Stat13 Homework 6
http://www.stat.ucla.edu/~dinov/courses_students.html
Suggested Solutions

HW 6 1 Let X = price of 100 g. X is approximately Normal.
Plan 1: T1 = 5 X
Plan 1: T2 = Y1 + Y2 + Y3 + Y4, where each Y is 1.25 X

Since X is Normal(mean = 1120, SD = 100), we have: Var(X) = 10000
E(Y) = 1.25 * 1120 = 1400, Var(Y) = 1.25 * 1.25 * Var(X) = 15625, SD(Y) = 125.
Y is Normal(mean = 1400, 125)

(a) E(T1) = 5 * 1120 = 5600.
Var(T1) = 25 * Var(X), so SD(T1) = sqrt(25 * 100 * 100) = 500.
T1 is Normal(mean = 5600, SD = 500).

(b) E(T2) = 4 * (1.25 * 1120) = 5600.
Var(T2) = Var(Y1 + Y2 + Y3 + Y4) = 4 *Var(Y1) = 4 * 15625, SD(T2) = 250.
Here we assume each Y’s are independent.
T2 is Normal(mean = 5600, SD = 250).

(c) The variance of plan 1 is larger.

(d) Plan 1:
P(T1 > 5100) = P((T1 – 5600)/500 > (5100 – 5600)/500) = P(Z > -1) = 0.84

(e) Plan 2:
P(T2 > 5100) = P((T2 – 5600)/250 > (5100 – 5600)/250) = P(Z > -2) = .975

(f) Plan 1:
P(T1 < 4500) = P((T1 – 5600)/500 < (4500 – 5600)/500) = P(Z < -2.2) = 0.0139

(g) Either one of the following explanations is acceptable:
Explanation 1: Probability in (d) > Probability in (e), so it is more likely to exceed $5100 using plan 1. Therefore, plan 2 is safer.
Explanation 2: Smaller variance yields better prediction. Plan 1 has smaller variance so it is safer.

HW 6 2
Each die: Let X = possible outcomes, so X could take on 1, 2, 3, 4, 5, 6, 7, and 8.
P(X = 1) = P(X = 2) = …. = 1/8.
\[
E(X) = \frac{(1 + 2 + 3 + \ldots + 8)}{8} = \frac{36}{8} = 4.5
\]
\[
\text{Var}(X) = \frac{(1 - 4.5)^2 + (2 - 4.5)^2 + \ldots + (8 - 4.5)^2}{8} = 6.
\]

Five dice is rolled twice --

Let \(X_{i,j} \) = the outcome of the \(i \)th die, at the \(j \)th time, \(i = 1, 2, 3, 4, 5 \), and \(j = 1, 2 \).

(This is just one way to assign subscripts.)

Then \(Y = X_{1,1} + X_{1,2} + \ldots + X_{5,1} + X_{5,2} \) (there are 10 terms here.)

Note each \(X_{i,j} \) is independent from another, so variance of the sum is the sum of the variance.

\[m_Y = E(Y) = 2 \times 5 \times 4.5 = 45. \]
\[\text{Var}(Y) = \text{Var}(X_{1,1} + X_{1,2} + \ldots + X_{5,1} + X_{5,2}) = 2 \times 5 \times 6 = 60. \]

So \(\text{SD}(Y) = \sqrt{60} = 7.745967 \)

Now we carry out the experiment 9 times:

Let \(\bar{Y} \) = sample mean of five dice being rolled twice. Sample size = 9.

The by CLT, \(\bar{Y} \) is Normal. To estimate the mean and SD of \(\bar{Y} \):

Mean(\(\bar{Y} \)) = 45
\[\text{SD}(\bar{Y}) = \sqrt{\text{Var}(Y) / 9} = 2.581989 \]

\textbf{HW 6 3}

Let \(X \) = number of correctly remembered words of a mnemonics group subject.

(like “treatment”)

Let \(Y \) = number of correctly remembered words of a normal group subject.

(like “control”)

These two groups of samples are independent.

(a) For the sampled data:
\[\text{mean}(X) = 14.1, \text{SD}(X) = 2.468752 \]
\[\text{mean}(Y) = 9.631579, \text{SD}(Y) = 3.33684 \]

(b) Let \(\overline{X} \) = sample mean of the normal group.

Let \(\overline{Y} \) = sample mean of the normal group

An estimate of the “difference in the mean” is \(D = \overline{X} - \overline{Y} = 4.468421 \)

Sample variance of \(\overline{X} \), \(S_x^2 = 11.13450 \)
Sample variance of \(\overline{Y} \), \(S_y^2 = 6.094737 \)
\[\text{SD}(D) = \sqrt{S_x^2 / 19 + S_y^2 / 20} = 0.9438026 \]

And \(D \) follows a t-distribution of \(DF = \min(20 - 1, 19 - 1) = 18 \).
\[t_{0.975} = 2.101 \]
\[95\% \text{ CI} = 4.468 \pm 2.101 \times 0.944 = (2.485492, 6.45135) \]
Plain English sentence: The 95%CI does not cover zero, and this suggests that the difference, D, is significantly different from zero.

(c) Approximate twice as much as old sample size.
We have: n1 = 20 and n2 = 19 are about the same. So, use n1 ≈ n2.
To find the new CI, plug in:

New n1 = 4 n1,
New n2 = 4 n2 ≈ 4 n1

Sample variance S_x^2 and S_y^2 are approximately the same as they were before plugging using 4 n1.

Then, the new CI = 0.5 old CI.

Note that $t_{0.975}$ does not change much (still about 2).
So the new sample should be four times of the old one.

(d) Since CI is 95% CI, we expect the CI to cover the true parameter value with 95% probability.