Problem 1 For a continuous variable $X \sim f(x)$. For each part, it is not sufficient to simply use the properties of expectation and variance.

(1) Prove $E[aX + b] = aE[X] + b$.

Proof.

\[
E[aX + b] = \int_{-\infty}^{\infty} (aX + b) f(x) \, dx
\]

\[
= \int_{-\infty}^{\infty} aX f(x) \, dx + \int_{-\infty}^{\infty} b f(x) \, dx
\]

\[
= a \int_{-\infty}^{\infty} X f(x) \, dx + b \int_{-\infty}^{\infty} f(x) \, dx
\]

\[
= a \mu + b \times \int_{-\infty}^{\infty} f(x) \, dx
\]

\[
= a \mu + b \times 1
\]

\[
= aE[X] + b
\]

(2) Prove $\text{Var}(aX + b) = a^2 \text{Var}(X)$. Let $Z = aX + b$.

Proof.

\[
\text{Var}(Z) = \int_{-\infty}^{\infty} (z - E(Z))^2 f(x) \, dx
\]

\[
= \int_{-\infty}^{\infty} (ax + b - [a\mu + b])^2 f(x) \, dx
\]

\[
= \int_{-\infty}^{\infty} (ax - a\mu)^2 f(x) \, dx
\]

\[
= \int_{-\infty}^{\infty} a^2 (x - \mu)^2 f(x) \, dx
\]

\[
= a^2 \int_{-\infty}^{\infty} (x - E[X])^2 f(x) \, dx
\]

\[
= a^2 \text{Var}(X)
\]
(3) Prove $\text{Var}(X) = E[X^2] - E[X]^2$.

Proof.

\[
\text{Var}(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx \\
= \int_{-\infty}^{\infty} (x^2 + \mu^2 - 2x\mu) f(x) \, dx \\
= \int_{-\infty}^{\infty} x^2 f(x) \, dx + \mu^2 \int_{-\infty}^{\infty} f(x) \, dx - 2\mu \int_{-\infty}^{\infty} x f(x) \, dx \\
= E[X^2] + \mu^2 - 2\mu^2 \\
= E[X^2] - \mu^2 \\
= E[X^2] - E[X]^2
\]

(4) Let $\mu = E[X], \sigma^2 = \text{Var}(X)$ and $Z = \frac{X-\mu}{\sigma}$. Calculate $E[Z]$ and $\text{Var}(Z)$.

Let $Z = \frac{X-\mu}{\sigma}$.

It is expected that you compute $E(Z)$ and $\text{Var}(Z)$ as follows

\[
E[Z] = \int_{-\infty}^{\infty} z f(z) \, dz \\
= \int_{-\infty}^{\infty} \left(\frac{x - \mu}{\sigma} \right) f(x) \, dx \\
= \frac{1}{\sigma} \int_{-\infty}^{\infty} (x - \mu) f(x) \, dx \\
= \frac{1}{\sigma} \left(\int_{-\infty}^{\infty} x f(x) \, dx - \mu \int_{-\infty}^{\infty} f(x) \, dx \right) \\
= \frac{1}{\sigma} (E(X) - \mu) \\
= \frac{\mu - \mu}{\sigma} \\
= 0
\]
But it is also acceptable to use what we just proved.

\[
E[Z] = E \left(\frac{X - \mu}{\sigma} \right) \\
= \frac{1}{\sigma} E(X - \mu) \\
= \frac{1}{\sigma} [E(X) - \mu] \\
= \frac{1}{\sigma} (\mu - \mu) \\
= 0
\]

Similarly,

\[
\text{Var}(Z) = \text{Var} \left(\frac{X - \mu}{\sigma} \right) \\
= \frac{1}{\sigma^2} \text{Var}(X) \\
= \frac{1}{\sigma^2} \cdot \sigma^2 \\
= 1
\]

Problem 2

For \(U \sim \text{Uniform}[0, 1] \), *calculate* \(E[U] \), \(E[U^2] \), \(\text{Var}(U) \), *and* \(F(u) = P(U \leq u) \).

By definition, the PDF for the uniform distribution is \(f(x) = \frac{1}{b-a} \). In this problem, \(b = 1 \) and \(a = 0 \) so \(f(x) = 1 \). Then,

\[
E(U) = \int_0^1 uf(u) \, du \\
= \int_0^1 u \, du \\
= \frac{1}{2} u^2 \bigg|_0^1 \\
= \frac{1}{2}
\]

In general, for \(U \sim \text{Uniform}[a, b] \),

\[
E(U) = \frac{b - a}{2}
\]
\[E(U^2) = \int_0^1 u^2 f(u) \, du \]
\[= \int_0^1 u^2 \, du \]
\[= \frac{1}{3} \left| u^3 \right|_0^1 \]
\[= \frac{1}{3} \]

Then

\[\text{Var}(U) = E(U^2) - E(U)^2 \]
\[= \frac{1}{3} - \left(\frac{1}{2} \right)^2 \]
\[= \frac{1}{3} - \frac{1}{4} \]
\[= \frac{1}{12} \]

and in general, for \(U \sim \text{Uniform}[a, b] \),

\[\text{Var}(U) = \frac{b - a}{12} \]

Problem 3

For \(T \sim \text{Exp}(\lambda) \),

1. Calculate \(F(t) = P(T \leq t) \). For \(a > b > 0 \), find \(P(T > a | T > b) \).

By definition
\[F(t) = P(T \leq t) \]
\[= \int_0^t \lambda e^{-\lambda t} \, dt \]
\[= \lambda \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_0^t \]
\[= -\left(e^{-\lambda t} - 1 \right) \]
\[= 1 - e^{-\lambda t} \]

Thus, we can also see that \(P(T > t) = e^{-\lambda t} \).
(2) **Calculate** \(E[T] \) **and** \(\text{Var}(T) \).

By definition

\[
E(T) = \int_0^\infty t \lambda e^{-\lambda t} \, dt
\]

\[
= \lambda \int_0^\infty te^{-\lambda t} \, dt
\]

Use integration by parts, \(u = t, dv = e^{-\lambda t} \) and the IBP formula \(uv - \int v \, du \).

\[
= \lambda \left[t \left(-\frac{1}{\lambda} e^{-\lambda t} \right) - \int -\frac{1}{\lambda} e^{-\lambda t} \, dt \right]
\]

\[
= \lambda \left[t \left(-\frac{1}{\lambda} e^{-\lambda t} \right) + \frac{1}{\lambda} \int e^{-\lambda t} \, dt \right]
\]

\[
= \lambda \left[t \left(-\frac{1}{\lambda} e^{-\lambda t} \right) + \frac{1}{\lambda} \left(-\frac{1}{\lambda} \right) e^{-\lambda t} \right]_0^\infty
\]

\[
= \lambda \left[t \left(-\frac{1}{\lambda} e^{-\lambda t} \right) - \frac{1}{\lambda^2} e^{-\lambda t} \right]_0^\infty
\]

\[
= -te^{-\lambda t} - \frac{1}{\lambda} e^{-\lambda t} \bigg|_0^\infty
\]

\[
= \left[-e^{-\lambda t} \left(t + \frac{1}{\lambda} \right) \right]_0^\infty
\]

Note that to evaluate at \(\infty \), we take the limit and that

\[
\lim_{t \to \infty} \left(-e^{-\lambda t} \right) \left(t + \frac{1}{\lambda} \right) = \infty \cdot 0
\]

which is an indeterminate form, but we can do

\[
\lim_{t \to \infty} - \left(t + \frac{1}{\lambda} \right) = \frac{-\infty}{\infty}
\]

another indeterminate form, but now we can use L’Hopital’s Rule yielding

\[
\lim_{t \to \infty} \frac{1}{\lambda e^{\lambda t}} = 0
\]

Then,

\[
\left[-e^{-\lambda t} \left(t + \frac{1}{\lambda} \right) \right]_0^\infty = 0 - \left[-\frac{1}{\lambda} \right] = \frac{1}{\lambda}
\]
Now we compute \(\text{Var}(T) \). Recall that \(\text{Var}(T) = E(T^2) - E(T)^2 \). We find \(E(T^2) \).

\[
E(T^2) = \int_0^\infty t^2 \lambda e^{-\lambda t} \, dt
\]

\[
= \lambda \int_0^\infty t^2 e^{-\lambda t} \, dt
\]

By integration by parts, \(u = t^2, dv = e^{-\lambda t} \) and the IBP formula \(uv - \int v \, du \).

\[
= \lambda \left[\int_0^\infty \left(-\frac{1}{\lambda} e^{-\lambda t} \right) - \int \frac{1}{\lambda} \cdot 2t \cdot e^{-\lambda t} \, dt \right]_0^\infty
\]

\[
= \lambda \left[-\frac{t^2}{\lambda} e^{-\lambda t} + \frac{2}{\lambda} \int t e^{-\lambda t} \, dt \right]_0^\infty
\]

\[
= -t^2 e^{-\lambda t} + 2 \int t e^{-\lambda t} \, dt
\]

By integration by parts, \(u = t, dv = e^{-\lambda t} \) and the IBP formula \(uv - \int v \, du \).

\[
= -t^2 e^{-\lambda t} + 2 \left\{ \left(\frac{1}{\lambda} e^{-\lambda t} \right) - \int \frac{1}{\lambda} e^{-\lambda t} \, dt \right\}_0^\infty
\]

\[
= -t^2 e^{-\lambda t} + 2 \left\{ -\frac{t}{\lambda} e^{-\lambda t} + \frac{1}{\lambda} \int e^{-\lambda t} \, dt \right\}_0^\infty
\]

\[
= -t^2 e^{-\lambda t} + 2 \left\{ -\frac{t}{\lambda} e^{-\lambda t} + \frac{1}{\lambda} \left(-\frac{1}{\lambda} \right) e^{-\lambda t} \right\}_0^\infty
\]

\[
= -t^2 e^{-\lambda t} + 2 \left\{ -\frac{t}{\lambda} e^{-\lambda t} - \frac{1}{\lambda^2} e^{-\lambda t} \right\}_0^\infty
\]

\[
= -t^2 e^{-\lambda t} - \frac{2t}{\lambda} e^{-\lambda t} - \frac{2}{\lambda^2} e^{-\lambda t}
\]

\[
= -e^{-\lambda t} \left(t^2 + \frac{2t}{\lambda} + \frac{2}{\lambda^2} \right)
\]

\[
\lim_{t \to \infty} -e^{-\lambda t} \left(t^2 + \frac{2t}{\lambda} + \frac{2}{\lambda^2} \right) = 0 \cdot \infty
\]

which is indeterminate and can be arranged to a friendly indeterminate form

\[
\lim_{t \to \infty} -\frac{t^2}{\lambda} + \frac{2t}{\lambda} + \frac{2}{\lambda^2} e^{\lambda t} = \infty \cdot \frac{\infty}{\infty}
\]

L’Hopital’s Rule then yields

\[
\lim_{t \to \infty} -\frac{2t + \frac{2}{\lambda}}{\lambda e^{\lambda t}} = \infty
\]

So we use L’Hopital’s Rule again, which yields

\[
\lim_{t \to \infty} -\frac{2t}{\lambda^2 e^{\lambda t}} = 0
\]
So we get

\[E(T^2) = -e^{-\lambda t} \left(t^2 + \frac{2t}{\lambda} + \frac{2}{\lambda^2} \right) \bigg|_0^\infty = \left[0 - \left(-\frac{2}{\lambda^2} \right) \right] = \frac{2}{\lambda^2} \]

\[\text{Var}(T) = E(T^2) - (E(T))^2 \]
\[= \frac{2}{\lambda^2} - \left(\frac{1}{\lambda} \right)^2 \]
\[= \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2} \]

(3) If \(U \sim \text{Uniform}[0,1] \), let \(X = -\frac{\log U}{\lambda} \). Calculate \(F(x) = P(X \leq x) \), and \(f(x) = F(x) \). What is the distribution of \(X \)?

To find the distribution of \(X \), we need to find \(f_X(x) \). We do this by starting with the CDF of \(x \) and differentiating it with respect to \(x \).

\[F_X(x) = P(X \leq x) \]
\[= P \left(-\frac{\log U}{\lambda} \leq x \right) \]
\[= P \left(\log U \geq -\lambda x \right) \]
\[= P \left(U \geq e^{-\lambda x} \right) \]
\[= 1 - P \left(U \leq e^{-\lambda x} \right) \]

But notice that \(P \left(U \leq e^{-\lambda x} \right) \) is the CDF for \(U \), \(F_U(u) \).

\[= 1 - F_U \left(e^{-\lambda x} \right) \]

Recall from an earlier problem that the CDF for the uniform distribution is \(F_U(u) = u \), so replace \(u \) with \(e^{-\lambda x} \).

\[= 1 - e^{-\lambda x} \]

And notice that the above is the CDF for the exponential distribution.

To get the distribution of \(X \), differentiation w/r/t \(x \).

\[f(x) = \lambda e^{\lambda x} \]

which is the PDF \(f(x) \) for the exponential distribution with parameter \(\lambda \), thus \(X \sim \text{Exp}(\lambda) \).
Let $Y = aT$ where $a > 0$. What is the density function of Y?

Again, to get $f(y)$, we start with the CDF of Y, F_Y and then differentiate it with respect to y.

$$4F_Y(y) = P(Y \leq y) = P(aT \leq y) = P\left(T \leq \frac{y}{a}\right)$$

which is the CDF for T w/r/t y, $F_T(y)$.

$$= F_T\left(\frac{y}{a}\right)$$

Now differentiate with respect to y.

$$= f_T\left(\frac{y}{a}\right) \cdot \frac{dy}{dy} a$$

$$= \frac{1}{a} f_T\left(\frac{y}{a}\right)$$

where $f_T(t) = \lambda e^{-\lambda t}$

$$= \frac{1}{a} \cdot \lambda e^{-\frac{ty}{a}}$$

$$= \frac{\lambda}{a} e^{-\left(\frac{y}{a}\right)}$$

Thus $Y \sim \text{Exp}\left(\frac{\lambda}{a}\right)$.

Problem 4

Suppose $Z \sim N(0, 1)$. The density of Z is

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

(1) Calculate $E[Z]$ and $\text{Var}[Z]$.

By definition,

$$E(Z) = \int_{-\infty}^{\infty} \frac{z}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

If we pull out the annoying constant, we get

$$E(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z e^{-\frac{z^2}{2}} dz$$
Trick: Note that the function \(ze^{\frac{z^2}{2}}\) is an odd function. Recall from Math 31B that if \(f(x)\) is odd, then

\[
\int_{-a}^{a} f(x) \, dx = 0
\]

Thus, \(E(Z) = 0\).

Recall that

\[
\operatorname{Var}(Z) = \int_{-\infty}^{\infty} (z - E(Z))^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^2 \cdot e^{-\frac{z^2}{2}} \, dz
\]

We integrate by parts. Let \(u = z, \, dv = ze^{\frac{-z^2}{2}}\). Then,

\[
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^2 \cdot e^{-\frac{z^2}{2}} \, dz = \frac{1}{\sqrt{2\pi}} \left\{ \left[-z e^{-\frac{z^2}{2}}\right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} \, dz \right\}
\]

But note that since \(ze^{\frac{-z^2}{2}}\) is odd, \([-z e^{-\frac{z^2}{2}}]_{-\infty}^{\infty} = 0\).

So we are left with

\[
\operatorname{Var}(Z) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz
\]

But note that the integrand is the standard normal distribution! This means that when integrated over its domain (infinite), the integral is 1!

So \(\operatorname{Var}(Z) = 1\).

(2) Let \(X = \mu + \sigma Z\). What are \(E[X]\) and \(\operatorname{Var}(X)\)? What is the density function of \(X\)? Please! One at a time! No pushing... Let’s start with \(E[X]\). Since \(X = \mu + \sigma Z\),

\[
E(X) = E(\mu + \sigma Z) \\
= E(\mu) + E(\sigma Z) \\
= \mu + \sigma E(Z) \\
= \mu
\]

And,

\[
\operatorname{Var}(X) = \operatorname{Var}(\mu + \sigma Z) \\
= \sigma^2 \operatorname{Var}(Z) \\
= \sigma^2
\]
Now the hard part. We want to find the density function of X. There is a theorem that you will learn in 100B that is related to this problem. That theorem states that if Z is a standard normal random variable ($Z \sim N(0, 1)$), then $X = \mu + \sigma Z$ is also a normal random variable. We just proved that the mean is μ and the variance is σ. What we have not proven is that the distribution of X is normal... yet.

We start with the CDF of and then differentiate it to get the density function $f(x)$.

In my notation below, F_X denotes that we are finding the CDF of X.

\[
F_X(x) = P(X \leq x) = P(\mu + \sigma Z \leq x) = P \left(Z \leq \frac{x - \mu}{\sigma} \right) = \int_{-\infty}^{\frac{x - \mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dt = F_Z \left(\frac{x - \mu}{\sigma} \right)
\]

Now we have that $F_X(x) = F_Z \left(\frac{x - \mu}{\sigma} \right)$ where F_Z is the cumulative distribution function of the distribution of Z.

Recall that we want to differentiate $F_X(x)$ so that we get $f_X(x)$ (which is the density function), but since $F_X(x) = F_Z \left(\frac{x - \mu}{\sigma} \right)$, differentiating F_X is the same as differentiating F_Z. Is everybody with me?

So we proceed as follows.

\[
\frac{d}{dx} F_X(x) = \frac{d}{dx} F_Z \left(\frac{x - \mu}{\sigma} \right) = f_Z \left(\frac{x - \mu}{\sigma} \right) \cdot \frac{1}{\sigma} = \frac{1}{\sigma} \cdot f_Z \left(\frac{x - \mu}{\sigma} \right)
\]

Recap: Before concluding, let’s review what we have calculated so far...

\[
\frac{d}{dx} F_X(x) = f_X(x) = \frac{1}{\sigma} \cdot f_Z \left(\frac{x - \mu}{\sigma} \right)
\]

But recall that

\[
f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}
\]
So

\[f_Z \left(\frac{x - \mu}{\sigma} \right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2} \]

Thus,

\[f_X(x) = \frac{1}{\sigma} \cdot f_Z \left(\frac{x - \mu}{\sigma} \right) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2} \]

Cool, eh?

Problem 5

Suppose we flip a fair coin 1000 times independently. Let \(X \) be the number of heads. Answer the following questions using normal approximation.

Note that we would usually solve this problem using the binomial. The computation would be cumbersome, but more importantly, since \(p = \frac{1}{2} \) is not too close to 0 or 1, and \(n \) is large, and since \(np > 10, n(1 - p) > 10 \), we use the normal approximation to the binomial. Since the binomial distribution is discrete and the normal distribution is continuous, we must use a correction.

Using the normal approximation, we have that \(\mu = np = \frac{1000}{2} = 500 \) and \(\sigma^2 = np(1 - p) = 500 \cdot \frac{1}{2} = 250 \).

1. **What is the probability that 480 ≤ \(X \) ≤ 520?**

\[
P(480 \leq X \leq 520) \approx P(479.5 \leq X \leq 520.5)
= P \left(\frac{479.5 - 500}{\sqrt{250}} \leq Z \leq \frac{520.5 - 500}{\sqrt{250}} \right)
= P(-1.3 \leq Z \leq 1.3)
= P(Z \leq 1.3) - P(Z \leq -1.3)
\approx 0.794
\]

Note that the range around the mean is symmetric so it is also true that

\[P(Z \leq 1.3) - P(Z \leq -1.3) = 1 - 2P(Z \leq -1.3) = 0.794 \]

2. **What is the probability that \(X > 530 \)?**

\[
P(X > 530) = 1 - P(X \leq 530)
\approx 1 - P(X \leq 529.5)
= 1 - P \left(Z \leq \frac{529.5 - 500}{\sqrt{250}} \right)
= 1 - P(Z \leq 1.87)
\approx 0.031
\]
Problem 6

Suppose among the population of voters, $\frac{1}{3}$ of the people support a candidate. If we sample 1000 people from the population, and let X be the number of supporters of this candidate among these 1000 people. Let $\hat{p} = \frac{X}{n}$ be the sample proportion. Answer the following questions using normal approximation.

Note that by the Central Limit Theorem, $\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right) = 0.0002$.

(1) What is the probability that $\hat{p} > .35$

\[
P(\hat{p} > 0.35) = P\left(\hat{p} > \frac{0.35 - 0.33}{\sqrt{0.0002}}\right) = 1 - P(Z \leq 1.41) = 0.079
\]

(2) What is the probability that $\hat{p} < .3$?

\[
P(\hat{p} < 0.3) = P\left(Z < \frac{0.3 - 0.33}{\sqrt{0.0002}}\right) = P(Z < -2.12) = 0.017
\]

Problem 7

Consider the following joint probability mass function $p(x, y)$ of the discrete random variables (X, Y):

\[
x/y | 1 | 2 | 3 \\
1 | 0.1 | 0.1 | 0.1 \\
2 | 0.2 | 0.1 | 0.2 \\
3 | 0.1 | 0.05 | 0.05 \\
\]

(1) Calculate $p_X(x)$ for $x = 1, 2, 3$. Calculate $p_Y(y)$ for $y = 1, 2, 3$.

Note that $p_X(x)$ is the marginal of X and is just the row sums, thus,

\[
p_X(1) = 0.1 + 0.1 + 0.1 = 0.3 \\
p_X(2) = 0.2 + 0.1 + 0.2 = 0.5 \\
p_X(3) = 0.1 + 0.05 + 0.05 = 0.2
\]

Note that $p_Y(y)$ is the marginal of Y and is just the column sums, thus,

\[
p_Y(1) = 0.1 + 0.2 + 0.1 = 0.4 \\
p_Y(2) = 0.1 + 0.1 + 0.05 = 0.25 \\
p_Y(3) = 0.1 + 0.2 + 0.05 = 0.35
\]
(2) Calculate $P(X = x | Y = y)$ and calculate $P(Y = y | X = x)$ for all pairs of (x, y).

By Bayes’ Rule,

$$P(X = x | Y = y) = \frac{p(x, y)}{P(Y = y)}$$
$$P(Y = y | X = x) = \frac{p(x, y)}{P(X = x)}$$

Thus, $P(X = x | Y = y)$:

<table>
<thead>
<tr>
<th>x/y</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.4</td>
<td>0.286</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.4</td>
<td>0.57</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>0.2</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Thus, $P(Y = y | X = x)$:

<table>
<thead>
<tr>
<th>x/y</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

(3) Calculate $E(X)$ and $E(Y)$. Calculate $\text{Var}(X)$ and $\text{Var}(Y)$.

$$E(X) = 1 \cdot P(X = 1) + 2 \cdot P(X = 2) + 3 \cdot P(X = 3)$$
$$= 0.3 + 2 \cdot 0.5 + 3 \cdot 0.2$$
$$= 1.9$$

$$E(Y) = 1 \cdot P(Y = 1) + 2 \cdot P(Y = 2) + 3 \cdot P(Y = 3)$$
$$= 0.4 + 2 \cdot 0.25 + 3 \cdot 0.35$$
$$= 1.95$$

$$\text{Var}(X) = (1 - 1.9)^2 \cdot 0.3 + (2 - 1.9)^2 \cdot 0.5 + (3 - 1.9)^2 \cdot 0.2$$
$$= 0.49$$

$$\text{Var}(Y) = (1 - 1.95)^2 \cdot 0.4 + (2 - 1.95)^2 \cdot 0.25 + (3 - 1.95)^2 \cdot 0.35$$
$$= 0.7475$$
(4) *Calculate* $E(\text{XY})$. *Calculate* Cov(X,Y). *Calculate* Corr(X,Y).

Note that $E(\text{XY}) = E(X)E(Y)$ if and only if X and Y are independent.

\[
E(\text{XY}) = \sum_x \sum_y p(x, y)
\]

\[
= 1 \cdot 1 \cdot p(1, 1) + 1 \cdot 2 \cdot p(1, 2) + 1 \cdot 3 \cdot p(1, 3)
\]

\[
+ 2 \cdot 1 \cdot p(2, 1) + 2 \cdot 2 \cdot p(2, 2) + 2 \cdot 3 \cdot p(2, 3)
\]

\[
+ 3 \cdot 1 \cdot p(3, 1) + 3 \cdot 2 \cdot p(3, 2) + 3 \cdot 3 \cdot p(3, 3)
\]

\[
= 0.1 + 2 \cdot 0.1 + 3 \cdot 0.1 + 2 \cdot 0.2 + 4 \cdot 0.1 + 6 \cdot 0.2
\]

\[
+ 3 \cdot 0.1 + 6 \cdot 0.05 + 9 \cdot 0.05
\]

\[
= 3.65
\]

By definition, Cov$(X,Y) = E(\text{XY}) - E(X)E(Y)$.

\[
\text{Cov}(X, Y) = E(\text{XY}) - E(X)E(Y)
\]

\[
= 3.65 - 1.9 \cdot 1.95
\]

\[
= -0.055
\]

Since the covariance is not 0, X and Y are dependent. They have a negative relationship.

Since the covariance can be anything, we normalize to get a value between -1 (perfect negative correlation), and +1 (perfect positive correlation) where 0 means no correlation.

\[
\text{Corr}(X, Y) = \frac{\text{Cov}(X,Y)}{\sigma_x \sigma_y}
\]

\[
= \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)}}
\]

\[
= \frac{-0.055}{\sqrt{0.49} \sqrt{0.7475}}
\]

\[
= -0.091
\]

X and Y have a weakly negative correlation.