EXERCISE 1
A coin is tossed 3 times independently. One of the variables of interest is the number of tails X. Let Y denote the amount of money won on a side bet in the following manner:
If the first tail occurs on the first toss, you win 1.
If the first tail occurs on the second toss, you win 2.
If the first tail occurs on the third toss, you win 3.
If no tails appear you lose 1.
Construct the joint probability distribution of X and Y. In other words complete the following table where the entries are the probabilities for each pair of values of the variables X and Y.

<table>
<thead>
<tr>
<th>X</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-1</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

EXERCISE 2
A die is rolled and the number observed X is recorded. Then a coin is tossed number of times equal to the value of X. For example if $X = 2$ then the coin is tossed twice, etc. Let Y be the number of heads observed. Note: Assume that the die and the coin are fair.

a. Construct the joint probability distribution of X and Y.
b. Find the conditional expected value of Y given $X = 5$.
c. Find the conditional variance of Y given $X = 5$.

EXERCISE 3
There are three checkout counters at a local supermarket. Two customers arrive at the counters at different times when the counters are serving no other customers. Each customer chooses a counter at random and independently of the other. Let X denote the number of customers who choose counter 1 and Y the number of customers who select counter 2. Find the joint probability distribution of X and Y.

EXERCISE 4
Let X and Y denote the proportion of time, out of the workday, that employees I and II, respectively, actually spend performing their assigned tasks. The joint probability density function of X and Y is as follows:

$$ f_{XY}(x, y) = \begin{cases}
 x + y & 0 \leq x \leq 1; 0 \leq y \leq 1 \\
 0 & \text{elsewhere}
\end{cases} $$

a. Find $P(X < \frac{1}{2}, Y > \frac{1}{4})$. [Ans. $\frac{3}{16}$]
b. Find $P(X + Y \leq 1)$. [Ans. $\frac{1}{2}$]

EXERCISE 5
A particular fast-food outlet is interested in the joint behavior of the random variables X, defined as the total time between a customer’s arrival at the store and leaving the service window, and Y, the time that a customer waits in line before reaching the service window. Because X contains the time a customer waits in line, we must have $X \geq Y$. Suppose the joint probability density function of X and Y is as follows:

$$ f_{XY}(x, y) = \begin{cases}
 e^{-x} & 0 \leq y \leq x < \infty \\
 0 & \text{elsewhere}
\end{cases} $$

with time measured in minutes.

a. Find $P(X < 2, Y > 1)$. [Ans. $e^{-1} - 2e^{-2}$]
b. Find $P(X \geq 2Y)$. [Ans. $\frac{1}{2}$]
c. Find $P(X - Y \geq 1)$. Note that $X - Y$ denotes the time spent at the service window. [Ans. e^{-1}]
EXERCISE 6
Let X and Y have the joint probability density function given by

$$f_{XY}(x, y) = \begin{cases} kxy & 0 \leq x \leq 1; 0 \leq y \leq 1 \\ 0 & \text{elsewhere} \end{cases}$$

a. Find the constant k that makes this a probability density function. [Ans. 4]
b. Find $P(X \leq \frac{1}{2}, Y \leq \frac{3}{4})$. [Ans. $\frac{9}{64}$]

EXERCISE 7
Refer to exercise 4.

a. Find the marginal density functions for X and Y. [Ans. $f_X(x) = x + \frac{1}{2}, f_Y(y) = y + \frac{1}{2}$]
b. Find $P(X \geq \frac{1}{2}|Y \geq \frac{1}{2})$. [Ans. $\frac{2}{3}$]
c. If employee II spends exactly 50% of the day on assigned duties, find the probability that employee I spends more than 75% of the day on similar duties. In other words find $P(X > 0.75|Y = 0.5)$. [Ans. $\frac{11}{12}$]

EXERCISE 8
Refer to exercise 6.

a. Find the marginal density functions of X and Y. [Ans. $f_X(x) = 2x, f_Y(y) = 2y$]
b. Find $P(X \leq \frac{1}{2}|Y \geq \frac{3}{4})$. [Ans. $\frac{1}{4}$]
c. Find the conditional density function of X given $Y = y$. [Ans. $2x$]
d. Find the conditional density function of Y given $X = x$. [Ans. $2y$]
e. Find $P(X \leq \frac{3}{4}|Y = \frac{1}{2})$. [Ans. $\frac{9}{16}$]