Problem 1 (25 points)
Answer the following questions:

a. Let X_1, X_2, \ldots, X_n independent with $X_i \sim \text{exp}\left(\frac{1}{\theta}\right)$, i.e. $\lambda = \frac{1}{\theta}$. Let $R = \sum_{i=1}^{n} \frac{X_i}{n}$. Find the distribution of R.

b. Let X_1, X_2, \ldots, X_n independent and identically distributed random variables with $X_i \sim N(\mu, \sigma)$. Consider an estimator of σ^2 of the form $\theta = cS^2$, where S^2 is the sample variance and c is a constant. Find the MSE of θ.

c. Suppose we observe X_1 from an exponential distribution with parameter $\frac{1}{\lambda}$. Consider an estimator of λ of the form $\hat{\lambda} = cX_1$. Find the MSE of $\hat{\lambda}$.

d. Show that the choice of c that minimizes the MSE in part (c) is $c = 0.5$.

e. Which estimator of λ will choose, cX_1 or X_1. Please explain using the MSE criterion with $c = 0.5$.

Problem 2 (25 points)
Answer the following questions:

a. Let X_1, X_2, \ldots, X_n independent and identically distributed random variables with $X_i \sim N(\mu, \sigma)$. Consider S^2, the estimator of σ^2. Find the moment generating function of S^2.

b. Let Y_1, Y_2, \ldots, Y_n independent bernoulli random variables, with probability of success p and therefore probability of failure $1 - p$. Find the Fisher information $I_1(\theta)$ for this problem.

c. Refer to part (b). Show that $\hat{p} = \frac{X}{n}$ achieves the Cramér-Rao lower bound and is therefore MVUE. Note: $X = \sum_{i=1}^n Y_i$. The goal here is to estimate the success probability p using n independent Bernoulli trials.

d. Suppose X_1, X_2, \ldots, X_n are independent and identically distributed random variables with $X_i \sim N(\mu, \sigma)$. Two unbiased estimators of σ^2 are $S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$ and $\hat{\sigma}^2_1 = \frac{1}{2} (X_1 - X_2)^2$. Find the relative efficiency of S^2 relative to $\hat{\sigma}^2_1$.2
Problem 3 (25 points)
Answer the following questions:

a. Let \(X \sim N_n(\mu 1, \Sigma) \), where \(1 = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \), and \(\Sigma \) is the variance covariance matrix of \(X \). Let \(\Sigma = (1 - \rho)I + \rho J \), with \(\rho > -\frac{1}{n-1} \), \(I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix} \) and \(J = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 \end{pmatrix} \). Therefore, when \(\rho = 0 \) we have \(X \sim N_n(\mu 1, I) \), and in this case we showed in class that \(\bar{X} \) and \(\sum_{i=1}^{n}(X_i - \bar{X})^2 \) are independent. Are they independent when \(\rho \neq 0 \)?

b. Suppose \(\epsilon \sim N_3(0, \sigma^2 I_3) \) and that \(Y_0 \sim N(0, \sigma^2) \), independently of the \(\epsilon_i \)'s. Therefore the vector \(\begin{pmatrix} Y_0 \\ \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{pmatrix} \), is multivariate normal. Define \(Y_i = \rho Y_{i-1} + \epsilon_i \) for \(i = 1, 2, 3 \). Express \(Y_1, Y_2, Y_3 \) in terms of \(\rho, Y_0, \) and the \(\epsilon_i \)'s.

c. Refer to part (b). Find the covariance matrix of \(Y = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} \),

d. What is the distribution of \(Y \)?
Problem 4 (25 points)
Let X_1, X_2, X_3, X_4, X_5 be independent and identically distributed random variables with $X_i \sim N(0, \sigma)$. Answer the following questions:

a. Find c so that the distribution of cX_1^2 is χ^2. What are the degrees of freedom?

b. Find c so that $c(X_1 + X_2 + X_3)$ follows that standard normal distribution.

c. What is the distribution of $\frac{X_1^2}{X_2^2}$?

d. Does the ratio $\frac{X_5}{\sqrt{X_3^2 + X_4^2}}$ follow the t distribution? If not, can you multiply the ratio by a constant c so that it follows the t distribution? What are the degrees of freedom?

e. Is $\frac{1}{4}(X_1 + X_2 + X_3)^2$ unbiased estimator of σ^2?