Lab 4

Does more money result in better SAT scores?

As you are probably well aware, SAT scores are one measure of a school’s performance. Given a choice, most parents prefer their children go to a school with high average SAT scores. A continuing debate in public policy is whether more money should be spent on public schools or whether money should be spent more efficiently. (Of course, you might argue that both policies might be pursued at the same time, but for some reason this point rarely comes up in public debate.) This dataset will not settle this question, but it does provide an example of the types of data that public policy makers consider when making decisions and crafting arguments.

The Data

The variables in this data set, all aggregated to the state level, were extracted from the 1997 Digest of Education Statistics, an annual publication of the U.S. Department of Education. This data set contains variables that address the relationship between public school expenditures and academic performance, as measured by the SAT. The variables are: name of state, current expenditure per pupil (measured in thousands of dollars per average daily attendance in public elementary and secondary schools), average pupil/teacher
ratio in public elementary and secondary schools during Fall 1994, estimated average annual salary of teachers in public elementary and secondary schools during 1994-95 (in thousands of dollars), percentage of all eligible students taking the SAT in 1994-95, average verbal SAT score in 1994-95, average math SAT score in 1994-95, and average total score on the SAT in 1994-95.

In today’s lab we will explore the relationship between state expenditures on public elementary and secondary education and the performance of students on the SAT exam.

Data are not always in Stata’s .dta form and sometimes more code is needed to read in a data set. Often data are delimited by tabs or commas. When this is the case, the insheet command is used. Try the insheet command with today’s dataset and see what the results are with the browse command.

. insheet using http://www.stat.ucla.edu/labs/datasets/sat.dat
. browse

Question 1: How many variables are present in the data set? What went wrong with the insheet command?

When you see something like this, it’s often because the columns of data are separated by spaces rather than tabs or commas. To read in data like this, we use the infile command. With this command, we can specify the names of the variables and read in the data all at one time. The difficulty with this command is that you must know how the dataset is structured. Clear out what you have in Stata with the clear command and read in the data properly.

. clear
. infile str15 state cost ratio salary percent verbal math total using http://www.stat.ucla.edu/labs/datasets/sat.dat

The “str15” part of the command lets Stata know that the first variable “state” is a string variable that takes up the first 15 positions.

Question 2: Now what do you see when you type the “browse” command?
It is good practice to annotate your dataset as much as possible. This is helpful if you return to working with the data after a break. Using the description of the dataset provided above, enter in descriptive labels for each of the variables. For example:

```
. label var salary "estimated avg teacher salaries in thousands for 94-95"
```

After all the work you have done to import the data into Stata and label the variables, it would be wise to save your changes as a new Stata dataset. Click on File and select Save As.... Choose an appropriate name for your Stata dataset.

Correlations and causations

Correlations are frequently used to make a point about relationships. You’ll frequently hear politicians or newspaper columnists claim something along the line of “State spending on education is positively correlated with SAT scores and therefore we should increase our State’s spending.”

As you should know by now, correlations measure the strength of the linear relationship between two variables. The fact that there is a strong linear relationship, however, says nothing about the causal relationship. That is, it doesn’t mean that spending causes higher SAT scores.

Question 3: Take a guess: will the correlation between total SAT scores and cost per pupil be positively or negatively correlated? What value do you think the correlation will have?

To get Stata to calculate the correlation, type

```
. corr total cost
```

Question 4: Were you right? Are you surprised? Why or why not?
Question 5: Interpret this correlation for someone who has read it in a newspaper.

Question 6: What value would you get for the correlation if you typed the variables in reverse order? That is, if you typed \texttt{corr cost total}?

Question 7: Which variable do you think will have the greatest correlation (disregarding positive or negative signs) with \texttt{total}? Which do you think will have a correlation closest to zero?

Question 8: Which variables do you think will have a negative correlation with \texttt{total}?

You can see all possible correlations at once by including more variables in the \texttt{corr} command. This produces a correlation matrix.

\begin{verbatim}
 . corr total math verbal cost ratio salary percent
\end{verbatim}

This tells us, for example, that the correlation between the total SAT and the verbal scores is .9915. The correlation between verbal and math scores is .9703. The diagonal of this matrix will always have 1.0000 along it, because every variable is perfectly correlated with itself.

Question 9: What is the correlation between ratio and cost? Explain why it is negative.
A Picture Paints 1000 Words

You might have been surprised by the negative correlation between spending and SAT scores. But remember the correlation is a simple summary of sometimes complex information. We can get a much better picture of what’s going on by looking at a graph. In fact, a graph should always be our first step. Calculating a correlation coefficient should occur only if we think the relationship is linear.

```
. scatter total cost
```

Question 10: Describe this plot. What is the trend? Does it look linear? Are there any unusual observations?

Stata allows us to label the points on a graph, making it easier to identify any unusual observations.

```
. scatter total cost, mlabel(state)
```

Question 11: Which states have performance much like California?

You might have noticed that four states – Alaska, Connecticut, New Jersey and New York – look different from the others.

Question 12: If we remove these four points, will the trend look more linear? How do you think the correlation coefficient will change?

Removing points is a little tricky. Don’t worry too much about the inner logic of these commands, but if you’re interested we’ll explain at the end of this lab. For now, just type along.

```
. gen unusual = total if _n==2 | _n==7 | _n==30 | _n==32
. gen usethese = total if missing(unusual)==1
```
. scatter usethese cost, mlabel(state)

Question 13: What do you think the correlation between total SAT and cost will be for these 46 states?

. corr usethese cost

The correlation is only slightly closer to 0. But notice that it is difficult to tell if there is a linear relation hidden in there somewhere.

Using Regression to Summarize a Linear Relation

Let’s again consider the entire dataset. Compute the regression line, the line that “best fits” the data, for total versus cost.

. regress total cost
. twoway (scatter total cost) (lfit total cost)

Question 14: What is the equation of the regression line?

Question 15: Interpret the slope.

We have already noted that there are some outlier states. What effect do they have on the regression equation?

Question 16: Redo the regression without the four outlier states. What is the effect on the slope?
Aggregated Data

These data consisted of aggregated data. This means that rather than compare the actual amount spent at each school with the average SAT at each school, we instead considered all of the schools of the states aggregated together. In practice this can create pitfalls for interpretation in a regression context. One big effect is that often regression relationships look stronger than they actually are. Sometimes much stronger. The reason for this is that the aggregation hides a lot of the variation in the data. Keep in mind that each point on this graph might represent ten thousand schools, and that there might be greater differences between schools within California than there are between the average of all California schools and the average of all schools from any other state.

The “if” command used to remove points

Here’s a quick description of how these commands worked. Here are the commands, one by one:

. gen unusual = total if _n==1 | _n==2 | _n==30 | _n==32

This creates a new variable named “unusual.” unusual will have the same values as the variable total, but only in the 1st, 2nd, 30th, and 32nd positions. Everywhere else it will be coded with the value “missing.” unusual has only four values and the rest are missing.

. gen usethese = total if missing(unusual)==1

We next want to create a new variable that has the same values as total but is blank (or missing) for the four outlier states. This command creates a new variable named usethese and sets it equal to the values in total only at the locations where the variable unusual is missing values. The function missing(varname) returns a 1 when varname is missing a value and a 0 everywhere else.
Assignment

To attract good teachers, schools need to offer high salaries. If you have good teachers, students should have higher SAT scores. Therefore, states with high teacher salaries should have high SAT scores. Further examine the SAT data. Do the data refute this reasoning, or are the other factors at play? Summarize your findings.