Lab 3

To Invest or not to Invest?
That is the Question.

Suppose you are a Broadway producer. You would want your show to make as much money as possible, and one way of deciding whether or not to invest your time and money into a particular show would be to examine past shows to see how they did. We’ll examine a simple question: How does the size of the theater affect box office receipts? Does the size of the theater “predict” the average box office receipts?

To begin, download the data:

. use http://www.stat.ucla.edu/labs/datasets/broadway.dta

Type describe to familiarize yourself with the dataset.

Scatterplots are graphs that allow us to examine the relationship of two continuous variables. Make a scatterplot of the receipts against the capacity.

. scatter receipts capacity

Note that the receipts variable is on the y-axis and the capacity variable is on the x-axis. In Stata, the variable you want on the x-axis is always the last variable in the variable list.

If you want to reveal the name of the show for any unusual observations, issue this command:
Question 1: Which show had the highest box office receipts? Which show appeared in the theater with the most seats?

Question 2: Describe the trend: How are receipts and capacity related? Would you say this is a linear relationship?

The correlation coefficient helps us quantify the linear relationship of two variables.

Question 3: Based on the scatterplot of receipts and capacity, what would you guess the correlation between these variables will be?

Check your guess by typing

. corr receipts capacity

Question 4: Consider the variables receipts, capacity, attendnc, and ratio. Which pair of variables will have the highest positive correlation? Which pairs, if any, will have a negative correlation?

Stata allows you to calculate the correlations of multiple pairs of variables at once by including more variable names in the command.

. corr receipts capacity attendnc ratio

We can further quantify the linear relationship with a least squares regression. (This is possible whether or not the relationship is really linear. If the relationship is not linear, then our least squares regression will be a very poor description — but we can still compute it.) Note that Stata gives us a
lot more information than we are ready for right now. You’ll return to this later in your studies. Type:

```
. regress receipts capacity
```

*Question 5: Look in the column headed by “Coef.” (Coefficient) to find the estimated intercept and slope. Write the equation of the line here:*

*Question 6: Interpret the slope.*

To graph the line on top of the scatterplot, type:

```
. twoway (scatter receipts capacity) (lfit receipts capacity)
```

*Question 7: What is the interpretation of this regression line? Is capacity a good predictor of average receipts? Explain.*

An examination of the residuals of a regression can help us discover errors. A residual is the difference between an observed value and the predicted value. In this context, it’s the difference between what a show actually made and what the linear regression says it was expected to make. Put slightly differently, it’s the difference between the actual average receipts for a particular show and the average receipts of all shows in theaters with the same capacity. To examine the residuals, type

```
. predict resids, residuals
. scatter resids capacity, mlabel(show) yline(0)
```

Note: The predict command refers to the most recent regression computed using the regress command. If no regress command has been entered, it will issue an error statement.

*Question 8: Name two shows that made more than expected. Name two shows that made less. Which show did the best, in terms of beating expectations?*
Question 9: As an investor, what have you learned? What type of theater would you be more inclined to invest in?

Question 10: This dataset contains many more variables, such as whether the production was a play or a musical, the average attendance, and what percentage of seats are filled during the average performance. What other analysis would you do to this data set before investing?

Commands for To Invest or not to Invest

Use the space next to each command to make notes on what that command does.

use filename
scatter y x
corr
regress y x
twoway (scatter y x) (lfit y x)
predict newvar, residuals
Assignment

You’ve probably been told, since the first day you complained about school, that education will help you get a better job. Certainly many jobs require a certain level of education, but does all that schoolwork pay off? It is difficult to claim solely on data of income and education level that the higher the level of education, the more money one makes. This is because there are many other factors that determine where we ultimately obtain a job, such as socio-economic status, or simply who you know. One way to try to bypass all these confounding factors and focus solely on the question “Will I make more money if I am more educated?” is to look at twins. Twins should have identical background factors. We expect them to have the same opportunities. Look at pairs of twins and analyze their differences in education level and differences in income.

Load this data set into Stata:

```
. use http://www.stat.ucla.edu/labs/datasets/twins.dat
```

Two variables of interest are `hrwageh` and `hrwagel`. These are the hourly wages of twins. You might want to focus your investigation on the difference in their hourly wage. To create this variable, type

```
. gen diffwage = hrwageh - hrwagel
```

Two other interesting variables are `educh`, the self-reported education level (in years) of the twin who reported earning `hrwageh`, and `educl`, the self-reported education level of the twin who reported earning `hrwagel`. Create another variable to describe the difference in education level.

```
. gen diffeduc = educh - educl
```

Are education and income related? Investigate this question with these data. Report on your findings. Your report should include answers to the following questions.

*Question 11: Do you expect the correlation between the twins’ incomes to be positive or negative? High (close to positive or negative 1) or low (close to 0)? Check.*
Question 12: Find the correlation matrix for these variables: hrwageh, hrwagel, educl, educh, diffwage, diffeduc. What’s the correlation between hrwageh and hrwagel? Interpret. Why does the correlation between hrwagel and diffeduc have a different sign than the correlation between hrwageh and diffeduc?

Question 13: What’s the typical difference in hourly wage between twins? Is it what you expected?

Question 14: Describe the distribution of the difference in hourly wage. Are there any unusual features?

Question 15: Make a scatterplot of the difference in income against the education level of either one of the twins. Interpret. Does it matter which twin’s education level you chose?

Question 16: Perform a regression using the diffeduc variable to answer this question: is there evidence that the twin with more education makes more money?

Question 17: Examine the residuals from this last regression. For what types of twins did the model have the largest error (that is, the greatest difference between the predicted value and the observed value)? Do you see any possible outliers?