Chapter 12: Lines in 2D

(Regression and Correlation)

- Vertical Lines
- Horizontal Lines
- Oblique lines
- Increasing/Decreasing
- Slope of a line
- Intercept
- $Y = \alpha X + \beta$, in general.

Chapter 12: Lines in 2D

- Regression and Correlation

There are random and nonrandom variables
- Correlation applies if both variables (X/Y) are random (e.g., We saw a previous example, systolic vs. diastolic blood pressure $SISVOL/DIAVOL$) and are treated symmetrically.
- Regression applies in the case when you want to single out one of the variables (response variable, Y) and use the other variable as predictor (explanatory variable, X), which explains the behavior of the response variable, Y.

Looking vertically

- Flatter line gives better prediction, since it approx. goes through the middle of the Y-range, for each fixed X-value (vertical line).

Correlation Coefficient

Correlation coefficient ($-1 \leq R \leq 1$): a measure of linear association, or clustering around a line of multivariate data.

Relationship between two variables (X, Y) can be summarized by: (μ_X, σ_X), (μ_Y, σ_Y) and the correlation coefficient, R. $R = 1$, perfect positive correlation (straight line relationship), $R = 0$, no correlation (random cloud scatter), $R = -1$, perfect negative correlation.

Computing $R(X,Y)$: (standardize, multiply, average)

$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_k - \mu_X}{\sigma_X} \right) \left(\frac{y_k - \mu_Y}{\sigma_Y} \right) X = \{x_1, x_2, \ldots, x_N\}, \ Y = \{y_1, y_2, \ldots, y_N\}, \ \mu_X, \sigma_X, \mu_Y, \sigma_Y$$
Correlation Coefficient

Example:

\[
R(X,Y) = \frac{1}{N} \sum_{k=1}^{N} \left(\frac{x_k - \mu_x}{\sigma_x} \right) \left(\frac{y_k - \mu_y}{\sigma_y} \right)
\]

<table>
<thead>
<tr>
<th>Student Height</th>
<th>Weight</th>
<th>R(X,Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>0.87</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>0.78</td>
</tr>
<tr>
<td>3</td>
<td>77</td>
<td>0.69</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>0.59</td>
</tr>
<tr>
<td>5</td>
<td>99</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Total: 260.2 0 = 0.98

Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y

\[
R(aX + b, cY + d) = \frac{\sum (aX_k + b - \mu_{aX} + b)(cY_k + d - \mu_{cY} + d)}{\sigma_{aX} \sigma_{cY}}
\]

Correlation Coefficient - Properties

Correlation is Associative

\[
R(X,Y) = \frac{1}{N} \sum_{k=1}^{N} \left(\frac{x_k - \mu_x}{\sigma_x} \right) \left(\frac{y_k - \mu_y}{\sigma_y} \right) = R(Y,X)
\]

Correlation measures linear association, NOT an association in general!!! So, Corr(X,Y) could be misleading for X & Y related in a non-linear fashion.

Trend and Scatter - Computer timing data

The major components of a regression relationship are trend and scatter around the trend.

To investigate a trend – fit a math function to data, or smooth the data.

Computer timing data: a mainframe computer has X users, each running jobs taking Y min time. The main CPU swaps between all tasks. Y* is the total time to finish all tasks. Both Y and Y* increase with increase of tasks/users, but how?

<table>
<thead>
<tr>
<th>X = Number of terminals:</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>45</th>
<th>40</th>
<th>10</th>
<th>30</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y* = Total Time (mins):</td>
<td>6.6</td>
<td>14.9</td>
<td>18.4</td>
<td>12.4</td>
<td>7.9</td>
<td>0.9</td>
<td>5.5</td>
<td>2.7</td>
</tr>
<tr>
<td>X = Number of terminals:</td>
<td>50</td>
<td>30</td>
<td>65</td>
<td>40</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Y = Total Time (mins):</td>
<td>12.6</td>
<td>6.7</td>
<td>23.6</td>
<td>9.2</td>
<td>20.2</td>
<td>21.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X = Time Per Task (secs):</td>
<td>15.1</td>
<td>13.3</td>
<td>21.8</td>
<td>13.8</td>
<td>18.6</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We want to find reasonable models (descriptions) for these data!

Equation for the straight line – linear/affine function

\[y = \beta_0 + \beta_1 x \]

- \(\beta_0 \): Intercept (the y-value at \(x = 0 \))
- \(\beta_1 \): Slope of the line (rise/run), change of \(y \) for every unit of increase for \(x \).

The idea of a residual or prediction error

\[u = y - \hat{y} \]

Least squares criterion

Choose the values of the parameters to minimize the sum of squared prediction errors (or sum of squared residuals),

\[\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]
The least squares line

\[\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \]

Choose line with smallest sum of squared prediction errors

\[\text{Min } \sum (y_i - \hat{y}_i)^2 \]

Its parameters are denoted:

- Intercept: \(\hat{\beta}_0 \)
- Slope: \(\hat{\beta}_1 \)

Prediction errors

\[(x_i, y_i) \]

Least-squares line

Choose line with smallest sum of squared prediction errors

\[\text{Min } \sum (y_i - \hat{y}_i)^2 \]

Its parameters are denoted:

- Intercept: \(\hat{\beta}_0 \)
- Slope: \(\hat{\beta}_1 \)

Prediction errors

\[(x_i, y_i) \]

Computer timings data – linear fit

\[\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) = \sum_{i=1}^{n} (y_i - \bar{y})^2 \]

\[\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]

\[\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \]

Computer timings data

Table 12.3.1 Prediction Errors

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\bar{y})</th>
<th>(\bar{x})</th>
<th>(\hat{y})</th>
<th>(y - \hat{y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>9.00</td>
<td>13.00</td>
<td>-3.10</td>
<td>13.00</td>
<td>-3.10</td>
</tr>
<tr>
<td>50</td>
<td>17.80</td>
<td>15.50</td>
<td>2.30</td>
<td>14.50</td>
<td>3.30</td>
</tr>
<tr>
<td>60</td>
<td>18.40</td>
<td>18.00</td>
<td>0.40</td>
<td>16.00</td>
<td>-2.00</td>
</tr>
<tr>
<td>45</td>
<td>16.50</td>
<td>14.25</td>
<td>2.25</td>
<td>13.75</td>
<td>2.75</td>
</tr>
<tr>
<td>40</td>
<td>11.90</td>
<td>13.00</td>
<td>-1.10</td>
<td>13.00</td>
<td>-1.10</td>
</tr>
<tr>
<td>10</td>
<td>5.50</td>
<td>5.50</td>
<td>0.00</td>
<td>8.50</td>
<td>-3.00</td>
</tr>
<tr>
<td>30</td>
<td>11.00</td>
<td>10.50</td>
<td>0.50</td>
<td>11.50</td>
<td>-0.50</td>
</tr>
<tr>
<td>20</td>
<td>8.10</td>
<td>8.00</td>
<td>0.10</td>
<td>10.00</td>
<td>2.00</td>
</tr>
<tr>
<td>50</td>
<td>15.10</td>
<td>15.50</td>
<td>-0.40</td>
<td>14.50</td>
<td>0.60</td>
</tr>
<tr>
<td>30</td>
<td>13.30</td>
<td>10.50</td>
<td>2.80</td>
<td>11.50</td>
<td>1.80</td>
</tr>
<tr>
<td>65</td>
<td>21.80</td>
<td>19.25</td>
<td>2.55</td>
<td>16.75</td>
<td>5.05</td>
</tr>
<tr>
<td>40</td>
<td>13.00</td>
<td>13.00</td>
<td>0.00</td>
<td>13.00</td>
<td>0.00</td>
</tr>
<tr>
<td>65</td>
<td>18.60</td>
<td>10.50</td>
<td>2.80</td>
<td>11.50</td>
<td>1.85</td>
</tr>
<tr>
<td>65</td>
<td>15.10</td>
<td>19.25</td>
<td>-0.65</td>
<td>16.75</td>
<td>5.05</td>
</tr>
</tbody>
</table>

Computer timings data

\[\text{Sum of squared errors } 37.46 \]

\[\text{Sum of squared errors } 90.36 \]

Adding the least squares line

\[\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \]

\[(x_i, y_i) \]

1. The least-squares line \(\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \) passes through the points \((x = 0, y = ?) \) and \((x = \bar{x}, y = ?) \). Supply the missing values.
Hands – on worksheet!

1. $X = \{-1, 2, 3, 4\}, \ Y = \{0, -1, 1, 2\}$,

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$x - \bar{x}$</th>
<th>$y - \bar{y}$</th>
<th>$(x - \bar{x})(y - \bar{y})$</th>
<th>$(x - \bar{x})^2$</th>
<th>$(y - \bar{y})^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
\hat{\beta}_0 = \frac{\sum (y_i - \bar{y})(x_i - \bar{x})}{\sum (x_i - \bar{x})^2} \quad \hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}
\]

Hands – on worksheet!

1. $X = \{-1, 2, 3, 4\}, \ Y = \{0, -1, 1, 2\}, \ \bar{x} = 2, \ \bar{y} = 0.5$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$x - \bar{x}$</th>
<th>$y - \bar{y}$</th>
<th>$(x - \bar{x})(y - \bar{y})$</th>
<th>$(x - \bar{x})^2$</th>
<th>$(y - \bar{y})^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
\hat{\beta}_0 = \frac{\sum (y_i - \bar{y})(x_i - \bar{x})}{\sum (x_i - \bar{x})^2} \quad \hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}
\]

Fitting a line through the data

Show the Regression-Line Simulation Applet
RegressionApplet.html

(a) The data
(b) Which line?

The simple linear model

When $X = x$, $Y \sim \text{Normal}(\mu_Y, \sigma_Y)$ where $\mu_Y = \beta_0 + \beta_1 x$, OR when $X = x$, $Y = \beta_0 + \beta_1 x + U$, where $U \sim \text{Normal}(0, \sigma_U)$

Random error

Data generated from $Y = 6 + 2x + \text{error (U)}$

Dotted line ———— is true line and solid line ———— is the data-estimated LS line. Note differences between true $\beta_0 = 6, \beta_1 = 2$ and their estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.
Data generated from $Y = 6 + 2x + \text{error(U)}$

Sample 3: $\beta_0 = 7.38, \beta_1 = 2.10$

Sample 4: $\beta_0 = 7.92, \beta_1 = 1.59$

Sample 5: $\beta_0 = 9.14, \beta_1 = 1.13$

Combined: $\beta_0 = 7.44, \beta_1 = 1.70$

Data generated from $Y = 6 + 2x + \text{error(U)}$

Recall the correlation coefficient…

Another form for the correlation coefficient is:

$$R(X;Y) = \text{Corr}(X;Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \times \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Misuse of the correlation coefficient

Some patterns with $r = 0$

Linear Regression

Regression relationship = trend + residual scatter

$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + \text{Err}$

Trend=best linear fit Line (LS)

$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$; $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Scatter = residual (prediction) error

$\text{Err} = \text{Obs-Pred}$

$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = (y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + \ldots + (y_n - \hat{y}_n)^2$

Another Notation for the Slope of the LS line

1. Note that there is a slight difference in the formula for the slope of the Least-Squares Best-Linear Fit line:

$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$

$\beta_1 = \tau - \beta_0 x$

$\hat{\beta}_1 = \text{Corr}(X;Y) \times \frac{SD(Y)}{SD(X)}$; $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$
Another Notation for the Slope of the LS line

\[\hat{\beta}_1^{\text{New}} = \text{Corr}(X,Y) \frac{SD(Y)}{SD(X)} \]

\[
= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} \times \left(\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{N-1} \right)^{1/2}
\]

Course Material Review

1. Part I
2. Data collection, surveys.
3. Experimental vs. observational studies
4. Numerical Summaries (5-number-summary)
5. Binomial distribution (prob’s, mean, variance)
6. Probabilities & proportions, independence of events and conditional probabilities
7. Normal Distribution and normal approximation

Course Material Review – cont.

1. Part II
2. Central Limit Theorem – sampling distribution of \(\bar{X} \)
3. Confidence intervals and parameter estimation
4. Hypothesis testing
5. Paired vs. Independent samples
6. Chi-Square (\(\chi^2 \)) Goodness-of-fit Test
7. Analysis Of Variance (1-way-ANOVA, one categorical var.)
8. Correlation and regression
9. Best-linear-fit, least squares method