Frederic Paik Schoenberg (Rick)

Publications

0. Schoenberg, F. (1997). Assessment of Multi-dimensional Point Processes. Ph.D. Thesis, University of California, Berkeley, 1997.

1. Petty, K., Bickel, P., Jiang, J., Ostland, M., Rice, J., Ritov, Y., and Schoenberg, F. (1998). Accurate estimation of travel times from single loop detectors . Transportation Research A, 1,1--17.

2. Schoenberg, F. (1999). Transforming spatial point processes into Poisson processes. Stochastic Processes and their Applications, 81(2), 155--164.

3. Schoenberg, F., and Bolt, B. (2000). Short-term exciting, long-term correcting models for earthquake catalogs . Bulletin of the Seismological Society of America, 90(4), 849--858.

4. Schoenberg, F. (2000). Summary of Data on Hyperemesis Gravidarum. The Birthkit, Spring, p.4,8.

5. Schoenberg, F., Berk, R., Fovell, R., Li, C., Lu, R., and Weiss, R. (2001). Approximation and inversion of a complex meteorological system via local linear filters. Journal of Applied Meteorology, 40(3), 446--458.

6. Kagan, Y., and Schoenberg, F. (2001). Estimation of the upper cutoff parameter for the tapered Pareto distribution. J. Appl. Prob. 38A, Supplement: Festscrift for David Vere-Jones, D. Daley, editor, 158--175.

7. Schoenberg, F. (2001). Evidence for threshold-type relationships between fire incidence and ecological factors. Proc. Forest Fires 2001: Operational Mechanisms, Firefighting Means and New Technologies, Athens, Greece, March 13-16, pp 158-162.

8. Berk, R., Fovell, R., Schoenberg, F., and Weiss, R. (2001). The use of statistical tools for evaluating computer simulations: an editorial essay. Climate Change 51, 119-130.

9. Schoenberg-Fejzo M, Anderson L, Schoenberg, F.P. (2001). Familial aggregation of hyperemesis gravidarum. American J. of Human Genetics 69(4), supplement 1, p.389.

10. Schoenberg, F.P. (2002). Tessellations. in Encyclopedia of Environmetrics, Abdel El-Shaarawi and Walter Piegorsch, editors. Wiley, NY, vol. 3, pp 2176-2179.

11. Brillinger, D.R., Guttorp, P.M., and Schoenberg, F.P. (2002). Point processes, temporal. in Encyclopedia of Environmetrics, Abdel El-Shaarawi and Walter Piegorsch, editors. Wiley, NY, vol. 3, pp 1577-1581.

12. Guttorp, P.M., Brillinger, D.R., and Schoenberg, F.P. (2002). Point processes, spatial. in Encyclopedia of Environmetrics, Abdel El-Shaarawi and Walter Piegorsch, editors. Wiley, NY, vol. 3, pp 1571--1573.

13. Schoenberg, F.P., Brillinger, D.R., and Guttorp, P.M. (2002). Point processes, spatial-temporal. in Encyclopedia of Environmetrics, Abdel El-Shaarawi and Walter Piegorsch, editors. Wiley, NY, vol. 3, pp 1573--1577.

14. Schoenberg, F.P. (2002). On rescaled Poisson processes and the Brownian bridge. Ann. Int. Stat. Math. , 54(2), 445--457.

15. Berk, R., Bickel, P., Campbell, K., Fovell, R., Keller-McNulty, S., Kelly, E., Linn, R., Park, B., Perelson, A., Rouphail, N., Schoenberg, F., and Sacks, J. (2002). Workshop on statistical approaches for the evaluation of complex computer models. Statistical Science 17, 173-192.

16. Schoenberg, F.P., Peng, R., and Woods, J. (2003). On the distribution of wildfire sizes. Environmetrics , 14(6), 583--592.

17. Schoenberg, F.P., Peng, R., Huang, Z., and Rundel, P. (2003). Detection of nonlinearities in the dependence of burn area on fuel age and climatic variables . Int. J. Wildland Fire , 12(1), 1--10.

18. Schoenberg-Fejzo M, MacGibbon K, Schoenberg, F.P. (2003). Familial aggregation of hyperemesis gravidarum. American Journal of Human Genetics 73(5), supplement 1, p.386.

19. Schoenberg, F.P., Ferguson, T., and Li, C. (2003). Inverting Dirichlet tessellations. Computer Journal 46(1), 76--83.
(For C code click here) .

20. Schoenberg, F.P. (2003). Multi-dimensional residual analysis of point process models for earthquake occurrences. JASA 98(464), 789--795.

21. Schoenberg, F.P. (2004). Consistent parametric estimation of the intensity of a spatial-temporal point process. JSPI 128(1), 79--93.

22. Vere-Jones, D., and Schoenberg, F.P. (2004). Rescaling marked point processes. Australian & New Zealand Journal of Statistics 46(1), 133-143.

23. Schoenberg, F.P. (2004). Testing separability in multi-dimensional point processes. Biometrics 60, 471-481.

24. Brillinger, D.R., Robinson, E.A., and Schoenberg, F.P., editors (2004). Time Series Analysis and Applications to Geophysical Systems. IMA Volumes in Mathematics and its Applications, Springer, New York.

25. Zaliapin, I., Kagan, Y., and Schoenberg, F. (2005). Approximating the distribution of Pareto sums. Pure and Applied Geophysics 162(6-7), 1187-1228.

26. Peng, R. D., Schoenberg, F. P., Woods, J. (2005). A space-time conditional intensity model for evaluating a wildfire hazard index. JASA 100 (469), 26--35.

27. Schoenberg, F. P. (2005). Review of Statistical Inference and Simulation for Spatial Point Processes by Jesper Moller and R.P. Waagepetersen. JASA 100 (469), 349--350.

28. Schweitzer, S., Connell, J., Schoenberg, F., and Rubini, L. (2005). Clustering in the biotechnology industry. Proceedings of the 4th Global Conference on Business and Economics, St. Hugh's College, Oxford, June 26-28 2005.

29. Schoenberg, F.P. (2005). Comment on 'Residual analysis for spatial point processes' by Baddeley, Turner, Moeller, and Hazelton. JRSS B , 67, 661.

30. Connell, J., Schweitzer, S.O., and Schoenberg, F.P. (2005). Clustering in the biotechnology industry. in "Health Policy and High-Tech Industrial Development: Learning from Innovation in the Health Industry", Di Tommaso, M.R. and Schweitzer, S.O., eds., Cheltenham, England: Edward Elgar Publishers.

31. Veen, A. and Schoenberg, F.P. (2005). Assessing spatial point process models for California earthquakes using weighted K-functions: analysis of California earthquakes. in Case Studies in Spatial Point Process Models, Baddeley, A., Gregori, P., Mateu, J., Stoica, R., and Stoyan, D. (eds.), Springer, NY, pp. 293--306.

32. Schoenberg, F.P. (2006). On non-simple marked point processes. Ann. Inst. Stat. Math. 58(2), 223-233.

33. Schweitzer, S., Connell, J., and Schoenberg, F. (2006). Clustering in the biotechnology industry. International Journal of Healthcare Technology and Management , 7(6), 554-566.

34. Schoenberg, F.P. (2007). Comment on 'A note on testing separability in spatial-temporal marked point processes,' by Renato Assuncao and Alexandra Maia. Biometrics 63(1), 294--295.

35. Schoenberg, F.P., Chang, C., Keeley, J., Pompa, J., Woods, J., and Xu, H. (2007). A Critical Assessment of the Burning Index in Los Angeles County, California. International Journal of Wildland Fire , 16(4), 473--483.

36. Schoenberg, F.P. (2007). Discussion of "Modern statistics for spatial point processes" by Moller and Waagepetersen. Scandinavian Journal of Statistics (34), 700-701.

37. Schoenberg, F.P. and Tranbarger, K.E. (2008). Description of earthquake aftershock sequences using prototype point processes. Environmetrics, 19, 271--286.

38. Schoenberg, F.P., Barr, C., and Seo, J. (2008). The distribution of Voronoi cells generated by Southern California earthquake epicenters. Environmetrics, 20(2), 159--171.

39. Veen, A. and Schoenberg, F.P. (2008). Estimation of space-time branching process models in seismology using an EM-type algorithm. JASA, 103(482), 614-624.

40. Schoenberg, F.P., Pompa, J.L., and Chang, C. (2009). A note on non-parametric and semi-parametric modeling of wildfire hazard in Los Angeles County, California. Environmental and Ecological Statistics 16(2), 251--269.

41. Adelfio, G. and Schoenberg, F.P. (2009). Point process diagnostics based on weighted second-order statistics and their asymptotic properties Annals of the Institute of Statistical Mathematics, 61(4), 929--948.

42. Eslami, E., Nishimura, A., and Schoenberg, F. (2009). Impact of weather covariates on wildfire in Tanjung Puting National Park. Int. J. Forestry Research, 2009(270387), 1--8.

43. Wong, K., and Schoenberg, F.P. (2009). On mainshock focal mechanisms and the spatial distribution of aftershocks. BSSA , 99(6):3402-3412.

44. Bird, P, Kagan, Y.Y., Jackson, D.D., Schoenberg, F.P., and Werner, M.J. (2009). Linear and Nonlinear Relations between Relative Plate Velocity and Seismicity. Bulletin of the Seismological Society of America 99(6), pp. 3097-3113.

45. Tranbarger, K.E. and Schoenberg, F.P. (2010). On the computation and application of point process prototypes. Open Applied Informatics Journal 4, 1-9.

46. Schoenberg, F.P., Chu, A., and Veen, A. (2010). On the relationship between lower magnitude thresholds and bias in ETAS parameter estimates. Journal of Geophysical Research 115(B04), 309-324.

47. Chang, J., and Schoenberg, F.P. (2010). A Statistical Analysis of Santa Barbara Ambulance Response in 2006: Performance Under Load. Western Journal of Emergency Medicine, 10(1), 42--47.

48. Moeller, J., and Schoenberg, F.P. (2010). Thinning spatial point processes into Poisson processes. Adv. Appl. Prob. 42, 347-358.

49. Schoenberg, F.P. (2010). Introduction to point processes. Wiley Encyclopedia of Operations Research and Management Science , J. Cochran, ed., pp. 616-617.

50. Yee, E., Stewart, J.P., and Schoenberg, F.P. (2010). Evaluation of volumetric threshold strain considering noisy feedback signals from simple shear device. Proceedings of the 9th US National & 10th Canadian Conf. on Earthquake Engineering, July 25-29, 2010, Paper No. 1217, pp. 1-7.

51. Barr, C., and Schoenberg, F.P. (2010). On the Voronoi estimator for the intensity of an inhomogeneous planar Poisson process. Biometrika 97 (4), 977-984.

52. Wang, Q., Schoenberg, F.P., Jackson, D.D., and Kagan, Y.Y. (2010). Standard errors of parameter estimates in the ETAS model. BSSA , 100(5a), 1989-2001.

53. Chang, C., and Schoenberg, F.P. (2011). Testing separability in multi-dimensional point processes with covariates. Annals of the Institute of Statistical Mathematics, 63(6), 1103--1122.

54. Nairn-Birch, N., Diez, D., Eslami, E., Macias Fauria, M., Johnson, E., and Schoenberg, F. (2011). Simulation and Estimation of Probabilities of Phases of the Pacific Decadal Oscillation. Environmetrics, 22(1), 79-85.

55. Xu, H., and Schoenberg, F.P. (2011). Point process modeling of wildfire hazard in Los Angeles County, California. Annals of Applied Statistics , 5(2a), 684-704.

56. Yee, E., Schoenberg, F.P., and Stewart, J.P. (2011). Characterization and Utilization of Noisy Displacement Signals from Simple Shear Device using Spectral, Linear, and Kernel Regression Methods. Soil Dynamics and Earthquake Engineering , 31(1), pp. 25-32.

57. Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., and Tita, G.E. (2011). Self-exciting point process modeling of crime. JASA , 106(493), 100-108.

58. Nichols, K., Schoenberg, F.P., Keeley, J., and Diez, D. (2011). The application of prototype point processes for the summary and description of California wildfires. JTSA , 32(4), 420-429.

59. Chu, A., Schoenberg, F.P., Bird, P., Jackson, D.D., and Kagan, Y.Y. (2011). Comparison of ETAS parameter estimates across different global tectonic zones. BSSA , 101(5), 2323-2339.

60. Patel, R., and Schoenberg, F.P. (2011). A graphical test for local self-similarity in univariate data Journal of Applied Statistics , 38(11), 2547-2562.

61. Mullin, P.M., Bray, A., Schoenberg, F., MacGibbon, K., Romero, R., Goodwin, T.M., and Fejzo, M.S. (2011). Prenatal exposure to Hyperemesis Gravidarum linked to increased risk of psychological/behavioral disorders in adulthood. Journal of Developmental Origins of Health and Disease , Aug(2), 200-204.

62. Schoenberg, F. (2011). An Introduction to Probability with Texas Hold'em Examples. Taylor and Francis, New York.

63. Mullin, P.M., Bray, A., Schoenberg, F., MacGibbon, K., Romero, R., Goodwin, T.M., and Fejzo, M.S. (2011). Change in paternity and recurrence of Hyperemesis Gravidarum. The Journal of Maternal-Fetal and Neonatal Medicine, Oct 19, 22010839.

64. Xu, H., Nichols, K., and Schoenberg, F.P. (2011). Kernel regression of directional data with application to wind and wildfire data in Los Angeles County, California Forest Science , 57(4), 343-352.

65. Schoenberg, F.P, and Zhuang, J. (2011). On thinning a spatial point process into a Poisson process using the Papangelou intensity. UCLA Statistics Preprints 636, 1--15.

66. Clements, R.A., Schoenberg, F.P., and Schorlemmer, D. (2011). Residual analysis for space-time point processes with applications to earthquake forecast models in California. Annals of Applied Statistics 5(4), 2549--2571.

67. Schoenberg, F.P. and Patel, R.D. (2012). Comparison of Pareto and tapered Pareto distributions for environmental phenomena. European Physical Journal, 205, 159-166.

68. Diez, D., Schoenberg, F.P., and Woody, C.D. (2012). Algorithms for computing spike time distance and point process prototypes with application to feline neuronal responses to acoustic stimuli. J. Neuroscience Methods , 203(1), 186-192.

69. Balderama, E., Schoenberg, F.P., Murray, E., and Rundel, P.W. (2012). Application of branching point process models to the study of invasive red banana plants in Costa Rica. JASA 107(498), 467-476.

70. Schoenberg, F.P. (2012). Point processes, spatial--temporal. in Encyclopedia of Environmetrics, Second Edition, A.H. El-Shaarawi and W. Piegorsch (eds), John Wiley & Sons Ltd, Chichester, UK, pp. 2885-2886.

71. Clements, R.A., Schoenberg, F.P., and Veen, A. (2013). Evaluation of space-time point process models using super-thinning. Environmetrics, 23(7), 606-616.

72. Schoenberg, F.P. (2013). Facilitated estimation of ETAS. Bulletin of the Seismological Society of America, 103(1), 601-605.

73. Schoenberg, F.P., Brillinger, D.R., and Guttorp, P.M. (2013). Point processes, spatial-temporal. in Encyclopedia of Environmetrics, Abdel El-Shaarawi and Walter Piegorsch, editors. Wiley, NY, vol. 4, pp 1573--1578.

74. Fejzo, M., Magtira, A., Schoenberg, F., Macgibbon, K., Mullin, P., Romero, R., and Tabsh, K. (2013). Antihistamines and other Prognostic Factors for Adverse Outcome in Hyperemesis Gravidarum. European Journal of Obstetrics and Gynecology and Reproductive Biology, 170(1), 71-76.

75. Bray, A., and Schoenberg, F.P. (2013). Assessment of point process models for earthquake forecasting. Statistical Science, 28(4), 510-520.

76. Schoenberg, F. (2013). Comment on ``Estimating the historical and future probabilities of large terrorist events" by Clauset and Woodard. Annals of Applied Statistics, , 7(4), 1888--1890.

77. Nichols, K., and Schoenberg, F.P. (2014). Assessing the dependency between the magnitudes of earthquakes and the magnitudes of their aftershocks. J. Geophys. Res., 25(3), 143--151.

78. Baltar, M., Keeley, J., and Schoenberg, F.P. (2014). County-level analysis of the impact of temperature and population increases on California wildfire. Environmetrics 25(6), 397-405.

79. Bray, A., Wong, K., Barr, C.D., and Schoenberg, F.P. (2014). Voronoi cell based residual analysis of spatial point process models with applications to Southern California earthquake forecasts. Annals of Applied Statistics, 8(4), 2247-2267.

80. Mateu, J., Schoenberg, F.P., Diez, D.M., Gonzalez, J.A., and Lu, W. (2014). On distances between point patterns and their applications. Biometrical Journal , 57(2), 340-358.

81. Fejzo, M., Magtira, A., Schoenberg, F., and MacGibbon, K. (2015). Neurodevelopmental delay in children exposed in utero to hyperemesis gravidarum. European J. of Obstetrics and Gynecology and Reproductive Biology 189, 79-84.

82. Gordon, J.S., Clements, R.A., Schoenberg, F.P., and Schorlemmer, D. (2015). Voronoi residuals and other residual analyses applied to CSEP earthquake forecasts. Spatial Statistics , 14B, 133-150.

83. Schoenberg, F.P. (2016). A note on the consistent estimation of spatial-temporal point process parameters. Statistica Sinica, , 26, 861-879

84. Fejzo, M., Magtira, A., Schoenberg, F., Macgibbon, K., Mullin, P., and Patel, A. (2016). Antihistamines and other prognostic factors for adverse outcome in hyperemesis gravidarum: a follow-up study. Jacobs Journal of Gynecology and Obstetrics , 2(3), 1-3.

85. Zipkin, J.R., Schoenberg, F.P., Coronges, K., and Bertozzi, A.L. (2016). Point-process models of social network interactions: parameter estimation and missing data recovery. European Journal of Applied Math , 27(3), 502-529.

86. Njabo, K.Y., Zanontian, L., Sheta, B.N., Samy, A., Galal, S., Schoenberg, F.P., and Smith, T.B. (2016). Living with avian flu - persistence of the H5N1 highly pathogenic avian influenza virus in Egypt. Veterinary Microbiology, 187, 82-92.

87. Fejzo, M., Magtira, A., Schoenberg, F., Macgibbon, K., Mullin, P., and Patel, A. (2016). Long-term health effects in children exposed in utero to hyperemesis gravidarum. COGRM , 2(2), 150-154.

88. Fox, E.W., Coronges, K., Schoenberg, F.P., Short, M.B., and Bertozzi, A.L. (2016). Modeling e-mail networks and inferring leadership using self-exciting point processes JASA , 111(514), 1--21.

89. Fox, E.W., Schoenberg, F.P., and Gordon, J.S. (2016). Spatially inhomogeneous background rate estimators and uncertainty quantification for nonparametric Hawkes point process models of earthquake occurrences. Annals of Applied Statistics 10(3), 1725-1756.



In Review

90. Schoenberg, F.P., Gordon, J.S., and Harrigan, R. Analytic computation of nonparametric Marsan-Lenglin\'e estimates for Hawkes point processes. Journal of Nonparametric Statistics , subm Nov 2016.

91. Schoenberg, F.P., Hoffmann, M., and Harrigan, R. A recursive point process model for infectious diseases. AISM subm May 2017.

92. Gordon, J.S., and Schoenberg, F.P. A nonparametric Hawkes model for forecasting California seismicity. JASA subm Jan 2017.

93. Schoenberg, F.P. Quantification of luck and skill in Texas Hold'em. Significance subm Jan 2017.

94. Molyneux, J., Gordon, J., and Schoenberg, F.P. Assessing the predictive accuracy of earthquake strike angle estimates using non-parametric Hawkes processes. Environmetrics, submitted June 2017.



Unpublished or in progress

-- Peng, R., and Schoenberg, F.P. Estimating fire interval distributions using coverage process data.

-- Schoenberg, F.P. Re-randomized intensity estimates for transformed Poisson processes. UCLA Statistics Preprints, no. 244, p. 1--9.

-- Schoenberg, F.P. and Johnson, E.A. Classification and description of wildfire patterns using prototype point processes.