the
effect of the mixed jump, we re-applied the MD sampler with
pmx = 0, and calculated the ratio of the resulting MSE (MD0 in
Table 1) over that of the MD sampler with pmx = 0.1, the de-
fault setting. One sees an increase of two folds or more in MSEs
without the mixed jump. The convergence of the MD sampler
without the mixed jump became slower, reflected by a five-
fold increase in γn after the same number of iterations, averag-
ing over 100 independent runs. These observations demonstrate
that the mixed jump served as an efficient global move which
accelerated convergence of the MD sampler and improved esti-
mation accuracy.

5. LEARNING BAYESIAN NETWORKS

A Bayesian network (BN) factorizes the joint distribution of
m variables Z = {Z1, . . . ,Zm} into

P(Z) =
m∏

i=1

P(Zi | �G
i ), (16)

where �G
i ⊂ Z is the parent set of Zi. A graph G is constructed

to code the structure of a BN by connecting each variable (node)
to its child variables via directed edges. For (16) to be a well-
defined joint distribution, the graph G must be a DAG. We con-
sider the use of Bayesian networks in causal inference (Spirtes,
Glymour, and Scheines 1993; Pearl 2000), which is tightly con-
nected to many areas in statistics, such as structural equations,
potential outcomes, and randomization (Rubin 1978; Robins
1986; Holland 1988; Neyman 1990). Here we follow Pearl’s
formulation of causal networks by modeling experimental in-
tervention. If Zj is a parent of Zi in a causal Bayesian network,
then experimental interventions that change the value of Zj may
affect the distribution of Zi, but not conversely. Once all the
parents of Zi are fixed by intervention, the distribution of Zi

will not be affected by interventions on any variables in the set
Z \ (�G

i ∪ {Zi}). In the example causal network of Figure 2, if
we fix Z1 and Z3 by experimental intervention, then the distri-
bution of Z4 will not be affected by perturbations on Z2, Z5, or
Z6.

Figure 2. An example Bayesian network of six variables.

5.1 Posterior Distribution

We focus on the discrete case where each Zi takes ri states
indexed by 1, . . . , ri and the parents of Zi take qi = ∏

Zj∈�G
i

rj

joint states. Let θijk be the causal probability for Zi = j given
the kth joint state of its parent set. A causal BN with a
given structure G is parameterized by � = {θijk :

∑
j θijk = 1,

θijk ≥ 0}.
We infer network structure from two types of data jointly, ex-

perimental data and observational data. For experimental data,
a subset of variables are known to be fixed by intervention. In-
ferring causality with intervention has been extensively studied
in various contexts (e.g., Robins 1986, 1987; Pearl 1993). We
adopt the work of Cooper and Yoo (1999) for calculating the
posterior probability of a network structure given a mix of ex-
perimental and observational data. Suppose that Nijk is the num-
ber of data points for which Zi is not fixed by intervention and
is found in state j with its parent set in joint state k. Then, the
collection of counts N = {Nijk} is the sufficient statistic for �

(Ellis and Wong 2008). Let |�G
i | be the size of the parent set

of Zi. The prior distribution over network structures is specified
as π(G) ∝ β

∑
i |�G

i |, β ∈ (0,1), which penalizes graphs with a
large number of edges. With a product-Dirichlet prior for �,
the posterior distribution [G | N] (Cooper and Herskovits 1992)
is

P(G | N) ∝
m∏

i=1

{
β |�G

i |
qi∏

k=1

[
�(αi·k)

�(αi·k + Ni·k)

×
ri∏

j=1

�(αijk + Nijk)

�(αijk)

]}
, (17)

where αijk = α/(riqi) is the pseudo count for the causal proba-
bility θijk in the product-Dirichlet prior and Ni·k = ∑

j Nijk (sim-
ilarly for αi·k). The hyperparameters in the prior distributions
are chosen as β = 0.1 and α = 1.

5.2 MD Sampling Over DAGs

The space of DAGs is discrete in nature. We define domains
of attraction for P(G | N) (17) with a move set composed of
addition, deletion, and reversal of an edge. Given a DAG Ga,
we say that another DAG Gb is a neighbor of Ga if Gb can be
obtained via a single move starting from Ga, that is, by adding,
deleting, or reversing an edge of Ga. Denote by ngb(Ga) all the
neighbors of Ga and let ngb(Ga) = ngb(Ga) ∪ {Ga}. A DAG
G∗ is defined as a local mode of a probability density (mass)
function p(G) if p(G∗) > p(G′) for every G′ ∈ ngb(G∗). Let G0

be a DAG and define recursively

Gt+1 = arg max
G∈ngb(Gt)

p(G), for t = 0,1, . . . . (18)

That is, we recursively find the single move that leads to the
greatest increase in p until a local mode is reached, which can
be viewed as a discrete counterpart of the gradient ascent al-
gorithm. If there is more than one maximum in (18) with an
identical function value, we take the first maximum according
to a fixed ordering of the neighbors. We call this recursion the
steepest neighbor ascent (SNA). Based on SNA, we define the
domain partition index I(G) and the attraction domains of p in
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the same manner as for a differentiable density [Equation (2)
and Definition 1].

The target distribution in this application is the posterior dis-
tribution P(G | N) and we define working density P(G | N;W)

similarly as in (6). To implement the MD sampler for DAGs,
we employ the move set as the local proposal and develop the
following mixed jump. For a DAG G, we define an edge vari-
able EG

ij for every pair of nodes Zi and Zj (i < j) such that

EG
ij = 1 if Zi is a parent of Zj, EG

ij = −1 if Zj is a parent

of Zi, and EG
ij = 0 otherwise. Given a DAG ν, let C(G;ν) =

(Ca(G;ν),Cd(G;ν),Cr(G;ν)) be a map of G, where

Ca(G;ν) =
∑
i<j

1(EG
ij �= 0,Eν

ij = 0),

Cd(G;ν) =
∑
i<j

1(EG
ij = 0,Eν

ij �= 0),

Cr(G;ν) =
∑
i<j

1(EG
ij · Eν

ij = −1).

In words, C(G;ν) gives the numbers of additions, deletions,
and reversals needed to obtain G from ν. Let T = m(m − 1)/2
be the total number of node pairs and |Eν | be the number of
edges in ν. Then, the number of common edges between G and
ν is |Eν | − [Cr(G;ν)+ Cd(G;ν)] and the number of node pairs
with no edge in either DAG is T − |Eν | − Ca(G;ν). Given a set
of local modes of P(G | N), {νk}M

k=1, let gk(G) = C(G;νk) in the
update of Vt

k (8) of Algorithm 1, where Vt
k = (vt

k,a, vt
k,d, vt

k,r) is

a vector. As n → ∞, Vn
k

a.s.−→ E[C(G;νk) | G ∈ Dk], where the
expectation is taken with respect to the limiting working den-
sity P(G | N;W∗) (10). In the mixed jump, after a local mode
νk is randomly chosen, we sequentially modify the edge vari-
ables of νk to propose a new DAG Y . The proposal is designed
according to Vt

k, the current estimate of the expected numbers
of additions, deletions, and reversals of DAGs in the domain
Dk relative to the mode νk. Let |Ek| be the number of edges in
νk. If Eνk

ij �= 0, we propose to reverse, delete, or retain the edge

Eνk
ij (i.e., EY

ij = −Eνk
ij ,0,or Eνk

ij ) with probabilities proportional
to the vector (vt

k,r, vt
k,d, |Ek| − (vt

k,r + vt
k,d)) + b, where b > 0

is a small prior count added to each category. Analogously, if
Eνk

ij = 0 we propose EY
ij = 0,1,or − 1 with probabilities pro-

portional to (T −|Ek|− vt
k,a, vt

k,a/2, vt
k,a/2)+ b. Last, to ensure

a proposed graph is acyclic, a check for cycles is performed
when we propose to add or reverse an edge in either the local
proposal or the mixed jump. If the resulting graph is cyclic, we
suppress the probability for the corresponding move.

Following the common practice in structural learning of dis-
crete BNs, we set an upper bound for the number of parents
(indegree) of a node. In all the following examples and appli-
cations, this upper bound is chosen to be four. We are inter-
ested in the posterior expected adjacency matrix A = (aij)m×m

and its domain-based representation, where aij (1 ≤ i, j ≤ m) is
the posterior probability for a directed edge from Zi to Zj. For
each identified local mode νk, we estimate the probability mass
λk of its attraction domain Dk and the conditional expected
adjacency matrix Ak on the domain. Then, A is estimated by
Â = ∑

k λ̂kÂk.

5.3 Simulation

We simulated data from two BNs, each of six binary vari-
ables (m = 6, ri = 2,∀i). This is the maximum number of nodes
for which we can enumerate all DAGs, numbering about four
million, to obtain true posterior distributions and domain-based
representations as the ground truth for testing a computational
method. The first network has a chain structure in which Zi is
the only parent of Zi+1 for i = 1, . . . ,5 and Z1 has no parent.
The second network has a more complex structure shown in
Figure 2. We simulated 50 datasets independently from each
network. In each dataset, 20% of the data points were generated
with interventions. Please see supplementary document for data
simulation details.

The MD sampler was applied to the 100 datasets with L = 15,

H = 10, pmx = 0.1, K∗ = 100, and a total of 5M iterations
with the first 50K as burn-in iterations. To verify its perfor-
mance, we compared identified local modes, estimated proba-
bility masses {log λ̂k}, conditional expected adjacency matrices
{Âk}, and expected adjacency matrix Â to their respective true
values obtained via enumerating all DAGs. Our enumeration
confirms that the posterior distributions indeed have multiple
local modes. The chain and the graph (Figure 2) networks have
on average 3.57 and 7.06 modes over the simulated datasets,
respectively, and the maximum number of modes is 29 for the
chain and 34 for the graph. As reported in Table 2, the MD
sampler did not miss a single local mode for any dataset, which
demonstrates its global search ability. Recall that all recorded
modes are detected in the burn-in algorithm. In fact, all modes,
including the global mode, were identified within 10K itera-
tions for every dataset. This observation confirms the notion
that the burn-in algorithm alone may serve as a powerful op-
timization algorithm (Remark 4). We calculated the MSE of
the vector (log λ̂1, . . . , log λ̂K), where K is the number of local
modes, and the average MSE of Â1, . . . , ÂK . When calculating
the MSE of the log probability vector, we ignored those tiny
domains with a probability mass < 10−4. These estimates are
seen to be very accurate as reported in Table 2.

We also applied the MD sampler with pmx = 0 (MD0) and
the WL algorithm with the same parameter setting to these
datasets (Table 2). The degraded performance of MD0 demon-
strates the effectiveness of the mixed jump for sampling DAGs.

Table 2. Comparison on simulated data from two BNs

MD
MSE

MD0 WL K∗ = 10

RMSE

# of missed modes 0 0 0 0.51
log λ̂k 0.028 1.48 5.06 0.48
Âk 1.3e−4 1.65 11.0 0.99
Â 1.3e−4 1.76 1.67 1.03

# of missed modes 0 0 0.12 2.06
log λ̂k 0.029 401 1368 0.84
Âk 1.7e−4 2.96 13.6 1.01
Â 1.5e−4 7.17 5.09 0.98

NOTE: The top and bottom panels report the results for the chain and the graph networks,
respectively. For each estimate, reported are the MSE of the MD sampler and the RMSEs
(ratios) of the other methods relative to the MD sampler.
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The WL algorithm missed 0.12 modes on average for the sec-
ond network, and its estimation of the DR {(Âk, λ̂k)} was much
less accurate compared to that of the MD sampler. The aver-
age MSE of Â1, . . . , ÂK and the MSE of (log λ̂k)1:K were more
than 10 and 1000 times greater than those of the MD sampler,
respectively. The huge MSE of the (log λ̂k) constructed by the
WL algorithm was often due to severe underestimation of the
probability masses of domains sampled insufficiently. This re-
sult implies that without domain partitioning, the WL algorithm
is unable to estimate domain-based representations for a BN of
a moderately complicated structure. Since the number of local
modes often increases very fast with the complexity of a prob-
lem, we re-applied the MD sampler with K∗ = 10 to investigate
the effect of keeping only a subset of local modes. Obviously,
the algorithm missed a few local modes when the total number
of modes exceeded K∗. But in terms of estimating A and Ak,
the performance of the MD sampler with K∗ = 10 was very
comparable to its performance when all the local modes were
kept (Table 2). The probability mass outside the domains of
recorded modes, λ0 = 1 − ∑K∗

k=1 λk, is less than 0.007 averag-
ing over the 15 datasets where the posterior distributions have
more than 10 local modes. This confirms that the MD sampler
indeed captured major modes in the burn-in period.

6. PROTEIN–SIGNALING NETWORKS

6.1 Background and Data

The ability of cells to properly respond to environment is
the basis of development, tissue repair, and immunity. Such re-
sponse is established via information flow along signaling path-
ways mediated by a series of signaling proteins. Cross-talks and
interplay between pathways reflect the network nature of the
interaction among these signaling molecules. Construction of
signaling networks is an important step toward a global under-
standing of normal cellular responses to various environmen-
tal stimuli and more effective treatment of complex diseases
caused by malfunction of components in a pathway. Causal
Bayesian networks may be used for modeling signaling net-
works as the relation among pathway components has a natural
causal interpretation. That is, the activation or inhibition of a set
of upstream molecules in a network causes the state change of
downstream molecules. An edge from molecule A to molecule
B in a signaling network implies that a change in the state of
A causes a change in the state of B via a direct biochemical
reaction. Here, a state change refers to a chemical, physical, or
locational modification of a molecule. However, as there may
exist mutual regulation between two signaling molecules, the
use of DAGs for modeling signaling networks is only a first-
step approximation.

In this study, we construct protein-signaling networks from
flow cytometry data. Polychromatic flow cytometry is a high-
throughput technique for probing simultaneously the (phospho-
rylation) states of multiple proteins in a single cell. Since mea-
surements are collected on a cell-by-cell basis, huge amounts
of data can be produced in one experiment. Sachs et al. (2005)
made flow cytometry measurements of 11 proteins and phos-
pholipids in the signaling network of human primary naive
CD4+ T cells under nine different experimental perturbations
that either activate or inhibit a particular molecule or activate

Figure 3. An annotated protein-signaling network in naive CD4+
T cells.

the entire pathway. Note that a perturbation that activates or in-
hibits a particular molecule is essentially an intervention on the
molecule, so that causal structures of the underlying network
may be inferred. Under each perturbation, 600 cells were col-
lected with 11 measurements for each. The measurements in
the data were discretized into three levels, high, medium, and
low by Sachs et al. In summary, this dataset contains 5400 data
points for 11 ternary variables. Since naive T cells are essen-
tial for the immune system to continuously respond to unfa-
miliar pathogens, extensive studies have been conducted to es-
tablish the signaling pathways. An annotated signaling network
among the 11 molecules, provided by Sachs et al., is depicted
as a causal Bayesian network in Figure 3. This network con-
tains 18 edges that are well-established in the literature and two
edges (PKC → PKA and Erk → Akt) reported from recent ex-
periments independent of the flow cytometry data.

6.2 Predicted Networks

The MD sampler was applied to this dataset with L = 20,

H = 10, pmx = 0.1, and K∗ = 10. The total number of it-
erations was 5M, of which the first 50K were used for burn-
in. We estimated the posterior expected adjacency matrix A
and its domain-based representation. Three predicted networks
were constructed by thresholding posterior edge probabilities at

Table 3. Results on the flow cytometry data

MD MD0 WL

Global max (SD) −31,757.9 (2.7) −31,787.3 (82) −31,937.8 (199)
TP/FP (c = 0.5) 15.50/10.35 15.55/10.35 13.40/12.35
TP/FP (c = 0.7) 15.50/10.35 15.55/10.35 13.35/12.25
TP/FP (c = 0.9) 15.50/10.35 15.55/10.35 13.35/11.95

TP/FP (c = 0.5) 15.2/10.3 14.6/10.6 11.6/13.6
TP/FP (c = 0.7) 15.2/10.2 14.6/10.6 11.6/13.2
TP/FP (c = 0.9) 15.2/9.9 14.6/10.2 11.6/13.1
Log pred (mean) 0 −1.4 −62.1
Log pred (DR) 17.5 16.2 −51.7

NOTE: The top and bottom panels report the average results over 20 independent runs
on the full dataset and the average results over ten test datasets in cross-validation, re-
spectively. Predictive probabilities (Log pred) are reported as log ratios over the predictive
probability given the mean network of the MD sampler.
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c = 0.5,0.7,0.9, that is, an edge from Zi to Zj was predicted if
the edge probability âij ≥ c. For simplicity we call such a pre-
dicted network a mean network (with a threshold c). Table 3
(top panel) reports the number of true positive edges (TP) that
are both predicted by the MD sampler and annotated in Figure 3
and the number of false positive edges (FP) that are predicted
but not annotated, together with the (unnormalized) log pos-
terior probability of the identified global maximum DAG. To
compare the results, we re-applied the MD sampler with the
same parameters except that pmx = 0 (MD0 in Table 3) and ap-
plied the WL algorithm with the same parameters as used in
the MD sampler to the same data. The average result over 20
independent runs of each method is summarized in Table 3. In
terms of finding the global mode, the MD sampler was much
more effective and robust than the other two algorithms, re-
flected by a much higher average log probability and a much
smaller standard deviation across multiple runs. The MD sam-
pler with or without the mixed jump showed comparable results
in predicting network structures, and both predicted more true
positives and fewer false positives than the WL algorithm did
for all the three thresholds. We noticed that the mean networks
constructed with different thresholds (c = 0.5,0.7,0.9) were al-
most identical. This was due to the fact that the posterior edge
probabilities were close to either 1 or 0 because of the large
data size. The network constructed from the same data by the
order-graph sampler, reported in figure 11 of the article by El-
lis and Wong (2008), has 9 true positive and 11 false positive
edges, which misses many more true edges and includes more
false positives than the networks predicted by the MD sampler.
These results demonstrate that the MD sampler is very power-
ful in learning underlying network structures from experimental
data compared to other advanced Monte Carlo techniques.

Next, we focus on the estimation of the DR, {(Âk, λ̂k) : k =
0, . . . ,K∗}, and its scientific implications. A network Ĝk can
be constructed for an attraction domain by thresholding Âk, the
conditional expected adjacency matrix on the domain Dk, for
k = 1, . . . ,K∗. To distinguish it from the mean network, we call
Ĝk a local network. We take the result of a representative run of
the MD sampler (pmx = 0.1) to demonstrate local networks with
the threshold c = 0.9. The parent sets of eight nodes are iden-
tical across the K∗ = 10 local networks. We report in Table 4
the parents of the other three nodes, PLC, PIP3, and Erk, which

are distinct among the local networks, together with the prob-
ability masses (log λ̂k) of the 10 domains and the probabilities
of the local modes [log P(νk | N)]. The local networks may pre-
dict meaningful alternative edges not included in the mean net-
work, as illustrated by the result on a particular pathway, Raf →
Mek → Erk (Figure 3). This expected pathway was predicted
by all the local networks and the mean network. However, some
local networks also contained a direct link from Raf to Erk (Ta-
ble 4). As Mek was inhibited in one of the experimental con-
ditions, this finding suggests that the cells may have another
pathway that passes the signal from Raf to Erk via some indirect
regulation or via molecules not included in this analysis, when
Mek is not functioning properly. Such compensational mech-
anisms exist widely in many biological networks. Indeed, Raf
has been reported to enhance the kinase activity of PKCθ , an
isoform of PKC, although PKCθ is unlikely a direct phospho-
rylation target of Raf (Hindley and Kolch 2007). As indicated
by Figure 3, Erk is a downstream node of PKC and thus may be
regulated indirectly by Raf via the enhanced kinase activity of
PKCθ . Such novel hypotheses could not be proposed if we did
not construct the DR for the posterior distribution. Clearly, the
DR of network structures not only gives a detailed landscape of
various local domains but also provides new insights into the
underlying scientific problem.

From Table 4 we find that the probability mass is dominated
by the domain of the identified global mode with a log prob-
ability of −31,757. Consistent with the summary in Table 3,
the MD sampler almost always reached this global mode for
different runs. On the contrary, the highest mode detected by
the WL algorithm with an average log probability of −31,938
is even much lower than the lowest mode in Table 4. In other
words, the WL algorithm was inevitably trapped to some local
modes with negligible probability masses. This again demon-
strates the advantage of the MD sampler, particularly the burn-
in algorithm, in finding global modes. Even when the proba-
bility mass of the global mode is dominant and other domains
occupy only a small fraction of the sample space, without the
domain-partitioning design the WL algorithm may be trapped
to a local mode of a tiny probability mass and produce severely
biased estimates.

6.3 Cross-Validation

To check the statistical variability and the predictive power
of our method, we conducted ten-fold cross-validation on this

Table 4. Local networks constructed from domain-based representation

Parents of

log λ̂k log P(νk | N) PLC PIP3 Erk

−0.00274 −31,756.81 PKC p38 JNK PLC PKC Mek PKA PKC
−6.39777 −31,762.75 PKC p38 JNK PLC PKC Mek PKA Raf
−7.12166 −31,764.16 Mek PKA PLC PKC Mek PKA PKC
−8.34521 −31,764.82 PKC p38 JNK PLC JNK Mek PKA PKC

−10.6461 −31,766.81 Mek Akt p38 PLC PKC Mek PKA PKC
−13.7193 −31,770.11 Mek Akt PKA PLC PKC Mek PKA Raf
−14.0777 −31,770.77 PKC p38 JNK PLC JNK Mek PKA Raf
−15.0459 −31,772.18 Mek Akt PKA PLC JNK Mek PKA PKC
−16.8860 −31,772.76 Mek Akt p38 PLC PKC Mek PKA Raf
−18.5716 −31,774.82 Mek Akt p38 PLC JNK Mek PKA PKC
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dataset. We partitioned randomly the 5400 data points into ten
subsets of equal sizes. We used nine subsets as training data
to learn a mean network and calculated the predictive proba-
bility of data points in the other subset (test data) given the
learned mean network. This procedure was repeated 10 times
to test on every subset. We verified the average accuracy of the
mean networks constructed from the 10 training datasets with
different thresholds. The performance of the MD sampler on the
training datasets was comparable to its performance on the full
dataset, which implies its robustness to random sampling of in-
put data. The improvement in accuracy (TP/FP) of the MD sam-
pler over the other two methods became more significant, espe-
cially compared to the WL algorithm (Table 3, bottom panel).
The average predictive probability of the test datasets given the
mean networks constructed from the training datasets by each
method with c = 0.9 is reported in Table 3 [Log pred (mean)],
from which we see that the predictive power of the networks
constructed by the two MD samplers was much higher than that
of the WL algorithm (> 60 in log probability ratio). In addition,
we utilized the estimated domain-based representations to cal-
culate the predictive probability of a test data point y by

P(y | {Ĝk, λ̂k}) 
=
K∗∑

k=0

λ̂kP(y | Ĝk), (19)

where P(y | Ĝk) is the marginal likelihood of y given the local
network Ĝk. This can be regarded as a domain-based approxi-
mation to the posterior predictive distribution

P(y | yobs) =
∑

G

P(G | yobs)P(y | G),

that is, we use estimated probability masses λ̂k and conditional
mean networks Ĝk to approximate the posterior predictive prob-
ability. The advantage is that there is no need to store a large
posterior sample of networks but only an estimated DR. Since
Equation (19) captures the variability among different domains,
it is expected to outperform the mean network in prediction. In
fact, for each method the predictive probability calculated by
(19) [Table 3, Log pred (DR)] was indeed significantly greater
than the predictive probability calculated given its mean net-
work, especially for the two MD samplers.

In real applications, we are interested in predicting results
for a new experimental condition given observed data from
other conditions. Thus, we also performed a nine-fold cross-
validation where a training dataset was composed of cells from
eight experimental conditions and a test dataset only included
cells in the other one condition. We applied the MD sampler to
construct mean networks and DRs {Ĝk, λ̂k}10

k=1 from the training
datasets. The mean networks with c = 0.9 included, on average,
13.2 true edges with 10.8 false edges, which was slightly worse
than the result from the ten-fold cross-validation. The degraded
performance is expected as removing all cells from one experi-
mental perturbation will increase the uncertainty in determining
the directionality of the network. The domain-based prediction
(19) was compared against the annotated network G∗ given in
Figure 3, which presumably has the highest predictive power,
by evaluating the log-likelihood ratio (LLR) log R = log[P(y |
{Ĝk, λ̂k})/P(y | G∗)], where y is a test data point. The average

log R over all test data points was −0.062, and thus the predic-
tive probability for a new observation given the constructed DR
is expected to be higher than 94%(= e−0.062) of its likelihood
given the annotated graph. This demonstrates the high predic-
tive power of the domain-based prediction constructed by our
method. As expected, the average LLR of the mean networks
over G∗ was 26% lower than the average of log R.

7. DISCUSSION

The central idea of this article is to construct domain-based
representations with the MD sampler. Related works have been
seen in the physics literature under the name of superposi-
tion approximation. Please see the article by Wales and Bog-
dan (2006) for a recent review. Given a Boltzmann distribution
pB(x; τ) ∝ exp[−H(x)/τ ], a superposition approach identifies
the local minima of H(x), that is, the local modes of pB(x; τ),
and approximates H(x) on the attraction domain of a local min-
imum by quadratic or high-order functions. The approximation
is often proposed based on expert knowledge about the physical
model under study. Expectations with respect to pB(x; τ) are
then estimated by summing over approximations from identi-
fied domains. The accuracy of this approach largely depends on
the employed approximation to H(x) on a domain and thus may
not work well for an arbitrary distribution. The MD sampler
differs in that domain-based representations are constructed by
Monte Carlo sampling which is able to provide accurate estima-
tion with large-size samples; no expert knowledge about the tar-
get distribution is needed. In addition, our method also contains
a coherent component for finding local modes, while the super-
position approximation works more like a two-step approach.

From a computational perspective, the MD sampler inte-
grates Monte Carlo and deterministic optimization. A few other
methods also have the two ingredients, such as Monte Carlo
optimization (Li and Scheraga 1987), the basin hopping algo-
rithm (Wales and Doye 1997), and conjugate gradient Monte
Carlo (CGMC) (Liu, Liang, and Wong 2000). In Monte Carlo
optimization and the basin hopping algorithm, the target distri-
bution p(x) is modified to p̃(x) = p(νk) for all x ∈ Dk, where Dk

is the attraction domain of the mode νk. Then a Metropolis-type
MCMC is used to sample from p̃, in which a local optimiza-
tion algorithm is employed at each iteration to find p̃(Xt) for
the current state Xt. These methods have been applied to iden-
tification of minimum-energy structures of proteins and other
molecules. However, its application to other fields is limited
as the modified density p̃(x) may be improper when the sam-
ple space is unbounded. In CGMC, a population of samples is
evolved and a line sampling step (Gilks, Roberts, and George
1994) is performed on a sample along a direction pointing to a
local mode found by local optimization initiated at another sam-
ple. In this way promising proposal may be constructed by bor-
rowing local mode information from other samples. A possible
future work on the MD sampler is to utilize a population of sam-
ples. Because local modes are recorded, similar proposals as the
line sampling can be developed for the MD sampler to further
enhance sampling effectiveness. Another future direction is to
construct disconnectivity graphs (Becker and Karplus 1997) or
trees of sublevel sets (Zhou and Wong 2008) from samples gen-
erated by the MD sampler. Since samples have been partitioned
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into domains of attraction, we only need to determine the bar-
rier between a pair of domains, defined by maxs∈S minx∈s p(x),
where S is the collection of all the paths between the two do-
mains. A few candidate approaches toward this direction are
under current investigation (Zhou 2011).

APPENDIX: THEORETICAL ANALYSIS

In this appendix we establish the convergence and ergodicity prop-
erties of the MD sampler. Our analysis is conducted for a doubly adap-
tive MCMC, that is, both the target distribution and the proposal may
change along the iteration, which includes the MD sampler as a spe-
cial case. Furthermore, the MWL design (Routine 1) is employed to
adjust γt .

Assume that the sample space X is equipped with a countably gen-
erated σ -field, B(X ). Let {Xi}κi=1 be a partition of X , where each Xi
is nonempty, and B(Xi) = {A ∈ B(X ) : A ⊆ Xi} for i = 1, . . . , κ . Let
ω = (ωi)1:κ ∈ � and φ ∈ � be two vectors of real parameters. Denote
the product parameter space by � = � × � and write θ = (ω,φ) ∈ �.
For ω ∈ �, define working density

pω(x) ∝
κ∑

i=1

e−ωi p(x)1(x ∈ Xi). (A.1)

Let q(x, ·) and tφ(x, ·), φ ∈ �, be two transition kernels on (X , B(X )).
Hereafter, the same notation will be used for a kernel and its density
with respect to the Lebesgue measure on X , for example, q(x, dy) ≡
q(x,y)dy. For j = 0,1, define Qj,φ(x, ·) = (1− j)q(x, ·)+ jtφ(x, ·). Let
Kj,θ be the MH transition kernel with pω as the target distribution and
Qj,φ as the proposal, that is,

Kj,θ (x,dy) = Sj,θ (x,dy) + 1(x ∈ dy)

[
1 −

∫
X

Sj,θ (x,dz)
]
,

where Sj,θ (x,dy) = Qj,φ(x,dy)min[1,pω(y)Qj,φ(y,x)/pω(x)Qj,φ(x,

y)], representing an accepted move. As Q0,φ = q, K0,θ and S0,θ do
not depend on φ and thus reduce to K0,ω and S0,ω , respectively.
Furthermore, if we let ω = 0, then pω(x) = p(x), in which case we
simply use K0 and S0. Given α ∈ [0,1), define a mixture proposal
Qφ = (1−α)q+αtφ , its accepted move Sθ = (1−α)S0,ω +αS1,θ , and
the corresponding MH kernel Kθ = (1 − α)K0,ω + αK1,θ . Table A.1
summarizes the notations, from left to right, for target distributions,
proposals, MH kernels, and accepted moves for different scenarios in-
volved in this analysis.

Denote by Z(ω) the normalizing constant of (A.1). Then Z(ω) =∑κ
i=1 Zi(ωi), where Zi(ωi) = e−ωi

∫
Xi

p(x)dx. Let U be a nonempty
subset of {1, . . . , κ} and XU = ⋃

i∈U Xi. Given a map g : X → �,
let μg,U(ω) = E[g(X) | X ∈ XU] with respect to pω . Define a map
H :� × X → � by

H(θ ,x) = [(
1(x ∈ Xi) − 1/κ

)
1:κ , (g(x) − φ)1(x ∈ XU)

]
and the mean field F(θ) = ∫

X H(θ,x)pω(x)dx, that is,

F(θ) =
[(

Zi(ωi)

Z(ω)
− 1

κ

)
1:κ

,

∑
u∈U Zu(ωu)

Z(ω)
(μg,U(ω) − φ)

]
.

Consider the equation F(θ) = 0. Let ω∗ = [log Zi(0)]1:κ and φ∗ =
μg,U(ω∗). As F(θ) is invariant to translation of ω by a scalar: ω →
(ω + β)


= (ωi + β)1:κ , β ∈ R, the solution set to this equation is

Table A.1. Summary of notations

Mixture: pω Qφ Kθ Sθ

j = 0: pω q K0,ω S0,ω

j = 0,ω = 0: p q K0 S0
j = 1: pω tφ K1,θ S1,θ

{θ∗(β)

= (ω∗ + β,φ∗)} ∩ �


= �∗. Set γ1 = 1 and choose an arbi-
trary point (x̃, θ̃) ∈ X × � to initialize (X1, θ1). A doubly adaptive
MCMC is employed to find a solution θ∗(β) ∈ �∗ and to estimate
μh(ω∗) = ∫

X h(x)pω∗(x)dx for a function h : X → R.

Algorithm A.1 (Doubly adaptive MCMC). Choose a fixed α ∈
[0,1). For t = 1, . . . ,n:

1. If θ t /∈ �, set Xt+1 = x̃ and θ t+1 = θ̃ ; otherwise draw Xt+1 ∼
Kθ t (Xt, ·) and set θ t+1 = θ t + γtH(θ t,Xt+1).

2. Determine γt+1 by the MWL design in Routine 1 with {Xi} in
place of {Dkj}.

Denote the L2 norm by | · | and let d(x,A)

= infy∈A |x − y|, where

x,y are vectors and A is a set. Our goal is to establish that d(θn,�∗) →
0 almost surely (with respect to the probability measure of the process
{Xt, θ t}) and that {Xt} is ergodic. Clearly, translation of ωt by a scalar
does not change the working density pωt or affect the convergence of
θ t to �∗. Thus, the theory for Algorithm A.1 can be applied to the
MD sampler with reinitialization (Remark 2). The update of ωt , up to
translation by a scalar, and the update of φt correspond to, respectively,
the update of Wt (7) and the update of Vt

k (8) for any k in the MD
sampler. We state four conditions for establishing the main results.

(C1) The sample space X is compact, p(x) > 0 for all x ∈ X , � is
bounded, and �∗ is nonempty. The map g and the function h
are p-integrable and bounded.

(C2) There exist δq > 0 and εq > 0 such that |x − y| ≤ δq implies
that q(x,y) ≥ εq for all x,y ∈ X .

(C3) There exist an integer �, δ > 0 and a probability measure ν,
such that ν(Xi) > 0 for i = 1, . . . , κ and S�

0(x,A) ≥ δν(A),
∀x ∈ X and A ∈ B(X ).

(C4) For all x,y ∈ X and all φ ∈ �, tφ(x,y) > 0 and log tφ(x,y)

has continuous partial derivatives with respect to all the com-
ponents of φ.

To avoid mathematical complexity, we assume that X is compact
(C1). This assumption does not lose much generality in practice as we
may always restrict the sample space to {x : p(x) ≥ εp} given a suf-
ficiently small εp. Due to the compactness of X , any continuous map
and function on X will be bounded. Conditions (C2), (C3) are standard
conditions on the fixed proposal q(x,y) to guarantee irreducibility and
aperiodicity of the MH kernel K0. They are satisfied by all the local
moves used in this article. A regularity condition on the adaptive pro-
posal tφ is specified in (C4). For the mixed jumps in the examples, φ

is either the covariance matrix of a multivariate normal distribution or
the cell probability vector of a multinomial distribution, and (C4) is
satisfied.

Lemma A.1. Let α ∈ [0,1). For any i, j ∈ {1, . . . , κ} and θ ∈ �, if
eωi−ωj ≥ c1 ∈ (0,1], then Kθ (x,A) ≥ (1 − α)c1S0(x,A), ∀x ∈ Xi and
A ∈ B(Xj).

Proof. By definition, Kθ (x,A) ≥ (1 − α)K0,ω(x,A) ≥ (1 − α) ×
S0,ω(x,A) for every θ = (ω,φ). For any x ∈ Xi and y ∈ Xj,

S0,ω(x,dy) = q(x,dy)min

[
1, eωi−ωj

p(y)q(y,x)

p(x)q(x,y)

]

≥ c1q(x,dy)min

[
1,

p(y)q(y,x)

p(x)q(x,y)

]
= c1S0(x,dy).

Thus, Kθ (x,A) ≥ (1 − α)c1S0(x,A) for all A ∈ B(Xj).

Theorem A.1. If (C1)–(C4) hold, then d(θn,�∗)
a.s.−→ 0 and

1

n

n∑
t=1

h(Xt)
a.s.−→ μh(ω∗), as n → ∞. (A.2)
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Proof. Lemma A.1 and (C3) imply that ∀x ∈ Xi, K�
θ (x, Xj) ≥

ενν(Xj) > 0 if eωi−ωj ≥ c1, where εν > 0. By Theorem 4.2 of the
article by Atchadé and Liu (2010),

max
i,j

lim sup
n→∞

|vn
i − vn

j | < ∞, a.s.,

where vn
i = ∑n

t=1 1(Xt ∈ Xi). This implies that the {γt} defined by the
MWL update (Routine 1) will decrease below any given εγ > 0 af-
ter a finite number of iterations, that is, tc < ∞, almost surely. Then,
Algorithm A.1 becomes a stochastic approximation algorithm with a
deterministic sequence of {γt}. According to proposition 6.1 and the-
orem 5.5 in the article of Andrieu, Moulines, and Priouret (2005), we
only need to verify the drift conditions (DRI1–3) and assumptions
(A1), (A4) given in that work to show the convergence of θn.

Verifying the drift conditions. Let D be any compact subset
of �, and D1 and D2 be the projections of D into � and �, re-
spectively. Since D1 is compact, there is an εD ∈ (0,1] such that
mini,j infω∈D1

eωi−ωj ≥ εD . By Lemma A.1 and (C3), there is a
δD > 0 such that

inf
θ∈D

K�
θ (x,A) ≥ δDν(A), ∀x ∈ X ,A ∈ B(X ), (A.3)

where � and ν are defined in (C3). This gives the minorization con-
dition in (DRI1). Given (C2) and that pω,ω ∈ D1, is bounded away
from 0 and ∞ under (C1), K0,ω is irreducible and aperiodic for ev-
ery ω ∈ D1, according to theorem 2.2 of the article by Roberts and
Tweedie (1996). Consequently, for every θ ∈ D, Kθ is also irreducible
and aperiodic as α < 1. Let V(x) = 1 for all x ∈ X . It is then easy to
verify other conditions in (DRI1).

Since both g and � are bounded (C1), there is a c2 > 0 such that for
all x ∈ X ,

sup
θ∈�

|H(θ ,x)| ≤ κ + |g(x)| + sup
φ∈�

|φ| ≤ c2, (A.4)

|H(θ ,x) − H(θ ′,x)| ≤ |φ − φ′| ≤ c2|θ − θ ′|, ∀θ , θ ′ ∈ �. (A.5)

These two inequalities imply (DRI2) with V(x) = 1.
Condition (DRI3) can be verified by the same argument used by

Liang, Liu, and Carroll (2007) once we find a constant c3 > 0 such
that ∣∣∣∣∂Sθ (x,y)

∂θi

∣∣∣∣ ≤ c3Qφ(x,y), (A.6)

for all x,y ∈ X , θ ∈ D, and all i, where θi is the ith component of
θ = (ω,φ). Denote by φj the jth component of φ. Straightforward cal-
culation leads to |∂Sθ (x,y)/∂ωi| ≤ Qφ(x,y) and

∂Sθ (x,y)

∂φj
=

⎧⎪⎪⎨
⎪⎪⎩

Rθ (x,y)[∂ log tφ(y,x)/∂φj]αtφ(x,y),

if Rθ (x,y) < 1

[∂ log tφ(x,y)/∂φj]αtφ(x,y),

otherwise,

where Rθ (x,y) = pω(y)tφ(y,x)/pω(x)tφ(x,y). Condition (C4) with
the compactness of D2 and X guarantees that

sup
x,y∈X

sup
φ∈D2

|∂ log tφ(x,y)/∂φj| < ∞.

As αtφ(x,y) ≤ Qφ(x,y), (A.6) holds and (DRI3) is verified.
Verifying assumptions (A1), (A4). It is assumed in assumption (A1)

the existence of a global Lyapunov function for F(θ). Let L(θ) =
c4
2

∑κ
i=1(Zi(ωi)− Z̄(ω))2 + 1

2 |φ −μg,U(ω)|2, where Z̄(ω) = Z(ω)/κ .
Using straightforward algebra one can show that

−Z〈∇L,F〉 =
κ∑

i=1

c4Zi · (
Zi)
2

+ (
φ)T
∑
u∈U


Zu
∂μg,U(ω)

∂ωu
+

∑
u∈U

Zu|
φ|2,

where 
Zi = Zi(ωi) − Z̄(ω), 
φ = φ − μg,U(ω), and the arguments
(ωi and ω) in Zi(ωi) and Z(ω) have been dropped. Since � is bounded,
Zi(ωi) > ε� > 0 for all i. Because g is p-integrable, μg,i


= μg,{i}(0)

is bounded for all i and∣∣∣∣∂μg,U(ω)

∂ωu

∣∣∣∣ ≤ |μg,u| + max
i∈U

|μg,i| ≤ 2 max
1≤i≤κ

|μg,i| < ∞.

Thus, choosing a sufficiently large c4 ensures that 〈∇L(θ),F(θ)〉 ≤
0 for any θ ∈ � with equality if and only if θ ∈ �∗. Furthermore,
{θ ∈ � : L(θ) ≤ CL} is compact for some CL > 0 and the closure of
L(�∗) has an empty interior. Thus, all the conditions in assumption
(A1) are satisfied. Since |θ t+1 − θ t| ≤ γt supθ ,x |H(θ,x)| ≤ c2γt (A.4)
and γt = 1/(t + ξ) for t > tc, verifying assumption (A4) is immediate.
This completes the proof of the convergence of θn.

The result (A.2) can be established similarly as the proof of propo-
sition 6.2 in the work of Atchadé and Liu (2010). We only give an
outline here. The drift conditions imply that for any θ ∈ D, there exist
hθ (x), c5 > 0, and b ∈ (0,1] such that hθ − Kθ hθ = h − μh(ω) and

sup
θ∈D

(‖hθ‖ + ‖Kθ hθ‖) < ∞,

‖hθ − hθ ′ ‖ + ‖Kθ hθ − Kθ ′hθ ′ ‖ < c5|θ − θ ′|b, ∀θ , θ ′ ∈ D,

where Kθ hθ (x) = ∫
X Kθ (x,dy)hθ (y) and for f : X → R, ‖f ‖ =

supx∈X |f (x)|. See Proposition 6.1 and assumption (A3) in the work
of Andrieu, Moulines, and Priouret (2005). Then, following an essen-
tially identical proof to that of lemma 6.6 in the work of Atchadé and
Liu (2010), we can show that

∑∞
t=1 t−1[h(Xt+1)−μh(ωt)] has a finite

limit almost surely. Since μh(ωt)
a.s.−→ μh(ω∗) as t → ∞, Kronecker’s

lemma applied to the above infinite sum leads to the desired result.

SUPPLEMENTARY MATERIALS

Supplement: The supplementary document contains (1) more
discussion on the weighted estimator in Section 3.3 and
(2) data simulation details in Section 5.3.
(MultiDomainSuppl_R5.pdf)

[Received May 2010. Revised June 2011.]
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