Constructing a boxplot and computing descriptive statistics in Stata and more…

Retrieve the file “textbookex1_38” as follows:

. use http://www.stat.ucla.edu/~nchristo/textbookex1_38

In this file there are four variables. The first (year1) is the year in which the Boston marathon was completed by men. The second (male_tim) is the completion time rounded to the nearest minute for the years 1959-97. The third (year2) is the year in which women were allowed to compete in the Boston Marathon. The fourth (female_tim) is the completion time also rounded to the nearest minute. You can see the data by typing . edit or . list

Let’s construct a box plot for the finishing time of men and women. First the box plot of the finishing time for men:

. graph box male_tim, t1title(Finishing marathon time for male runners)
Then the boxplot for the finishing time for women:

```
. graph box female_t, t1title(Finishing marathon time for female runners)
```

We can also do a side-by-side boxplot to compare the 2 variables.

```
. graph box male_tim female_t, t1title(Side-by-side boxplot)
```
Now let’s use Stata to compute descriptive statistics for the completion time of men and women. Here is the command:

```
.summarize male_tim female_t
```

And here is what Stata gives you:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>male_tim</td>
<td>39</td>
<td>133.641</td>
<td>5.106689</td>
<td>127</td>
<td>144</td>
</tr>
<tr>
<td>female_t</td>
<td>26</td>
<td>153.6538</td>
<td>13.07499</td>
<td>142</td>
<td>190</td>
</tr>
</tbody>
</table>

If you want more detailed output you should type:

```
.summarize male_tim female_t, detail
```

And you will receive this:

```
male_tim
Percentiles Smallest
  1%          127            127
  5%          128            128
 10%          128            128       Obs                  39
 25%          129            128       Sum of Wgt.          39
 50%          132                      Mean            133.641
 75%          137            142       Largest              Mean       133.641
 90%          142            143       Std. Dev.     5.106689
 95%          144            144       Variance       26.07827
99%          144            144       Skewness       .6219865
female_t
Percentiles Smallest
  1%          142            142
  5%          143            143
 10%          144            144       Obs                  26
 25%          145            144       Sum of Wgt.          26
 50%          147                      Mean            153.6538
 75%          162            167       Largest              Mean       153.6538
 90%          168            168       Std. Dev.     13.07499
 95%          186            186       Variance       170.9554
99%          190            190       Skewness       1.482637
```

Question:
Find the median, the first and third quartiles, and compute the interquartile range of the completion time for men and women. Now go back to the boxplots and locate these numbers. Which dataset has larger variation? Try to find a reason for that.
Think about this...

Another data set gives the boxplot below. What happened here? Generate data that give you approximately the following boxplot.

A different data set has the following boxplot. Why? Generate data that give you approximately the following boxplot.