Frederic Paik Schoenberg (Rick)
Publications
0. Schoenberg, F. (1997).
Assessment of Multi-dimensional Point Processes.
Ph.D. Thesis, University of California, Berkeley, 1997.
1. Petty, K., Bickel, P., Jiang, J., Ostland, M., Rice, J., Ritov, Y., and
Schoenberg, F. (1998).
Accurate estimation of travel times from single loop detectors .
Transportation Research A, 1,1--17.
2. Schoenberg, F. (1999).
Transforming spatial point processes into Poisson processes.
Stochastic
Processes and their Applications, 81(2), 155--164.
3. Schoenberg, F., and Bolt, B. (2000).
Short-term exciting, long-term correcting models for earthquake catalogs .
Bulletin of the Seismological Society of America, 90(4),
849--858.
4. Schoenberg, F. (2000).
Summary of Data on Hyperemesis Gravidarum. The Birthkit,
Spring, p.4,8.
5. Schoenberg, F., Berk, R., Fovell, R., Li, C., Lu, R., and Weiss, R.
(2001).
Approximation and inversion of a complex meteorological system via local linear
filters.
Journal of Applied Meteorology, 40(3), 446--458.
6. Kagan, Y., and Schoenberg, F. (2001).
Estimation of the upper cutoff parameter for the tapered Pareto
distribution.
J. Appl. Prob. 38A, Supplement: Festscrift for David Vere-Jones,
D. Daley, editor, 158--175.
7. Schoenberg, F. (2001).
Evidence for threshold-type relationships between fire incidence and
ecological factors. Proc. Forest Fires 2001: Operational Mechanisms,
Firefighting Means and New Technologies, Athens, Greece, March 13-16, pp
158-162.
8. Berk, R., Fovell, R., Schoenberg, F., and Weiss, R. (2001).
The use of statistical tools for evaluating
computer simulations: an editorial essay. Climate Change 51,
119-130.
9. Schoenberg-Fejzo M, Anderson L, Schoenberg, F.P. (2001).
Familial aggregation of hyperemesis gravidarum.
American J. of Human Genetics
69(4), supplement 1, p.389.
10. Schoenberg, F.P. (2002).
Tessellations.
in Encyclopedia of Environmetrics, Abdel El-Shaarawi
and Walter Piegorsch, editors. Wiley, NY, vol. 3, pp 2176-2179.
11. Brillinger, D.R., Guttorp, P.M., and Schoenberg, F.P. (2002).
Point processes, temporal. in
Encyclopedia of Environmetrics, Abdel El-Shaarawi
and Walter Piegorsch, editors. Wiley, NY, vol. 3, pp 1577-1581.
12. Guttorp, P.M., Brillinger, D.R., and Schoenberg, F.P. (2002).
Point processes, spatial. in
Encyclopedia of Environmetrics, Abdel El-Shaarawi
and Walter Piegorsch, editors. Wiley, NY, vol. 3, pp 1571--1573.
13. Schoenberg, F.P., Brillinger, D.R., and Guttorp, P.M. (2002).
Point processes, spatial-temporal.
in Encyclopedia of Environmetrics,
Abdel El-Shaarawi and Walter Piegorsch, editors. Wiley, NY, vol. 3, pp
1573--1577.
14. Schoenberg, F.P. (2002).
On rescaled Poisson processes and the Brownian bridge.
Ann. Int. Stat. Math. , 54(2), 445--457.
15. Berk, R., Bickel, P., Campbell, K., Fovell, R.,
Keller-McNulty, S., Kelly, E., Linn, R., Park, B.,
Perelson, A., Rouphail, N.,
Schoenberg, F., and Sacks, J. (2002).
Workshop on statistical approaches for the evaluation of complex
computer models.
Statistical Science 17, 173-192.
16. Schoenberg, F.P., Peng, R., and Woods, J. (2003).
On the distribution of wildfire sizes.
Environmetrics , 14(6), 583--592.
17. Schoenberg, F.P., Peng, R., Huang, Z., and Rundel, P. (2003).
Detection of nonlinearities in the dependence of burn area on fuel age and
climatic variables .
Int. J. Wildland Fire , 12(1), 1--10.
18. Schoenberg-Fejzo M, MacGibbon K, Schoenberg, F.P. (2003).
Familial aggregation of hyperemesis gravidarum.
American Journal of Human Genetics
73(5), supplement 1, p.386.
19. Schoenberg, F.P., Ferguson, T., and Li, C. (2003).
Inverting Dirichlet tessellations.
Computer Journal 46(1), 76--83.
Multi-dimensional residual
analysis of point process models for earthquake occurrences.
JASA 98(464), 789--795.
21. Schoenberg, F.P. (2004).
Consistent parametric estimation of the
intensity of a spatial-temporal point process.
JSPI 128(1), 79--93.
22. Vere-Jones, D., and Schoenberg, F.P. (2004).
Rescaling marked point processes.
Australian & New Zealand Journal of Statistics
46(1), 133-143.
23. Schoenberg, F.P. (2004).
Testing separability in multi-dimensional point processes.
Biometrics 60, 471-481.
24. Brillinger, D.R., Robinson, E.A., and Schoenberg, F.P., editors (2004).
Time Series Analysis and Applications to Geophysical Systems.
IMA Volumes in Mathematics and its Applications, Springer, New York.
25. Zaliapin, I., Kagan, Y., and Schoenberg, F. (2005).
Approximating the distribution of Pareto sums.
Pure and Applied Geophysics 162(6-7), 1187-1228.
26. Peng, R. D., Schoenberg, F. P., Woods, J. (2005).
A space-time conditional intensity model for evaluating a wildfire
hazard index.
JASA 100 (469), 26--35.
27. Schoenberg, F. P. (2005).
Review of Statistical Inference and Simulation for Spatial Point
Processes by Jesper Moller and R.P. Waagepetersen.
JASA 100 (469), 349--350.
28. Schweitzer, S., Connell, J., Schoenberg, F., and Rubini, L. (2005).
Clustering in the biotechnology industry.
Proceedings of the 4th Global Conference on Business and
Economics,
St. Hugh's College, Oxford, June 26-28 2005.
29. Schoenberg, F.P. (2005).
Comment on 'Residual analysis for spatial point processes' by Baddeley,
Turner, Moeller, and Hazelton.
JRSS B , 67, 661.
30. Connell, J., Schweitzer, S.O., and Schoenberg, F.P. (2005).
Clustering in the biotechnology industry.
in "Health Policy and High-Tech Industrial Development:
Learning from Innovation in the Health Industry", Di Tommaso, M.R. and
Schweitzer, S.O., eds., Cheltenham, England: Edward Elgar
Publishers.
31. Veen, A. and Schoenberg, F.P. (2006).
Assessing spatial point process models for California earthquakes using
weighted K-functions: analysis of California earthquakes. in Case
Studies in Spatial Point Process Models, Baddeley, A., Gregori, P., Mateu,
J., Stoica, R., and Stoyan, D. (eds.), Springer, NY, pp. 293--306.
32. Schoenberg, F.P. (2006).
On non-simple marked point processes.
Ann. Inst. Stat. Math. 58(2), 223-233.
33. Schweitzer, S., Connell, J., and Schoenberg, F. (2006).
Clustering in the biotechnology industry.
International Journal of Healthcare Technology and Management
, 7(6), 554-566.
34. Schoenberg, F.P. (2007).
Comment on 'A note on testing separability in spatial-temporal marked
point processes,'
by Renato Assuncao and Alexandra Maia.
Biometrics 63(1), 294--295.
35. Schoenberg, F.P., Chang, C., Keeley, J., Pompa, J., Woods, J., and Xu,
H. (2007).
A Critical Assessment of the
Burning Index in Los Angeles County, California.
International Journal of Wildland Fire , 16(4), 473--483.
36. Schoenberg, F.P. (2007).
Discussion of "Modern statistics for spatial point processes" by Moller
and Waagepetersen.
Scandinavian Journal of Statistics (34), 700-701.
37. Schoenberg, F.P. and Tranbarger, K.E. (2008).
Description of earthquake aftershock sequences using prototype point
processes. Environmetrics, 19, 271--286.
38. Schoenberg, F.P., Barr, C., and Seo, J. (2008).
The distribution of Voronoi cells generated
by Southern California earthquake epicenters.
Environmetrics, 20(2), 159--171.
39. Veen, A. and Schoenberg, F.P. (2008).
Estimation of space-time branching process models in seismology using an
EM-type algorithm.
JASA, 103(482), 614-624.
40. Schoenberg, F.P., Pompa, J.L., and Chang, C. (2009).
A note on non-parametric and semi-parametric modeling of wildfire
hazard in Los Angeles County, California.
Environmental and Ecological Statistics 16(2), 251--269.
41. Adelfio, G. and Schoenberg, F.P. (2009).
Point process diagnostics
based on weighted second-order
statistics and their asymptotic properties
Annals of the Institute of Statistical Mathematics,
61(4), 929--948.
42. Eslami, E., Nishimura, A., and Schoenberg, F. (2009).
Impact of weather covariates on wildfire in Tanjung Puting National Park.
Int. J. Forestry Research, 2009(270387), 1--8.
43. Wong, K., and Schoenberg, F.P. (2009).
On mainshock focal mechanisms and the spatial
distribution of aftershocks.
BSSA , 99(6):3402-3412.
44. Bird, P, Kagan, Y.Y., Jackson, D.D.,
Schoenberg, F.P., and Werner, M.J. (2009).
Linear and
Nonlinear Relations between Relative Plate Velocity
and Seismicity.
Bulletin of the Seismological Society
of America
99(6), pp. 3097-3113.
45. Tranbarger, K.E. and Schoenberg, F.P. (2010).
On the computation and application of point process prototypes.
Open Applied Informatics Journal 4, 1-9.
46. Schoenberg, F.P., Chu, A., and Veen, A. (2010).
On the relationship between lower magnitude thresholds
and bias in ETAS parameter estimates.
Journal of Geophysical Research 115(B04), 309-324.
47. Chang, J., and Schoenberg, F.P. (2010).
A Statistical Analysis of Santa Barbara Ambulance Response in 2006:
Performance Under Load.
Western Journal of Emergency Medicine, 10(1), 42--47.
48. Moeller, J., and Schoenberg, F.P. (2010).
Thinning spatial point processes into Poisson processes.
Adv. Appl. Prob.
42, 347-358.
49. Schoenberg, F.P. (2010).
Introduction to point processes.
Wiley Encyclopedia of Operations Research
and Management Science
, J. Cochran, ed., pp. 616-617.
50. Yee, E., Stewart, J.P., and Schoenberg, F.P. (2010).
Evaluation of volumetric threshold strain considering noisy feedback
signals from simple shear device.
Proceedings of the 9th US National & 10th
Canadian Conf. on Earthquake Engineering,
July 25-29, 2010, Paper No. 1217, pp. 1-7.
51. Barr, C., and Schoenberg, F.P. (2010).
On the Voronoi estimator for the intensity of an
inhomogeneous planar Poisson process.
Biometrika
97 (4), 977-984.
52. Wang, Q., Schoenberg, F.P., Jackson, D.D., and Kagan, Y.Y. (2010).
Standard errors of parameter estimates in the ETAS model.
BSSA , 100(5a), 1989-2001.
53. Chang, C., and Schoenberg, F.P. (2011).
Testing separability in multi-dimensional point
processes with covariates.
Annals of the Institute of Statistical Mathematics,
63(6), 1103--1122.
54. Nairn-Birch, N., Diez, D., Eslami, E., Macias Fauria, M., Johnson, E.,
and Schoenberg, F. (2011).
Simulation and Estimation of Probabilities of
Phases of the Pacific Decadal Oscillation.
Environmetrics,
22(1), 79-85.
55. Xu, H., and Schoenberg, F.P. (2011).
Point process modeling of wildfire hazard in Los Angeles County,
California.
Annals of Applied Statistics , 5(2a), 684-704.
56. Yee, E., Schoenberg, F.P., and Stewart, J.P. (2011).
Characterization and Utilization of Noisy Displacement Signals from Simple
Shear Device using Spectral, Linear, and Kernel Regression Methods.
Soil Dynamics and Earthquake Engineering
, 31(1), pp. 25-32.
57. Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., and
Tita, G.E. (2011).
Self-exciting point process modeling of crime.
JASA ,
106(493), 100-108.
58. Nichols, K., Schoenberg, F.P., Keeley, J., and Diez, D. (2011).
The application of prototype point processes
for the summary and description of California wildfires.
JTSA , 32(4), 420-429.
59. Chu, A., Schoenberg, F.P., Bird, P., Jackson, D.D., and Kagan, Y.Y.
(2011).
Comparison of ETAS parameter estimates across different global tectonic
zones.
BSSA , 101(5), 2323-2339.
60. Patel, R., and Schoenberg, F.P. (2011).
A graphical test for local self-similarity in univariate data
Journal of Applied Statistics , 38(11), 2547-2562.
61. Mullin, P.M., Bray, A., Schoenberg, F., MacGibbon, K.,
Romero, R., Goodwin, T.M., and Fejzo, M.S. (2011).
Prenatal exposure to Hyperemesis Gravidarum linked to
increased risk of psychological/behavioral disorders in
adulthood.
Journal of Developmental Origins of Health and Disease ,
Aug(2), 200-204.
62. Schoenberg, F. (2011).
An Introduction to Probability with Texas Hold'em Examples.
Taylor and Francis, New York.
63. Mullin, P.M., Bray, A., Schoenberg, F., MacGibbon, K.,
Romero, R., Goodwin, T.M., and Fejzo, M.S. (2011).
Change in paternity and recurrence of Hyperemesis Gravidarum.
The Journal of Maternal-Fetal and Neonatal Medicine, Oct 19, 22010839, 1-20.
64. Xu, H., Nichols, K., and Schoenberg, F.P. (2011).
Kernel regression of directional data with application to wind and wildfire
data in Los Angeles County, California
Forest Science , 57(4), 343-352.
65. Schoenberg, F.P, and Zhuang, J. (2011).
On thinning a spatial point process into a Poisson process using the
Papangelou intensity.
UCLA Statistics Preprints 636, 1--15.
66. Clements, R.A., Schoenberg, F.P., and Schorlemmer, D. (2011).
Residual analysis for space-time point processes with applications to
earthquake forecast models in California.
Annals of Applied Statistics 5(4), 2549--2571.
67. Schoenberg, F.P. and Patel, R.D. (2012).
Comparison of Pareto and tapered Pareto distributions for
environmental phenomena.
European Physical Journal, 205, 159-166.
68. Diez, D., Schoenberg, F.P., and Woody, C.D. (2012).
Algorithms for computing spike time distance and point process prototypes
with application to feline neuronal responses to acoustic stimuli.
J. Neuroscience Methods ,
203(1), 186-192.
69. Balderama, E., Schoenberg, F.P., Murray, E., and Rundel, P.W. (2012).
Application of branching point process models to the
study of invasive red banana plants in Costa Rica.
JASA 107(498), 467-476.
70. Schoenberg, F.P. (2012).
Point processes, spatial--temporal.
in Encyclopedia of Environmetrics, Second Edition,
A.H. El-Shaarawi and W. Piegorsch (eds),
John Wiley & Sons Ltd, Chichester, UK, pp. 2885-2886.
71. Clements, R.A., Schoenberg, F.P., and Veen, A. (2012).
Evaluation of space-time point process models using
super-thinning.
Environmetrics, 23(7), 606-616.
72. Schoenberg, F.P. (2013).
Facilitated estimation of ETAS.
Bulletin of the Seismological Society of America, 103(1),
601-605.
73. Schoenberg, F.P., Brillinger, D.R., and Guttorp, P.M. (2013).
Point processes, spatial-temporal.
in Encyclopedia of Environmetrics,
Abdel El-Shaarawi and Walter Piegorsch, editors. Wiley, NY, vol. 4, pp
1573--1578.
74. Fejzo, M., Magtira, A., Schoenberg, F., Macgibbon, K., Mullin, P.,
Romero, R., and Tabsh, K. (2013).
Antihistamines and other Prognostic Factors for Adverse
Outcome in Hyperemesis Gravidarum.
European Journal of Obstetrics and Gynecology and Reproductive Biology,
170, 71-76.
75. Bray, A., and Schoenberg, F.P. (2013).
Assessment of point process models for earthquake forecasting.
Statistical Science 28(4), 510-520.
76. Schoenberg, F. (2013).
Comment on ``Estimating the historical and future
probabilities of large terrorist events" by Clauset and Woodard.
Annals of Applied Statistics, , 7(4), 1888--1890.
77. Nichols, K., and Schoenberg, F.P. (2014).
Assessing the dependency between the magnitudes of earthquakes and the
magnitudes of their aftershocks.
Environmetrics 25(3), 143--151.
78. Baltar, M., Schoenberg, F.P., and Keeley, J. (2014).
County-level analysis of the impact of
temperature and population increases on California wildfire.
Environmetrics 25(6), 397-405.
79. Bray, A., Wong, K., Barr, C.D., and Schoenberg, F.P. (2014).
Voronoi cell based residual analysis of
spatial point process models with applications
to Southern California earthquake forecasts.
Annals of Applied Statistics, 8(4), 2247-2267.
80. Mateu, J., Schoenberg, F.P., Diez, D.M., Gonzalez, J.A., and Lu, W.
(2015).
On distances between point patterns and their applications.
Biometrical Journal , 57(2), 340-358.
81. Fejzo, M., Magtira, A., Schoenberg, F., and Goodwin, T. (2015).
Neurodevelopmental delay in children exposed in
utero to hyperemesis gravidarum.
European J. of Obstetrics and Gynecology and Reproductive Biology
, 189, 79-84.
82. Gordon, J.S., Clements, R.A., Schoenberg, F.P., and Schorlemmer, D.
(2015).
Voronoi
residuals and other residual analyses applied to CSEP
earthquake forecasts.
Spatial Statistics , 14b, 133-150.
83. Fejzo, M., Magtira, A., Schoenberg, F., Macgibbon, K., Mullin, P.,
and Patel, A. (2015).
Antihistamines and other prognostic factors for adverse outcome
in hyperemesis gravidarum: a follow-up study.
Jacobs Journal of Gynecology and Obstetrics , 2(3), 1-3.
84. Schoenberg, F.P. (2016).
A note on the consistent estimation of spatial-temporal point process
parameters.
Statistica Sinica, , 26, 861-879.
Supplement .
85. Zipkin, J.R., Schoenberg, F.P., Coronges, K., and Bertozzi, A.L.
(2016).
Point-process models of social network interactions: parameter
estimation and missing data recovery.
European Journal of Applied Math , 27(3), 502-529.
86. Njabo, K.Y., Zanontian, L., Sheta, B.N., Samy, A., Galal, S.,
Schoenberg, F.P., and Smith, T.B. (2016).
Living with avian flu - persistence of the H5N1 highly pathogenic avian
influenza virus in Egypt.
Veterinary Microbiology, 187, 82-92.
87. Fejzo, M., Magtira, A., Schoenberg, F., Macgibbon, K., Mullin, P.,
and Patel, A. (2016).
Long-term health effects in children
exposed in utero to hyperemesis gravidarum.
COGRM , 2(2), 150-154.
88. Fox, E.W., Coronges, K., Schoenberg, F.P., Short,
M.B., and Bertozzi, A.L. (2016).
Modeling e-mail networks and inferring leadership using self-exciting
point processes
JASA , 111(514), 1-21.
89. Fox, E.W., Schoenberg, F.P., and Gordon, J.S. (2016).
Spatially inhomogeneous background rate estimators
and uncertainty quantification for nonparametric
Hawkes point process models of earthquake occurrences.
Annals of Applied Statistics 10(3), 1725-1756.
90. Comanor W, Scott JT, Schweitzer S, White L, Riddle J, Schoenberg FP (2018).
Value based pricing of pharmaceuticals in the US and UK: does centralized cost effectiveness analysis matter?
Review of Industrial Organization , 52(4), 589-602.
91. Molyneux, J., Gordon, J., and Schoenberg, F.P. (2018).
Assessing the predictive accuracy of earthquake strike angle estimates using non-parametric Hawkes processes.
Environmetrics, 29(2), e2491.
92. Fejzo M, Sazonova O, Sathirapongsasuti F, Hallgrimsdotti I, MacGibbon K,
Vacic V, Schoenberg F, Mancuso N, Slamon D, Mullin P (2018).
Placenta and appetite genes GDF15 and IGFBP7 are
associated with hyperemesis gravidarum.
Nature Communications, 9(1), doi.org/10.1038/s41467-018-03258-0.
93. Schoenberg, F.P., Gordon, J.S., and Harrigan, R. (2018).
Analytic computation of nonparametric Marsan-Lenglin\'e estimates
for Hawkes point processes.
Journal of Nonparametric Statistics , 30(3), 742-757.
94. Schoenberg, FP. (2018).
Comment on 'A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications' by Alex Reinhart.
Statistical Science 33(3), 325-326.
95. Schoenberg, F.P. (2018).
Introduction to Special Issue on Novel or Unusual
Ideas in Environmental Statistics.
Journal of Environmental Statistics 8(2), 1-3.
96. Schoenberg, F.P. (2018).
Quantification of luck and skill in Texas Hold'em.
Significance , 15(6), 30-33.
97. Schoenberg, F.P., Hoffmann, M., and Harrigan, R. (2019).
A recursive point process model for infectious diseases.
AISM 71(5), 1271-1287. https://doi.org/10.1007/s10463-018-0690-9.
98. Harrigan, R., M. Mossoko, E. Okitolonda-Wemakoy, F.P. Schoenberg,
N. Hoff, P. Mbala, S.R. Wannier, S.D. Lee, S. Ahuka-Mundeke, T.B.
Smith, B. Selo, B. Njokolo, G. Rutherford, A.W. Rimoin, J.J.M. Tamfum,
and J. Park (2019).
Real-time predictions of the 2018-2019 Ebola virus disease outbreak in the Democratic Republic of Congo using Hawkes point process models.
Epidemics 28, 100354.
99. Schoenberg, F.P. (2019).
Rejoinder to 'Comments on Schoenberg et al. (2003)' by Hamid Ghorbani.
Environmetrics 30,e2601, 1-1.
100. Schoenberg, F. (2020).
Review of Theory of Spatial Statistics by MCM van Lieshout.
JASA 115(530), 1033-1034. DOI: 10.1080/01621459.2020.1759991.
101. Chen B, Shrestha P, Bertozzi AL, Mohler G, and Schoenberg F (2021).
A novel point process model for COVID-19: multivariate recursive
Hawkes process.
in Modeling and Simulation in Science, Engineering, and Technology,
Birkhauser-Springer, New York, chapter 5.
102. Yuan, B., Schoenberg, F.P., and Bertozzi, A.L. (2021).
Fast estimation of multivariate spatiotemporal Hawkes processes
and network reconstruction
.
AISM 73 (6), 1127-1152.
103. Park, J., F.P. Schoenberg, P.J. Brantingham, and A.L. Bertozzi. (2021).
Investigating clustering and violence interruption in gang-related violent crime data using spatial-temporal point processes with covariates.
JASA 116 (536), 1674-1687.
104. Wang J, Harrigan R, and Schoenberg FP (2021).
Point process models for the spread of Coccidioidomycosis in California.
Infectious Disease Reports 13, 558-570.
https://doi.org/10.3390/idr13020052
105. Kaplan AM, Park J, Kresin C, and Schoenberg FP. (2021).
Nonparametric estimation of recursive point
processes with application to mumps in Pennsylvania.
Biometrical Journal 64(1), 20-32, DOI: https://doi.org/10.1002/bimj.202000245.
106. Gordon J.S., Fox E.W., and Schoenberg F.P. (2021).
A nonparametric Hawkes model for forecasting California seismicity .
BSSA 111(4), 2216-2234.
107. Kresin, C., Schoenberg, F., and Mohler, G. (2021).
Comparison of Hawkes and SEIR models for the spread of Covid-19.
Advances and Applications in Statistics, 74, 83-106.
108. Mohler G., Schoenberg F., Short M.B., and Sledge D. (2021).
Analyzing the Impacts of Public Policy on COVID-19 Transmission: A Case Study of the Role of Model and Dataset Selection Using Data from Indiana.
Statistics and Public Policy 8(1), 1-8.
109. Lee SD, Shen A, Park J, Harrigan RJ, Hoff N, Rimoin A, Schoenberg FP. (2022).
Comparison of prospective Hawkes and recursive point process models for Ebola in DRC.
Journal of Forecasting 41, 201-210.
https://onlinelibrary.wiley.com/doi/10.1002/for.2803 .
110. Guo Z., Khuu I., Zhu K., Rosenthal J.S., and Schoenberg F.P. (2022).
Distinguishing Luck from Skill through Statistical Simulation: A Case Study.
JRSS A 51(5) , 2537-2559.
DOI: 10.1080/03610918.2019.1698746.
111. Park J, Chaffee A., Harrigan R., and Schoenberg F.P. (2022).
A non-parametric Hawkes model of the spread of Ebola in West Africa.
J Appl. Stat. 49(3), 621-637.
112. Schoenberg, F. (2022).
Nonparametric estimation of variable productivity Hawkes processes.
Environmetrics 33(6), e2747.
113. Kresin, C., and Schoenberg, F. (2023).
Parametric estimation of spatial-temporal point processes
using the Stoyan-Grabarnik statistic.
AISM , 75, 887-909. https://doi.org/10.1007/s10463-023-00866-6 .
114. Schoenberg, F. (2023).
Estimating Covid-19 transmission time using Hawkes point processes.
Annals of Applied Statistics 17(4), 3349-3362.
115. Barr VA, Piao J, Balagopalan L, McIntire KM, Schoenberg F, and Samelson LE (2023).
Heterogeneity of signaling complex nanostructure in T cells activated
via the T cell antigen receptor.
Microscopy and Microanalysis 29(4), 1503-1522.
116. Schoenberg F. (2023).
Some statistical problems involved in forecasting and estimating the spread of SARS-CoV-2 using Hawkes point processes and SEIR models.
Environmental and Ecological Statistics 30, 851-862. doi 10.1007/s10651-023-00591-6.
117. Kaplan A, Kresin C, and Schoenberg FP. (2024).
Forecasting Doubling Time of SARS-CoV-2 using Hawkes and SQUIDER Models.
Medical Research Archives ,
https://doi.org/10.18103/mra.v12 i3.5137 .
118. Schoenberg F, Wong, WK. (2024).
Comment on 'Change-Point Detection in Time Series via Deep Learning' by Jie Li, Piotr Fryzlewicz, Paul Fearnhead and Tengyao Wang.
JRSS B 86, 330.
119. McGovern I, Schoenberg F. (2024).
Application of tests for contagion in point processes to measles, Chlamydia, Lyme disease, and suicide.
Journal of Epidemiology and Community Health , Medical Research Archives, 12(9), 1-12.
120. Schoenberg F. (2024).
The magnificent partnership of Yan Kagan and Dave Jackson.
SRL 95(6), 3153-3155.
121. Schoenberg F, Schorlemmer D. (2024).
Critical questions about CSEP, in the spirit of Yan, Dave, and Ilya.
SRL 95(6), 3617-3625.
122. Diouane Y., Schoenberg F., and Mohler G. (2024). Accurate estimation of cross-excitation in multivariate Hawkes process models of infectious diseases. 11th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2024) . Best paper award (research track).
123. Phillips S, Schoenberg F. (2024). Efficient non-parametric estimation of variable productivity Hawkes processes.
Journal of Applied Statistics , 1-18. https://doi.org/10.1080/02664763.2024.2426019.
124. McGovern I, Brantingham PJ, and Schoenberg F. (2025).
Testing for causal clustering in point processes.
JASIS 2(1), 1-10.
125. Ward J, Werner M, Savran W, Schoenberg F. (2025).
Evaluation of ETAS and STEP forecasting models for California seismicity using point process residuals.
Environmetrics , to appear.
126. Phillips S, Mohler G, Schoenberg F. (2025).
Detection of surges of SARS-Cov-2 using nonparametric Hawkes models.
Epidemics , to appear.
127. Schoenberg F. (2025).
Magnitude-weighted goodness-of-fit scores for earthquake forecasting .
Spatial Statistics , S2211-6753(25)00017-X.
In Review
128. Hollister B, Coelho A, Schoenberg F. (2025). Fitting point process models for California forest fires using the Stoyan-Grabarnik statistic.
Environmetrics , sub. Mar25.